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The energy spectrum and damping of the electromagnetic excitations in a metal in a strong 
magnetic field are calculated taking into accqunt the Fermi-liquid interactions. In some 
cases investigation of weakly damped waves allows one to determine the value of the corre
lation function for the Fermi liquid formed by the electrons in a metal. 

1. We know that the electrons in a metal form a 
Fermi liquid in th-e sense discussed by Landau[!]. 
The Fermi-liquid properties of a metal may show 
up, in particular, in various effects connected 
with the penetration of an electromagnetic field 
into the interior. The effect of the Fermi liquid 
properties on the impedance in the infrared region 
has been considered by Silin [2] and Pitaevskil [3], 

while Gor'kov and Dzyaloshinskil [4] have investi
gated the possibility of exciting zero sound in a 
metal by a high-frequency field. Conditions are 
especially favorable for the investigation of Fermi
liquid effects in metals in the presence of a mag
netic field, thanks to the existence of various 
resonance effects. As shown by Azbel ', L5J the cy
clotron resonance region is well suited to this 
purpose. 

Obviously investigations of weakly damped 
electromagnetic waves in metals, which have been 
developed intensively in recent years1 l, can pro
vide a source of extra information about the en
ergy spectrum and interaction of the current 
carriers. In this connection it is of some interest 
to consider the effect of Fermi-liquid correlations 
on the propagation of weakly damped waves in a 
metal. This will be the subject of this paper. 

2. As shown by a number of authors (see the 
references in [BJ ) , in metals with unequal carrier 
concentrations in a strong magnetic field there 
may be propagated weakly damped electromag
netic waves with a quadratic dispersion law 
(helicon waves). In a metal with equal carrier 
concentrations magnetohydrodynamic waves are 
possible. The dispersion and damping of these 

1 )References to experimental and theoretical work on 
electromagnetic waves in metals can be found in the article 
by Kaner and Skobov[61. 

waves are sensitive to the topology and form of 
the energy surface and also depend strongly on 
the orientation of the field relative to the crystal 
axes of symmetry [7]. 

For the existence of these types of excitation 
it is necessary that the radius of the orbit of an 
electron in the magnetic field be small compared 
to the wavelength of the electromagnetic wave and 
the effective mean free path, 

kR~1, R~z·. (1) 

Here k is the wave vector, R = cpF/eH is the 
orbit of the carrier in a magnetic field, where PF 
is the Fermi momentum and H the magnitude of 
the constant magnetic field; l * = vI lv - iu.' I is the 
effective mean free path, where v is a character
istic velocity of an electron on the Fermi surface, 
11 is the collision frequency and w the frequency 
of the alternating field. Note that (1) presupposes 
the inequality 

Q~jv-iwl,kv. 

The dispersion and damping of the character
istic vibrations of the electromagnetic field may 
be obtained from the homogeneous system formed 
by Maxwell's equations, in which the relation be
tween the current and the field is given by 

(2) 

To find the electrical conductivity tensor 
Uik ( w, k) taking temporal and spatial dispersion 
into account, we must solve the kinetic equation 

dn / dt + l(n) = 0, (3) 

where J ( n) is the collision operator. 
We write the deviation of the distribution func

tion from its equilibrium value in the form 
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fJno [ eo- 1.1. J-l n- no(eo) ==din=- ~nt, n0 = exp--T-+ 1 

where n0 is the equilibrium Fermi distribution 
function. We can also write the energy of the 
quasi-particles in an analogous form: 

e = eo(p) + lle{r, p, t). 

(4) 

(5) 

In formulae (4) and (5), the function Eo ( p) 
corresponds to the equilibrium state of the elec
tronic Fermi liquid with the distribution function 
n0 ( p). According to Landau [t] the quasi -particle 
energy is in general a complex functional of n, 
while OE is related to on by the formula 

lie (p) =~<I> (p, p') {m (p') dp' = <f>n1• (6) 

In Fermi-liquid theory the collision integral 
J ( n) has the same form as the corresponding ex
pression in the gas model, except that it refers to 
the combination on - o E ( an0/a E). [2] 

The collision integral vanishes for n = n 0 ( E). 

Linearizing the kinetic equation (3) relative to 
n - n0 (E) = -x ( an0/a E) and setting 

we write (3) in the form [5] 

(1 -G) ax; + v ax; + Q ax; -l- '\l'"l = evE at ar ' a-c I t.. I 

where T is the dimensionless orbital revolution 
time of an electron and Q = eH/mc is the cyclo
tron frequency. 

(7) 

(8) 

It is evident from (8) that the effect of Fermi
liquid effects can lead to a significant change in 
the dispersion and damping of electromagnetic 
excitations only in the high-frequency case 

w ~ 'lls (s = 1, 2), (9) 

so we shall consider this case. (In (9) the index 1 

refers to electrons, the index 2 to "holes.") 
For a monochromatic plane wave ( ~ exp (- iwt 

+ ik · r)) the Fourier transform of (8) with respect 
to T takes the form 

00 

~ [(v- iw + inQ) llnm + ikYn-m + iwGnml x;;;. = eEvn. 
m=-co 

Here 
1 2n . 

fn (e, Pz) = 2 ~ f(e, Pz, -r) e-m~ d-r:, 
n o 

<'>nm is the Kronecker symbol, and 

Gnm = (2:rtt2 ~ ~ c (p, p') e-im~-in~· d-r d-r' 

(10) 

is an operator with respect to Pz· The z axis is 

taken parallel to the magnetic field H, and the x 
axis perpendicular to the vectors k and H; the 
angle between k and H will be denoted by ({J. 

Let us define a vector Pn by Xn = eE · Pn. The 
solution of (10) for Pn up to and including terms 
of order H- 2 has the following form: for n = 0 

Po= [v- iw (1- Goo)+ ikvor1 {vo- 2J (kv_m + wG0m) v~} 
m4,o m .... 

(lla) 
while for n ..- 0, 

Vn 1 {< . ) Vn . (k -~ c·· ) Pn = -. -- -:---Q 'll- lW -:---Q + l Vn + W no Po mg m m. · 

(llb) 

Using the definition of the current density 

• 2e (' fJno 
J = J1j J v:x,Tedp, (12) 

we can write the electrical conductivity ten::sor in 
the form 

ail• = 4::2 ~ mdp.[ vo*ipo" + ~ Vn"ipnk J E", (13) 
e=Jl n*O 

where v0 = ( v), the sign ( ) denoting an average 
over T. 

3. We shall be interested in the asymptotic 
expressions for the electrical conductivity tensor 
in various limiting cases: 

A) The case of weak spatial dispersion 

Neglecting spatial dispersion and scattering of 
the carriers, we obtain the following values for 
the elements of the conductivity tensor for an 
arbitrary convex Fermi surface with central 
symmetry: 

Nee 
a"~= -yea.~ 

(14) 

- /;~3 W ~ mdpz {_g,. (-r:) [1- G (p (T}, p' (-r:'})J gil(- 1:')),. 

4:rtec \ A A 

acxz =- Hh3 j mdpz {ga. (-c) G (p (1:), p' (1:')) [1- {G>r1 (vz)), 

(15) 

Here N is the difference in the carrier concen
trations, Eaf3 is the antisymmetric tensor of the 
second rank and gx = Py - ( Py ) , gy = - ( Px 
- (px)). 

B) The case of strong spatial dispersion: 

kzv~w. (16) 

The diagonal elements of the electrical conduc-
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tivity tensor (which are the ones we shall need 
subsequently) have the following form for arbi
trary dependence of the energies of the carriers 
on momentum: 

X [v- iw (1- G (p (T), p' ('t"')))l p11 (T')}, 

X [v- iw (1- G (p (T), p' (T')))] Px(T')), 

part of the conductivity tensor (15), which is re
sponsible for dissipation, is negligibly small in 
comparison with the antihermitian part. We write 
the antihermitian part of (15) in the form 

a13 ) 
-aa2 • 

iQw-1ass 

(19) 

where Q = eH/(m1 + m 2 )c and the quantities aik 
are expressed in an obvious way in terms of the 
matrix elements in (15). 

As shown in [6], the dispersion relation of 
weakly damped waves in this case has a linear 
character: 

w = kv±, 

V± = Va(2 detAcxB)-'f,[Au + A22 +{(Au- A22) 2 + 4A122}"•], 

(1 7) (20) 

where vz = 8vz/8pz and 

kn2 = 4:ne2 ~mdp. = 4:ne2 ~~n 
• f..l. 

is the square of the reciprocal Debye radius. The 
summation is everywhere to be taken over the 
different groups of carriers. In the calculations 
we have used the fact that it follows from the con
ditions (16) and (9) that 

[v- ioo(1- (.G))+ i(kzVz)]-1 = :nil((kzVz)) 

+ iP[w (1- (G)) - (k.v,)]-1, 

where P denotes the principal value. 
4. Let us now consider the propagation of 

helicon waves. The helicon dispersion relation is 
determined by the Hall conductivity axy = -Nec/H 
and has the form 

w = c2k2 j cos cp I / 4:naxy. (18) 

Obviously in the approximation considered the dis
persion relation (18) is independent of the corre
lation function <I>. In the general case ( cp "' 0) the 
damping of the helicons is due to spatial disper
sion (Landau damping) and can only be sensitive 
to the Fermi-liquid interactions when w is of 
order kv. In the special case cp = 0 there is no 
spatial dispersion, the damping of helicons is de
termined by collisions and the Fermi -liquid inter
action is unimportant. The low-frequency case 
w « v was discussed above. 

5. Next we investigate the effect of the Fermi
liquid interactions on the electromagnetic excita
tions in a metal with equal concentrations of 
carriers ( n1 = n2 = n) under conditions of weak 
spatial dispersion (kzv « w ). 

Owing to the assumption (9), the Hermitian 

where va = H/( 47fnm )112 is the Alfven velocity, 
and the matrix elements Aik are given by 

( au+ a1s2/ass (a12 + a13as2/ass)Jcos <p J-l) 

A;k = (a12 + a13as2/ass)l cos <p l-1 (a22 + a2s2 / ass) cos-2 <p • 

In an anisotropic metal the excitations form two 
branches of magnetohydrodynamic (magneto
plasma) oscillations. Using (20), we can put the 
conditions (9) and (14) for the existence of these 
waves in the form 

(21) 

In most metals (where n ~ 1022 ) the second 
equation in (21) is satisfied only in fields of the 
order of several million oersteds. In metals such 
as bismuth with small carrier concentrations 
(n ~ 1017 ) this inequality is satisfied in fields of 
the order of 103 Oe. On the other hand, as shown 
by Abrikosov [S] in metals of the bismuth type the 
correlation between electrons is weak (up to 
energies of the order of 1 eV), so that the gas 
model is valid for these metals. 

6. In the case of strong spatial dispersion 
( kzv » w ) and an anisotropic carrier energy 
spectrum, Kaner and Skobov [G] have shown that 
the electromagnetic excitations are weakly 
damped only if the magnetic field H is oriented 
parallel to an axis of symmetry of high order; 
this is connected with the fact that the Landau 
damping vanishes in such directions. This condi
tion is equivalent to an isotropic dependence of 
carrier energy on momentum In this region 
(magnetic fields subject to the condition Vs « w 
« kvs « n, va « Vs) there exist two oscillations: 
an Alfven wave and a slow magnetosonic wave. 
Their frequencies are defined respectively by the 
elements ayy and axx in formula (1 7) [6], viz: 
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k2 = 4:n:ic-2waaa cos-2 <p (a = x, y). (22) 

For non-longitudinal propagation only the Alfven 
wave is weakly damped, while for k parallel to H 
the first term in expression (17) for crxx vanishes 
and the spectrum of slow magnetosonic waves co
incides with that of Alfven waves: 

k (!) (4 ""' c mdpz 1/ ( 1 ' I I )'/z 
·=Hcos<p :n:~.d~,~~px''t)[ -G('t,'t)]Px('t')} · 

(23) 

It is clear that the correction to the spectrum due 
to Fermi-liquid interactions is not in general 
small. For G ~ 1 (large <I>) the spectrum is dis
placed to higher frequencies. 

In the case of strong spatial dispersion in an 
anisotropic metal the propagation of electromag
netic waves polarized along the direction of the 
magnetic field is also possible, owing to the fact 
that Uzz is small in comparison with Uxx and uyy· 
In this case the inequality I u 01 zU zp I <4: I ua{3 u z z I 
must be satisfied The dispersion relation for 
these waves can be written in the form (cf. [7]) 

-1 [ 4:rte2 ""\ , ]'/, 
M =fie kn 1 - h3k 2 ~ ~ mdpz (G} . 

D s 
(24) 

Investigation of waves with the spectrum (24) will 
allow us to determine the function G, since the 
density of states dn/dt-t can be calculated directly, 
e.g., from the experimental heat capacity. 

The authors are grateful to E. A. Kaner, under 
whose guidance this work was carried out. 
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