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The production of vortex rings in a superfluid with relative motion between the normal and 
the superfluid components is considered. The corresponding Fokker-Planck equation is de
rived which describes the appearance of vortex rings due to thermal fluctuations and a for
mula is obtained for the rate of formation of vortex rings. 

l. In the original theory of superfluidity due to ever, the macroscopic nature of the excitations 
Landau (cf., for example, [t]) it was assumed that makes possible the solution of the problem by 
the superfluid component can flow with velocities means of a hydrodynamic description. 
lower than the critical velocity without experienc- Owing to thermal fluctuations vortex filaments 
ing friction either against the walls of the capil- can be formed in the superfluid component. It can 
lary or against the normal component. However, be easily seen that the formation of closed fila-
as experiment has shown, the critical velocities ments, i e., vortex rings, is most probable since 
are very small and depend in an essential manner they can be formed reversibly requiring the least 
on the diameter of the capillary falling off rapidly work A for a given length of the vortex filament. 
as the diameter is increased. The explanation of Such rings play in this case the role of Gibbs' 
this fact is related to the possibility of formation nuclei. Their critical size R1, below which the 
of localized excitations-vortex rings in the super- ring tends to diminish and above which it tends to 
fluid component -and the appearance of corre- grow without limit, is determined by the equili-
sponding friction between the normal and the brium between the force of friction and the hydro-
superfluid components (cf., the review in [2] ) . dynamic forces acting on the vortex filament. 

In this paper we do not consider real experi- Since the diameter of a vortex filament in a 
mental conditions under which, apparently, an im- superfluid [2] is of the order of atomic dimensions, 
portant role is played by the phenomena at the which is much smaller than the critical radius of 
boundaries of the fluid, but we shall study an the ring for I Vs - Vn I « Vcr one can easily eval-
idealized homogeneous problem when the fluid uate the magnitude of A ( R). The minimum work 
occupies the whole volume and initially Vs "' vn· is obtained in the case of a reversible process; 
When the Landau criterion is satisfied in this case the force of friction of the vortex 

lvs- Vn I< min [e(p) / p] = Dcr, 

where E ( p) and p represent the energy and the 
momentum of the elementary excitations, such a 
state will be metastable, since a state without 
relative motion of the components, but with the 
same total momentum, is thermodynamically 
more advantageous. 

The mechanism of approach to equilibrium con
sists of the formation of vortex filaments in the 
super-fluid component and the subsequent reduction 
in the relative motion between the normal and the 
super-fluid components. Since the vortex filaments 
are macroscopic structures and not elementary ex
citations, the solution of the problem of the ap
proach to equilibrium by the method of Green's 
functions is in fact impossible since it requires the 
introduction of macroscopic Green's functions. How-

filament against the normal component must be 
absent, and for this (cf. [2, 3]) the velocity of the 
vortex filament must be equal to the velocity of 
the normal component Vn which we shall take to 
be equal to zero. In this case the only force acting 
on the ring will be the hydrodynamic force acting 
per unit length of the filament in an ideal fluid. 
The value of A will be simply the energy of a 
vortex ring in an ideal fluid having a velocity at 
infinity. Utilizing the Galilean transformation we 
obtain 

A = e(R) + pv., (1.1) 

where E ( R) and p ( R) are the energy and the 
momentum of a vortex ring in a fluid at rest [4]: 

p(R) 
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where K = h/m is the circulation, and a is a 
quantity of the order of atomic dimensions. The 
critical radius is obtained from the condition 

F = 8A = p.~(ln SR --~)- 2nxRp.v. = 0 (1.3) 
&R 2 a ·4 

or 

R1 = ~( In ~R1 - ~) , 
4nvs a 4 

(1.4) 

from which it can be seen that we must consider 
vortex rings with K > 0. 

From (1.1) it can be seen that the energy A ( R) 
is of the form of a potential barrier of height 

A!~ Ps~R~ In~~. (1.5) 

Thus, if due to fluctuations a vortex ring attains 
the size R1 then its further growth will be ener
getically favorable and, in fact, takes place with 
probability unity. 

The object of our further calculations is to de
termine the number of vortex rings reaching 
critical dimensions per unit time per unit volume. 

3. We are interested in the initial phase of 
formation of vortex rings in a superfluid when 
there are still only very few of them and their 
interaction can be neglected. This problem is 
analogous to a problem considered earlier by 
Zel'dovich[fi] and Kagan [S] dealing with the boiling 
of a pure liquid (on the basis of the general method 
due to Kramers C7J). 

Vortex rings can attain critical size both by 
means of random repeated expansion as a result 
of fluctuations related to the presence of excita
tions in the fluid, and also by means of a single 
random increase directly to critical size. How
ever, the latter is not very probable, since it re
quires the organization of motion directly of 
critical dimensions. We shall, therefore, consider 
only the slow diffusion process. In this case the 
process of growth of a ring can be represented as 
the motion of a vortex ring in the presence of an 
external medium (excitation gas) randomly collid
ing with the vortex rings, i.e., as a special case 
of Brownian movement. 

We introduce a distribution function for the 
vortex rings f ( { n}) which depends on the set of 
quantum numbers { n} characterizing the vortex 
ring which can oscillate and can be oriented in a 
random manner. Let the probability of transition 
from the state { n'} into the state { n} during a 
time T be w 7 ( { n' }, { n' - n} ). Then the number 
of vortex rings in the state { n} at the time t + T 

will be given by 

j({n}, t + •) = ~ w~( {n'},{n'- n} )/( {n'}, t), (2.1) 
n' 

where the summation extends over all { n' }, in
cluding {n'} = {n}. Equation (2.1) must have the 
following property: the Gibbs distribution 
f ( { n}) = exp ( -E ( { n} )/kT) must be its station
ary solution. 

For a vortex ring we pick out the quantum 
numbers nx corresponding to its oscillations 
about its equilibrium circular shape and the 
quantum numbers Ni corresponding to the motion 
of the ring as a whole. The energy of oscillations 
of a ring of radius R will be given by 
( 1/ 2 + nx) nw ( x. R) where w ( x, R) are obtained 
from the solution of the problem of small oscilla
tions, x is the propagation vector for the oscilla
tions or the ordinal number of the corresponding 
harmonic, nx are the corresponding occupation 
numbers. The total energy of the ring can be 
written in the form 

E (Ni, nx) = ~ nffi ('X,R) nx + E (Ni), (2 .2) 
X 

where E ( Ni) is the energy of a circular ring in
cluding the energy of the zero point oscillations. 

We assume that there exist vortex rings of a 
definite radius R. The equilibrium with respect 
to the numbers nx is established fairly rapidly 
because energy fluctuations of the order nw occur 
sufficiently frequently. Therefore, the distribu
tion function will have the form 

f (Ni, nx, t) = / 1 (Ni, t) exp {-~ 1i~x;x}. 
X 

(2 .3) 

The quantum numbers Ni change during a suffi
ciently small time T on the average by relatively 
small amounts, and equation (2 .1) taking (2. 3) into 
account can be transformed into a Fokker-Planck 
equation for the function f1 . 

Since transitions with a change in the numbers 
nx do not alter the form of the distribution func
tion, then in the sum over n' we can leave only 
the sum over Nu carrying out the summation over 
nx we obtain from this 

~I (N;, nx, t + 't') 
nx 

= ~ w~(N{,nx,{N/-N;})f(N~, nx,t). (2.4) 
nx, Ni' 

Expanding in terms of N{- N i in the first 
argument of w 7 and in f, and taking T to be 
small and the functions w T and f to be sufficiently 
smooth, we obtain a Fokker-Planck equation in 
the space of the quantum numbers Ni which can 
be written in the form 

~ &f (N;, nx) = ~ _!_(- dNi f + ~ Dii _!1_), (2 . 5) 
nx &t nx. i &N; dt j &Nj 
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where the quantity dN/dt is the average rate of 
change of the quantum number Ni, while the sec
ond term in brackets describes the diffusion 
process associated with fluctuations. The average 
rate of change of Ni can be written in the form 

dN; fJl!: 
Tt =- ~ 'llii oN·' 

i J 
(2.6) 

where 1Jij are certain kinetic coefficients. 
Since the Gibbs distribution must be a solution 

of (2. 5) the following relations hold 

(2.7) 

and (2.5) assumes the form 

o I a [ (a E o I )] ~at= ~·oN· 'I'J;i fJN.f+kTfJN· · nx nx, 1., 3 t 3 3' 

(2.8) 

The energy of a circular ring depends on its 
radius R and on its orientation defined by the 
angles .J, r.p. According to (1.1) and (2.2) for an 
arbitrary ring the energy can be written in the 
form 

E (N;, nx) = E (R) + E' (nx, tt, R), (2 .9) 

where 

}!.; (R) = B (R) - p (R) v., 

E' (nx, tt, R) = 2} 1iffi (X, R) nx + p (R) v, (1- cos tt), 
)( 

(2 .1 0) 

.J is the angle between -Vs and the momentum of 
the ring p ( R). 

We go over from the variables Ni to new inde
pendent variables W, including R, .J, r.p. It can be 

l 

easily shown that (2. 8) in the new variables as-
sumes the form 

~fJ(~~)=~ 0~,{'l'Ji/:V~' ~~~[( 00:,-kT ~~~ )11 
nx ux. l 3 1 m m 

+ kT 0 (fl) ]} (2 .11) 
oNm' ' 

where 

J = a(Nt ... Nn) I fJ(Nt' ... Nn') (2.12) 

is the Jacobian of the transformation. 
Equilibrium with respect to orientations is 

established rapidly since for small R the energy 
practically does not depend on .J, while for large 
R all the rings are concentrated near .J = 0, and, 
therefore, we can take 

Jj = Jf' (R) exp ( -E' I kT). (2.13) 

We are interested only in the formation of 
vortex rings of a definite radius, and it is imma-

terial in which particular quantum state these 
rings are found. Therefore, we can integrate (2.11) 
over the angles .J and r.p, and also over the remain
ing Nf with the exception of R = Nf1. Substituting 

(2.13) into (2.11) and carrying out the summations 
and the integrations we obtain 

ocr=_!_{ 'I'JRR [( oE (R) - klln r ) cr + kT ocr]} (2 .14) 
fJt aR fJR oR oR ' 

where the function u ( R, t) is the distribution 
function for the vortex rings over the radii, r is 
the statistical weight of the state of a vortex ring 
of radius R: 

ln r =In~ ~ Je-E'/kT dttdrpdN'. (2.15) 
nx 

We see from (2.14) that in accordance with the 
thermodynamic fluctuation theory in the equili
brium state the number of vortex rings of radius 
R is proportional to exp ( -Amin/kT ), where 
Am in = oF = oE - kT6S ( oE and oS are respec
tively the changes in the energy and the entropy 
associated with the formation of a vortex ring). 

3. Our further problem is the determination of 
r and 7J RR for a vortex ring. 

The kinetic coefficient 1JRR can be obtained by 
considering the motion of a vortex ring, since the 
quantity -7JRR8E/clR gives the average rate of 
change of the vortex ring taking dissipative proc
esses into account. The normal fluid exerts a 
friction force per unit lenBth of an element of a 
vortex filament given by [3 

F PnPs ( [ ] ] 1 PnPs [ ] 1 = - b -- X XVL + b -- XVL , (3.1)* 
px p 

where VL is the velocity of the vortex filament; 
the dimensionless coefficients b and b' differ 
somewhat from the coefficients of Hall and 
Vinen [3] B and B'. In addition to the friction 
force an element of a vortex filament is also acted 
upon by the superfluid with a Magnus force [4] 

Fz = p.[x, Vs + V(R)- vL], (3.2) 

where U ( R) is the velocity of motion of the 
vortex ring in a stationary fluid. Since a vortex 
filament has no mass, the total force acting on an 
element of the filament is equal to zero, and we 
obtain for the radial velocity the expression 

dR ppnb fJE oR 
dt =- Pn2b2 + p2(1- b'pn/p)ZfJR fJp' 

(3.3) 

from which we can obtain the expression for the 
coefficient 1JRR: 

ppnb fJR 
'I'JRR = Pn2b2 + p2(1- b'pn/p)2f)p. (3.4) 
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In order to determine the statistical weight r 
it is necessary to know the quantum numbers de
termining the circular vortex ring. If we regard a 
vortex ring as an excitation of energy E and mo
mentum p, then the latter must be quantized in 
such a manner that 

P = ( 2:rtv11i , . 2:rtv21i , 2:rtv31i ) , 
L1 L2 La 

where v1, v2, v3 are integers and L1, L2, L3 are 
the dimensions of the box. This enables us to 
evaluate the Jacobian of the transformation (2 .12): 

J v 2 dp . = --p -sm'l't (3.5) 
(2:rtn) 3 dR . 

Utilizing formula (2.15) we obtain 

(3.6) 

where 
kTV2:rt dp 

81 = ln p- (1- e-2pv,/hT) 
v.(2:rtn)3 dR ' (3.7) 

while the entropy of the filament after summation 
over nx has the form 

SL=-~1n(1-e-t.."'xfkT). (3.8) 
X 

For vortex rings of sufficiently large radius 
the vextors X are distributed practically continu
ously, and for c...• one can utilize the hydrodynamic 
formula (cf., for example, [2]) 

w = _!x2ln 1',046. (3.9) 
2m xa 

From this we can obtain an approximate expres
sion for 

SL = 2R 'fZmkT (ln 1.0461i ~-'/,r(~) s(~), (3.10) 
n a 'f2mkT J 2 2 I 

which is valid for sufficiently low temperatures; 
!; is the Riemann zeta function. 

Thus, we have determined all the quantities 
appearing in (2.14). 

Generally speaking, (2.14) must be solved sub
ject to certain boundary conditions when there are 
no vortex rings of radii exceeding a certain ~. 
However, the process of growth of the vortex 
rings is a very slow one due to the large value of 
the potential barrier, and in fact it can be treated 
as a stationary one (cf.C 7•5J). At the same time 
we have the boundary conditions: for small 
R ~ ~ equilibrium exists and 

(J (Ro) = r (Ro) exp ( -E (Ro) I kT); (3.11) 

for R- co there are no vortex rings and u = 0. 
Solving the stationary equation (2.14) we obtain 

jR = { kTG(R)f-1 (R)exp [ E~:) J 1:,} 
{ (' 1 [E(R) J }-1 X J -exp kT-lnf(R) dR , 

Ro 'YJRR 

(3.12) 

where the constant jR gives us the flux of vortex 
rings along the R axis or the number of vortex 
rings of radius above the critical radius formed 
per unit time. The integrand has a maximum at 
R = Rcr defined by the equation 

oE(R) olnf(R) 
~--kT =0 

oR oR 
(3.13) 

or 

n [ 8Rcr .2 J Rcr =-- ln---- ,A 
2mv8 a 4 

kT -- ( 1.0461i )-'/z 4.4m 
- ~ "V2mkT ln --=- ----. 

n ay2mkT 4:rt2p.v.n 
(3.14) 

It should be noted that this equation does not 
always have a solution. Calculations show that for 
He II at T = 1.8°K, a= 19A and Vs > 70 em/sec 
Eq. (3.14) no longer has a root since in this case 
there is no barrier and vortex rings can be formed 
easily (unfortunately the accuracy of formula (3.10) 
for SL is not great, and the numbers are not very 
reliable). The quantity a is also determined quite 
roughly [2]. In the case when (3.14) has a solution 
the principal contribution to the integral comes 
from the neighborhood of the point R = Rcr· 
Utilizing the boundary conditions we obtain 

. 2:rtkT'fkT V n R 2 [ E(Rcr)- kTSL(R)cr J 
]R= -Ps cr exp -----------'-

V8(2:rtli)3l':rt m kT 

This formula enables us on taking into account 
formulas (2 .10), (3.10), and (3.14) to evaluate the 
number of vortex rings of radius larger than the 
critical radius formed per unit time in volume V. 
The reciprocal quantity defines the time of re
laxation towards the equilibrium state with Vs 
= vn. Calculations show that an appreciable rate 
of formation of vortex rings in He II occurs for 
Vs > 60 em/sec and falls off sharply towards un
observable values of the order of exp ( -1000) at 
velocities in the neighborhood of 40 em/sec. The 
quantity jR varies very, rapidly with temperature, 
particularly because of the variation in Ps for 
T>1.4°K. 
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