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The resonance scattering of a particle is treated for the case of a crystal containing nuclei 
with a lowlying level. It is shown that in certain cases, when the Bragg condition is satisfied, 
a situation may occur where the amplitudes for the formation of a compound (excited) state 
in the incident and diffracted waves are equal in magnitude but opposite in sign. Because of 
the obvious coherence of the two waves, in this case the probability for formation of the 
compound nucleus is zero, and thus the inelastic channels disappear and the crystal be­
comes nonabsorbing (partially or completely). 

A special analysis is made of the effect of vibration of the nuclei in the lattice. It is found 
that in the case of narrow lines (r « wp. where wp is the characteristic frequency of the 
phonon spectrum), temperature and any other nuclear oscillations have practically no effect. 
In the case of broad lines, vibration of the nuclei partially destroys the effect, which then 
becomes temperature dependent. The problem is stu~iied in detail for the case of resonance 
scattering of y quanta in the presence of internal conversion. It is assumed that the y 
quanta are produced in the source in a decay accompanied by the Mossbauer effect. It is 
shown that in an M1 transition, for y quanta with a particular polarization, the effect de­
scribed occurs for Bragg scattering from any crystal plane. For the other polarization, 
or for both polarizations in the case of an E2 transition, special conditions must exist in 
order for the effect to occur. 

1. INTRODUCTION 

A characteristic feature of resonant nuclear in­
teraction at low energies is the formation of a 
·"compound nucleus" (excited nucleus) with its 
subsequent decay, which can be realized through 
different channels. 

In general the ratio of the widths r 1 and r 2 for 
the elastic and inelastic channels is arbitrary. 
Suppose that r 1 /I' 2 « 1. Then it is easily under­
stood, considering the large value of the resonant 
cross section, that even a very thin layer of ma­
terial will practically completely absorb the pri­
mary beam of particles (with an energy spread 
within the width of the resonance level), convert­
ing them into other particles (e.g., neutrons into 
y quanta, y quanta into conversion electrons ) . 

The question arises whether it is possible to 
suppress the inelastic channels, and thus change 
a strongly absorbing medium into one which only 
scatters. At first glance the question seems ab­
surd, since this would require forbidding the for­
mation of the compound (excited) nucleus. But this 
is precisely the situation that can be realized if the 
scattering occurs from a strictly regular arrange­
ment of the system of nuclei. 

Under ordinary conditions, the interactions of 
nuclei in matter with the incident particles occur 
completely independently, and their collective ac­
tion manifests itself only in the drop in intensity 
of the primary beam with thickness. But for scat­
tering by crystals, if the wave length of the parti­
cles is comparable with the interatomic spacing, 
or less, the picture changes fundamentally. Now 
the 1/J function of the particles at each point in the 
material can be formed as the result of collective 
action of the whole regular system, and need not 
coincide with the original plane wave. This per­
mits us to pose the question of finding conditions 
under which the 1/J function at each nucleus would 
be such that the probability for formation of a 
compound nucleus would become zero. 

In an ideal crystal there is an abrupt readjust­
ment of the 1/J function when the Bragg condition 
is fulfilled, when we know that a state of definite 
energy consists of a superposition of two plane 
waves. 

It turns out that in various cases one can have 
the situation where in a sufficiently thick crystal 
the amplitude for compound nucleus formation has 
the same value for the initial and diffracted waves, 
but with opposite signs. Because of the obvious 
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coherence of the two waves, the probability of for­
mation of the compound nucleus then actually drops 
to zero. In the simplest cases this situation cor­
responds to a vanishing of the total l/J function at 
all the nodes of the lattice (in the case of interac­
tion with y quanta, to the vanishing at the lattice 
sites of the electric or magnetic field intensity ) . 

Thus, in resonance scattering by an ideal crys­
tal, when the Bragg condition is fulfilled, the in­
elastic channels may be suppressed (completely 
or partially), and the material may change from 
being strongly absorbing to being (completely or 
partially) transparent. 

It is of interest to emphasize that this cannot be 
achieved in irregular systems, and consequently 
the resulting yield of the nuclear reaction depends 
essentially on how the nuclei are arranged in space. 

We must mention that the picture given here has 
a quite close analogy in ordinary atomic scattering 
of x rays in a crystal. As was first observed ex­
perimentally by Borrmann [l] and later explained 
by Laue, [2] the ordinary absorption of x rays in 
a crystal because of interaction with the electrons 
decreases when the Bragg condition is realized­
the so-called "anomalous transmission." It is 
clear that here, in contrast to the nuclear case, 
we can have only a partial reduction of the ab­
sorption, because of the finite dimensions of the 
atoms. 

At first glance it seems that vibration of the 
atoms in the crystal, which occurs even at T = 0, 
should always lead to some disturbance of this 
picture and, as a consequence, to a partial re­
establishment of the inelastic channels. However, 
as the present work shows, this statement is 
strictly speaking not true. Thus, in the case of 
narrow resonances (r « wp, where wp is a char­
acteristic frequency for the phonon spectrum), the 
effect under very specific conditions turns out to 
be independent of the vibration of the nuclei and 
consequently of the temperature (we are referring 
to the effect when the Bragg condition is satisfied 
exactly-of. below). 

In this paper the problem under consideration 
is analyzed in detail for the case of resonance 
scattering of y quanta by nuclei having a lowlying 
isomeric level. It is assumed that the decay of the 
isomeric level in the crystal gives a finite proba­
bility for the Mossbauer effect, so that the source 
emits y quanta with a narrow spread in energy 
corresponding to the width of the level. The ratio 
of the elastic width r 1 to the conversion width r 2 

is assumed to be arbitrary. 

2. DEFINITION OF THE CURRENT 

Let us consider a crystal containing nuclei with 
a lowlying resonance level w0• Suppose that there 
is a flux incident on this crystal of y quanta having 
a narrow spread in energy around w0 of the order 
of the level width r. To describe the radiation field 
inside the crystal we use the usual set of Maxwell 
equations. Then, converting to space and time 
Fourier components, we have 

(k2- w2fc2)E(k, w)- k(kE(k, w)) = 4nc-2wij(k, w), 

(2.1) 

j(k, w) = ~ in(k, w). (2.2) 

Here jn ( k, w) is the Fourier component of the 
current density produced by the n-th resonant 
nucleus in the crystal. (We neglect the electronic 
part of the current as well as the current corre­
sponding to the nonresonant nuclei.) 

We use the fact that the total momentum of the 
nucleus in the crystal and the momentum of the y 
quanta are negligibly small compared to the mo­
mentum of the nucleons in the nucleus. Then we 
have for the Fourier components of the current 
density operator for the n-th nucleus, 

J:,(k, w) = e-ikrn[j~(k)- ~e-ikpa ;;: A(rn + Pa• w)] • 

(2.3) 

~ (k) " -ikP ( ea ~ +. [k~ 1) (2.4)* JI = -; e a ikt Pa zc P.a . 

In (2.3) and (2.4), rn denotes the coordinate of the 
center of gravity of the nucleus, while Pa is the 
relative coordinate of the nucleon in the nucleus, 
with its corresponding momentum operator Pa. 
All the other notations are standard. 

As our gauge condition we set the scalar poten­
tial equal to zero. Then A(k, w) = -icw-1 E(k, w). 
Then, within the framework of standard perturba­
tion theory, in the linear approximation in the 
fields, we have the following expression for the 
average value of the current density correspond­
ing to an individual nucleus: 

fn1 (k, w) = (2:)aw ~ d3k'E1 (k', w) 

X {" (/11 (k) e-ikrn),. (/t1._(k'? eik'rn),o + Ze2 bi' i(k'-k)r;;} 
~ w - w.0 + zf ./2 M e • 

(2.5) 

In this expression the index s refers to the inter­
mediate state, while the bar above denotes an av-

*[k(lal = k X fla. 
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erage over the initial state. r s is the width of the 
resonance level of the nucleus in the crystal, and is 
in general different from the total width for an iso­
lated nucleus. (In (2.5) and from now on, n = 1.) 

We note that the second term in (2.5) can be 
dropped, since it is small compared to the first. 

At first we neglect the vibration of the nuclei in 
the crystal. Then the summation over s in (2.5) 
reduces to a summation over the components of the 
multiplet (index t ), corresponding to the excited 
nuclear state. The level may be degenerate, or it 
may be split because of the hyperfine interaction. 
As for the widths of the individual components, we 
shall always assume that they are identical. 1> 

We make use of the fact that 

L; ei{k'-I<Jrn = T) ( 2:n:)3 L; 6 (k'-k-K) S (K), 
n Vo K 

S (K) = ~· eiKr;. 
i 

(2.6) 

Here V0 is the volume of a unit cell; K is there­
ciprocal lattice vector multiplied by 271"; 11 is the 
relative concentration of the isotope with the reso­
nant scattering level; rj is the relative radius vec­
tor of the j-th nucleus in the unit cell. (The sum­
mation over j is taken only over the nuclei of the 
scattering element.) Then, substituting (2.5) in 
(2.2), we find 

ji {k, ro) = ~ a.,,H (k, k + K)"E1 (k+ K, co), 
K 

a...,il (k, k + K) = T) _z_· S (K) L; <J1i (k))nt (/lz• (k .~ K))tn 
wV0 t co-ro~:o+zlj£ 

(2. 7) 

( cf. the analogous relations for the electron cur­
rent density in a crystal [fi]). 

We now proceed to determine the average cur­
rent density, taking account of the vibration of the 
nuclei in the crystal. In this case the index s in 
(2.5), in addition to the multiplet sublevel label i;, 
also characterizes the set of phonon occupation 
numbers {ns}, where 

COso = roco + ~ cop (np•- np0) 
II 

({3 labels the normal modes). 
We introduce explicitly the vector displacement 

Un of the nucleus (relative to its equilibrium posi­
tion Rn ): rn = Rn + Un. Then expression (2.5) is 
transformed to the following: 

!)Regarding the validity of these assumptions c£J3 ·•] 

I. i (k co) = __ i- \ d3k' E1 (k' ro) ei{k'-k)Rn 
n ' (2:n:)3 CO ) ' 

X ~ 01 (k})ot; (/lz• (k')ko [(e-ikun){n.}{n.l (eik'un){n.}{no}l 

t;{n•} W- Wt;o- ~ Wf3 (n13•- n13") + if J2 
13 (2.8) 

It is easy to show directly that the product of 
the matrix elements in the square brackets is in­
dependent of the label of the unit cell. For the total 
current density in the crystal this leads immedi­
ately to an expression of the form of (2. 7), where 
for the uiJ, after the standard calculation of the 
matrix elements in the square brackets (cf., for 
example, [GJ) we have 

a.,il {k, kt) = TJ __!._V. ~Uti (k))ot; Citz• (kt)kn ei{k,-kJR; 
(!) 0 l;j 

X exp{-; Z;(k)-; Z;(k1)}< ro-w~:!+ if/2 

(2. 9) 

Here ( ) denotes a thermal average over the 
phonon occupation numbers; 

u;p = (2M;cor)V-'I• [ v; (ll) ap + vj (ll) ap+] 

is the displacement of the j -th nucleus of the unit 
cell in the {3-th normal mode; vj(/3) is the com­
plex polarization vector; 

Z;(k) = _1_ ~ lkv;(ll) 12 (2 (np) + 1). 
2M; p Wp 

(2.10) 

In the case of narrow nuclear levels (r « Wp, 
wp is a characteristic frequency for the phonon 
spectrum ) , which is the case of principal interest 
for scattering of y quanta, one can actually neglect 
all the terms in the series (2.9) compared to the 
first term. The expression then simplifies mark­
edly: 

a.,il {k, kt) = T) _i_ {L; ei:k,-k)R;e-'MZ;{k)+Z;{k,)]} 
wV0 i 

(2.11) 

In the opposite limiting case, when r » Wp, one 
can neglect the phonon energies in the denominators 
of the terms of the series in (2.8). The series is 
then summed, and we again get an expression of 
the form of (2.11), but with the substitution 

exp {-1/2Z;(k) - 1/2Z;(kt)}-+exp {-1/2Z;(k1-k)}. 
(2.12) 

If we now substitute (2. 7) in (2.1) and take ac­
count of (2.9) (and also (2.10)-(2.12)), we arrive 
at a closed set of equations determining the elec-
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tromagnetic field in the crystal. It should be men­
tioned that averaging the current over the vibra­
tions of the nuclei in the crystal is completely ade­
quate for a problem in which one treats elastic 
scattering. In fact, the characteristic of elastic 
scattering is a very long time of interaction and, 
consequently, a time-averaged picture of the scat­
terer. 

For a lowlying isomeric nuclear level one has 
in most cases a magnetic dipole (M1) or electric 
quadrupole (E2) transition. To avoid introducing 
complications because of generality, we shall limit 
ourselves to specific calculations of (2.11) for these 
two cases. We note that the M1 and E2 transitions 
already give an electrodynamics which includes 
spatial dispersion. 

We limit ourselves to the case where there is 
no hyperfine splitting (complete degeneracy). Then 
the denominator in (2.11) has a fixed value, and we 
need only compute the sum 

(2.13) 

For magnetic dipole and electric quadrupole 
interactions, the expression (2.13) is a bilinear 
combination of the vectors k and k1 ( cf. (2 .4)). 
In the presence of complete degeneracy, symme­
try arguments give the following general form for 
this bilinear combination: 

(2.14) 

In the case of magnetic dipole interaction (j1(k) 
= ick x P,) one gets directly b1 = 0, b2 = - b, and so 

(2.14') 

The constant b can be related to the probability 
of emission of a y quantum by the excited nucleus 
in an M1 transition, and consequently, to the cor­
responding width r 1• One can show that 

c5 2! + 1 
b=- ---r~ 

4ffio3 2lo + 1 ' 
(2.15) 

where J 0 and J are the angular momenta of the 
normal and excited states, respectively, and w0 

is the frequency of the excited state. 
. Similarly, for electric quadrupole interaction 

(j}(k) = -iw0kmQim) we have, in the case of com­
plete degeneracy, b1 = - 2b, b2 = b and conse­
quently, 

Jil = b[(kkt)6il + ktikl- 2fskiktl], 

where b has the same value (2.15). 

(2.14") 

3. SOLUTION OF THE DIFFRACTION PROBLEM 

We now turn to the system of equations (2.1), 
(2.7), and (2.11), and consider the case when the 
value of k is such that for one of the diffracted 
waves the wave vector k1 = k + K1 has a value 
close to that obtained from the exact Bragg con­
dition ki = k2• 

Then, as usual, we need only retain two vector 
equations of the whole set (where the interaction 
with the individual nucleus is assumed to be small): 

(k2/x2-1)Ei(k) = gooiZEZ(k) +gotiiEI(kt), 

(kt2 I x2- i)Ei(kt) = gloilEl(k) + guiiEI(kt); (3.1) 

ga~il= (4rciffi/c2x2)cr.,i 1 (ka,k~) + (kaika1 /x2)6a~, 

x = ffi I c, k0 = k, a,~ = 0, 1. (3.2) 

We take the x axis perpendicular to the ( k, k1 ) 

plane. In accordance with (2.11), (2.13), (2.14'), 
and (2.14"), we can separate out a system of two 
scalar equations in (3.1) for the x components of 
the fields: 

(k2 I x2- 1).li:x(k) = gooxxEx(k) + gotxxEx(kt), 

(kt2/ X2- 1)E"'(kt) = giOxxE>=(k) + guxxE>=(k1). (3.3) 

In the fixed coordinate system the remaining 
system of four equations does not simplify. But 
one can readily convince oneself that the compo­
nents of both fields which lie in the ( k, k1 ) plane 
and are perpendicular respectively to k (E'(k)) 
and k1 ( E' (k1 )), are again related by a system of 
two equations. 

We then get for the magnetic dipole case 

(k2 / x2 - 1) .li:' (k) = gooE' (k) + gatE' (kt), 

(kt2 I x2- 1).li:' (kt) = gtoE' (k) + guE' (kt). (3 .4) 

Taking account of (3.2), (2.11), and (2.14'), we 
have for narrow nuclear levels (k ~ k1 ~ K ), 

4rcb (~ i(k[J-k )R• -'!t[Z·(k )+Z!(ko)]) 1 
ga.f3=--2 -1J L.Je " 'e 1" J" -----:== 

c V 0 ; ffi - ffio + if f2 

(3.5) 

Here 
A 

ga~xx = ga~ COS (jla~, (jlap = ka, kp. (3.5') 

We note that in general the magnetic field in the 
crystal is no longer strictly transverse. But one 
can show, by using the actual form of the tensor 
g~j3 from (3.2), that the longitudinal components 
are proportional to the square of the interaction 
( g~0 ), so they can be neglected within the frame­
work of our treatment. This greatly simplifies the 
treatment of the quadrupole case, and we again ob-
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tain for the transverse components, lying in the 
( k, k1 ) plane the system of equations (3.4), but 
with the substitution 

(3.5") 

Thus, in all cases we get the same set of homo­
geneous equations of the form of (3.4). In particu­
lar, we note that such a system is characteristic 
for the dynamical theory of x rays. [7 J 

Suppose that a flux of y rays with wave vector 
K falls on a crystal which is in the form of a plate. 
After undergoing a weak refraction at the boundary, 
the incident flux spreads through the crystal with 
the wave vector k, where 

k = x + x6n, (3.6) 

where n is along the interior normal to the crystal 
surface. We introduce the notation 

k = x(1 +eo), kt = x(1 + Et); leo I, led < 1. 

There is a simple relation between o and E0: 

/', 

(3. 7) 

lJ~eo/yo, yo=cosE>o, E>o=x,n. (3.8) 

On the other hand, from the relation k1 = k + K1 

we easily find 
Et = a I 2 + '\'tEo/ yo, a = Kt (Kt + 2x) / x2, 

A 
'Yt = cos E>t, E>t = k~, n. (3.9) 

We substitute (3. 7) and (3.9) in (3.4). The condition 
for a nontrivial solution of this equation leads to a 
quadratic equation for E0, whose roots are 

eo<1• 2l = 1h(goo + ~gu- ~a) + 1/4{ (goo+ Mu- ~a) 2 

+ 4~ [gooa - (googu - gotg!O)]} '1', 
(3 .1 0) 

If we denote the wave vectors corresponding to 
the solutions (3.10) by k<1,Z> and kF• 2>, then we 
have the following expression for the components 
of the electric field corresponding to polariza­
tion s: 

E.(r) = e.[.&/'l exp (ik(!lr) + EP exp (ik<2lr)] 

+ ets [l!:tPl exp (ik1<1lr) + EtP> exp (ik1<2>r)]. 

Here ( cf. (3 .4)) 

2eo<t,2)- ,.oo 
----"-E.<t,2J 

got 

(for s = 1, e, e 1 II x; for s = 2, e 1 x x k, 
e1 1 X X k1 ). 

(3.11) 

For definiteness let us consider the case of 
transmission, when k1 and k form an acute angle 
with n, and impose the obvious boundary condi-

tions (where we neglect the small difference be­
tween E and. D) 

Et/1) + Ets(2) = 0, E/t) + E/2) = f£ Os· 

After some simple calculations we get the final 
expression for the electric field in the crystal 
(cf. (3.6)): 

- e1.eiK,rg~0 ~ [ exp ( ixr:W nr)- exp ( ix~~;> nr)]} . 

(3.12) 

We have introduced the index s on ga{3 and Eo to 
emphasize that these quantities have different val­
ues for the two polarizations. We note that in ac­
cordance with (3.5), (3.5'), and (3.5"), the quanti­
ties g00 and g11 have the same value for both 
polarizations. 

All the physical results are actually contained 
in this expression. Despite its apparent complex­
ity, the analysis of specific cases presents no dif­
ficulty. 

We consider the case where the deviation from 
the Bragg condition is large, i.e., a» I ga{31· We 
then have for the roots of (3.10) 

It is easy to see that with such a value for the 
roots the amplitude of the reflected wave is 

(3.13) 

"' g~0 I a and its effect is negligibly small. From 
the form of (3.13) it immediately follows that the 
amplitude of the incident wave in (3.12), corre­
sponding to the second root, is small. As a result 
(3.12) is transformed into the simple expression 

E.(r) =e. <Wos exp ( ixr + ix:;: nr). (3.14) 

The damping of this wave is obviously determined 
by the imaginary part of goo· 

For the narrow lines we are considering, mak­
ing use of (3.5), (3.5'), (3.5") and (2.15), we find 

xlmgoo= ; O't(w) 'Lexp(-Z;(k)), (3.15) 
0 i 

where O"t is the total resonance cross section for 
the nucleus in the crystal: 

at= :n:~ 21_+_1_ rrt (3.16) 
2wo2 2Jo+1 (w-wo) 2+ (f/2) 2 

But the product 
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determines the total resonance cross section per 
unit cell when we take account of nuclear vibra­
tions. From (3.14) and (3.15) it follows that the in­
tensity will be damped according to the law 

We note that I1s ~ YJ2Z2 /V0• Such a dependence 
on the number of particles is directly related to the 
coherent character of the scattering. 

4. SUPPRESSION OF INELASTIC CHANNELS. 
( TJ-llf) I~ exp ---a~-- , 

Vo '\'o 
(3.17) ANALYSIS OF RESULTS 

in complete agreement with the usual picture. 
In the case of broad lines we must use (3.5) for 

g0!/3• but with the substitution (2.12). The damping 
of the intensity is then again described by (3.17) if 
we make the substitution <Tt - val (where v is the 
number of atoms per unit cell of the element con­
taining the resonant isotope). It is interesting that, 
in contrast to the preceding case, the damping is 
in general independent of temperature and is de­
termined entirely by the nuclear cross section ut. 
We note that this result is in agreement with the 
optical theorem, since the forward scattering am­
plitude f( 0, w ), because of the potential nature of 
the scattering, is determined just by CTt (since the 
large value of r has precisely the effect of making 
the scattering have potential character so far as 
phonon excitations are concerned). Conversely one 
can show that in the case of a narrow resonance, 
f( 0, w) depends on the temperature and is propor­
tional to D-t. 

Now we consider the case when the deviation 
from the Bragg condition is small, i.e., a< I g00 I. 
I gu I, and the crystal is sufficiently thin so that 
I KE~ 1 • 2 >Z/y0 I « 1 (where l is the thickness of the 
crystal plate). Then the exponents in parentheses 
in (3.12) can be expanded in series and we get for 
the electric field of the diffracted wave, 

ixl 
E,s = e,s ft os -2-g!Os exp {i (x + K1)r}, 

\'1 

or, converting to intensities, 

(3.18) 

For simplicity, we consider a monatomic crys­
tal. 

From (3.5) it follows that in the case of narrow 
resonance lines, the intensity of scattered y quanta 
is determined by the product of the probabilities 
for the Mossbauer effect in absorption (wave vec­
tor k) and emission (wave vector k1 ), which 
agrees with the known result ( cf, for example, [18] ). 

In the case of broad lines, using (3.5) and mak­
ing the replacement (2.12), we find 

I,. ~ I ~ exp {iK,Ri- 1/ 2Zi (K1)} 1
2 

, 

J 

which is in complete agreement with the results 
corresponding to potential scattering ( cf., for ex­
ample,C6J). 

We now consider the situation which arises when 
the parameter 

(4.1) 

is small. If the deviation from the Bragg condition 
is also small ( 0! « I g00 I, I g11 I ) , the first term in 
the square root in (3.10) will be large compared to 
the second, and we have approximately 

~3 goog11a2 

2 (goo+ M11) 3 

+ ~2 [ (L\•)2- (goo- ~gil) a~•] 
2 (goo+ ~g,;p---

Bos<2J = ~ [goo+ ~g11 - ~a + (:1-g_oo_a __ ~_· J 
2 goo+ ~gil 

(4.2) 

From (4.2) it follows immediately that two of 
the four waves in (3.12), corresponding to the wave 
vectors k<2> and kf2>, are damped with practically 
the same decrement as the intensity in (3.17). Thus 
the total intensity in the crystal, at a depth suffi­
cient for complete damping of these two waves, is, 
described by the expression 

( xe'll ) 
E, (r) = lEos exp ixr + i r:• ur 

X 21s<21:_e01) { e, ( gu- ~:niX+-tgt.•)- elsg~oe!K,r}. 
' os os ' b 00 t-' 11 

(4.3) 

Let .6-s == 0 and a == 0. Then E~~> == 0 and the 
field amplitude (4.3) is not damped at all. Thus 
under these conditions the part of the intensity 
associated with the field (4.3) propagates through 
the crystal without absorption, while the inelastic 
channel corresponding to conversion appears com­
pletely suppressed. 

The question arises whether one can have the 
situation where the quantity .6-s given by (4.1) goes 
to zero. Consider magnetic dipole interaction. 
Using (3.5) we easily establish that for the field 
components for which the polarization vectors lie 
in the ( k, k1) plane ( s == 2 ) , the parameter .6. s in 
(4.1) is rigorously zero if the unit cell contains 
only one atom of the element of interest. Thus, 
for magnetic dipole interaction a part of the in ten­
sity really travels through the crystal without ab­
sorption. 

Suppose the crystal has cubic symmetry with 
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one atom per unit cell. Then Z ( k) is independent 
of direction relative to the crystal axes and Z ( k) 
= Z ( k1). Then for magnetic dipole interaction and 
s = 2, 

(4.4) 

If we use (4.3), it is not difficult to see that when 
the Bragg condition is strictly satisfied (a = 0 ) , 
the expression is curly brackets is equal simply to 

goo (e- eleiK,r). 

If we write the amplitude of the magnetic field, we 
get, instead of this expression, 

(4.5) 

It is easy to see that (4.5) is strictly zero at the 
lattice sites. Consequently, for this polarization 
the nodes of the magnetic field coincide with the 
nodes of the crystal lattice. This is why the mag­
netic dipole interaction does not result in the for­
mation of an excited nucleus, thus suppressing the 
inelastic conversion channel. It is interesting that 
this situation is realized for Bragg reflection from 
any crystal plane. 

If the crystal is not cubic then we know that the 
probability for the Mossbauer effect is aniso­
tropic. [9] Then, even with one atom per unit cell 
the relation (4.4) is spoiled, although for s = 2 we 
again have t:,.S = 0. Because (4.4) is violated, when 
a = 0 the nodes of the lattice will no longer be 
nodes of the magnetic field, as is clearly seen from 
(4.3). There will still be an effect of suppression 
of the inelastic channels. The physical nature of 
this result is interesting. 

Consider the amplitude A for formation of the 
excited state of the nucleus. In a crystal this am­
plitude can be written as a product of the corre­
sponding amplitude for a rigidly bound nucleus, An, 
and the anisotropic amplitude A ( k), which de­
scribes a transition diagonal in the phonons when 
the individual nucleus in the lattice receives a mo­
mentum k. In the case of magnetic interaction the 
quantity An is proportional to the magnetic field 
intensity at the nucleus. 

In accordance with (4.3), when a= L:. = 0 the 
amplitude for formation of the excited state in the 
incident wave will be proportional to 

A ~ (ek]g11e-Z(k)f', 

and in the diffracted wave, 

But according to (3.5) 

(4.6') 

(4.6") 

and at the lattice sites the amplitudes (4.6') and 
(4. 6") are equal in magnitude but opposite in sign. 

Thus we get an interesting picture. In a non­
cubic monatomic crystal the incident and diffracted 
waves have different field amplitudes. But the val­
ues of these amplitudes are such that they deter­
mine equal values of the amplitude for formation 
of the excited state of the nucleus in both waves. 
The coherence of the two waves and the presence 
of opposite signs for the amplitudes (4.6') and 
(4.6") causes the vanishing of the probability for 
formation of the excited nucleus. 

For the electric field components correspond­
ing to polarization perpendicular to the ( k, k1 ) 

plane ( s = 1), the parameter t:,.S does not vanish 
strictly. But for both the M1 and E2 cases, condi­
tions can occur where t:,.S is small. In fact we can 
conclude from (3.5') and (4.1) that the necessary 
condition for this is that I cos qJ 01 I be close to 
unity. When the Bragg condition is fulfilled 

cos (/JOI = 1 ~ K!2 I 2k2, 

and consequently, in order to observe the anoma­
lous transmission of radiation with the polariza­
tion s = 1, the condition KI /2k2 « 1 must be sat­
isfied. At first glance this condition seems to be 
easily realizable. But there may be purely experi­
mental difficulties associated with the fact that 
with increasing k the requirements on collimation 
of the incident beam become stricter ( cf. below). 

For the polarization s = 2, in the case of elec­
tric quadrupole interaction we must use (3.5") for 
the coefficients ga/3· Now in order for t:,.s to be 
small, it is necessary that I cos 2qJ 01 I ""' 1. In 
principle, this condition is more easily achieved 
than the previous case (when KI /2k2 « 1 the con­
dition for t:,.S to be small is immediately satisfied 
for both components). 

Thus, for electric quadrupole interaction and 
for one of the polarizations in the case of mag­
netic dipole interaction, although the parameter 
f:.S does not become exactly zero, one can in prin­
ciple actually have conditions where the inelastic 
channels are suppressed to a considerable extent. 
But unlike the case of M1 with s = 2, the realiza­
tion of these conditions requires a definite choice 
of crystal planes for reflection, and in general 
also a specific choice of the crystal. 

We note that the results given above are strictly 
valid for any crystal (any symmetry and any num­
ber of atoms per unit cell), so long as the unit cell 
contains only one atom of the element with the res­
onant isotope. If this is not the case it may happen 
that f:.S »= 0 even for M1 and s = 2, and a separate 
analysis is required. 
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We now turn to relation (4.3) and write the ex­
pression for the flux of energy transmitted through 
a plate of thickness l (a and ~ small): 

( 2xl ) I.~ Io.exp -~Ime0_<1l 

X [I ~g!! 12~+ I ~~~2~] (4.7) 
goo+ ~gu k goo+ ~gu k1 · 

In a monatomic cubic crystal the expression in 
square brackets simplifies and becomes equal to 
(cf. (3.5)) 

( -~ )2[~+ kt (~)2]. 
1+~ k kt goo 

(4. 7 ') 

From (4.7) we see that the damping of the inten­
sity is determined entirely by Im E~~>. If ~s = 0, 
then in accordance with (4.2), (3.5), and (2.15) 
(Im [goo /(goo + /3gu )] = 0) we have 

2xl Im eo_<il = - a2 ~axz Im googu = - ~ 
Yo Yo (goo+ ~gu)3 - ao2 ' (4. 8) 

where 

X {1 + ~exp(Z(k)-Z(ki))}3. (4. 9) 

From the experimental point of view the quan­
tity a 0 is obviously of decisive importance. In fact 
in the case of an ideal crystal it determines the 
condition of collimation of the incident beam, while 
for slight deviations from ideality it fixes the range 
of such deviations. 

It is very interesting, and somewhat unexpected, 
that a 0 does not depend on w. True, this is valid 
only under the assumptions made above, in particu­
lar when a « I g00 I, I g11 I, but this only limits the 
range of possible deviations of w from w0, and 
does not affect the essential statement. If we use 
a more exact value of the root E~0 , the dependence 
on w is very weak for small a, but increases with 
increasing a. Then an asymmetry in the frequency 
dependence of the absorption also appears. 

Now let us consider the case where ~s ,; 0. 
From (4.2) we see that Im E~l) contains a term 
linear in ~s, while we should add to the expression 
(4.8) in the exponent in (4.7) the term 

xl~ t:J.• 
Vo Im goo+ ~gu (4.10) 

(we note that Im[(g00 - /3g11 )~S/(g00 +/3g11 )3 ] = 0). 
In a monatomic cubic crystal, for example for s 
= 1, this expression is equal to (cp 01 « 1) 

(4.10') 

where we have used the notation of (3.16). 
Comparing with (3.17) we see that for a= 0 the 

logarithmic decrement is {3cp 021 /( 1 + f3) times 
smaller than for the usual case far from Bragg 
reflection. 

5. THE TEMPERATURE EFFECT 

The inclusion of nuclear vibration in the crystal 
led in the previous sections to the result that the 
basic parameters ga/3 of the dynamical problem 
became dependent on the phonon spectrum and the 
temperature. This dependence was introduced in 
explicit form through the quantities Z (2.10). 

At first glance the nuclear vibrations should 
spoil the effect of suppression of inelastic chan­
nels, at least in the ratio u2fa2 (where u2 is the 
mean square displacement and a is the inter­
atomic spacing). Actually, in the first place the 
nuclei are no longer strictly at the lattice sites, 
and secondly one can now have emission or ab­
sorption of phonons with simultaneous emission of 
y quanta from the nuclei. But, paradoxical as it 
may seem, in the case of narrow resonance levels 
such a disturbance of the effect does not occur. 

As for the first argument, it is immediately re­
futed if we remember that elastic scattering cor­
responds to long interaction times. As a conse­
quence the y quanta see a time -averaged and, 
consequently, strictly periodic picture. The sec­
ond point is more complicated. We first consider 
the case of narrow resonances when r « wp. It is 
physically obvious that the absorption of y quanta 
by such nuclei cannot be accompanied by emission 
or absorption of phonons. The latter can occur 
only through decay of the excited state. But under 
the conditions where the formation of the excited 
nucleus in the crystal is forbidden, it is obvious 
that at the same time the emission or absorption 
of phonons is also forbidden. Thus, in the case of 
narrow lines the condition ~s = 0 ( M1, s = 2) is 
satisfied at any temperature, and consequently, at 
any temperature with a = 0 one should observe the 
effect of suppression of inelastic channels. Here 
the dependence of g 00 and g 11 on temperature is 
related to the fact that in this case the total cross 
section for absorption of a y quantum by a nucleus 
in the crystal is temperature dependent: it is de­
termined by the product of O"t from (3.16) and the 
probability for the Mossbauer effect f (in the 
monatomic case, for example, f = e-Z(k) ). 

Thus in the case of narrow resonances, the 
crystal behaves like a "self-tuning system." 

In the case of broad resonances (r » wp ), the 
picture changes drastically. The total absorption 
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cross section, and with it g00 and gtt• do not de­
pend on the temperature and the phonon spectrum. 
On the other hand, the coefficients g0t and g10 de­
pend on the Debye-Waller factor (cf. (3.5)) with 
the change (2.12); in a monatomic crystal, for ex­
ample, got== g10 "' exp {- Z (Kt )/2} and, conse­
quently, depend essentially on the temperature. 
Because of this, ~::;.s ;e 0 even for the case of M1 
and s = 2, and there is no complete effect of sup­
pression of inelastic channels. The effect is par­
tially spoiled even at T = 0 because of the zero 
point vibrations, and this obviously becomes worse 
with increasing temperature. In a monatomic 
crystal 

L\ = goo2 (1- e-Z(K,l) ~ goo2Z(K1). 

The earlier assumption that ~::;.s is small cor­
responds to the condition Z « 1. On the other 
hand, 

and the spoiling of the effect is less the heavier 
the lattice atoms, the higher the temperature and 
the smaller the minimum reciprocal lattice vector. 

6. CONCLUDING REMARKS 

The results obtained in the preceding sections 
show that when the Bragg condition is satisfied we 
may get a partial or complete suppression of the 
inelastic channels in nuclear resonance scattering. 
Although the analysis was carried out for resonant 
interaction of y quanta with nuclei, the qualitative 
results are very general in character, and are ap­
plicable to nuclear scattering of other particles. 

The possibility of observing the effect experi­
mentally depends primarily on having monocrystals 
(or single crystal layers ) which are highly ideal. 
If we can get a sufficiently strong source, the 
choice of the Mossbauer isotope is less critical. 
Nuclei whose isomeric state decays via an M1 
transition have an obvious advantage. The effect 
can then be observed in reflection from any set of 
crystal planes (cf. Sees. 3 and 4). 

The conditions on collimation and on permissible 
deviations from ideality also depend to a consider­
able degree on the quantity a 0 (4.9). Analysis of 
this expression permits several remarks that are 
important for the experimental realization of the 
effect: 

a) a 0 ..... 1/ K2, so that it is advisable to choose a 
Mossbauer nucleus with its excited level as low as 
possible. We note that if we take account of the re­
lation between a and the angle ® between the vec­
tors K and K (cf. (3.9)), we see that the true de-

pendence of the angle of collimation on K is weaker, 
and actually goes like 1/K. 

b) a 0 "' ..J r 1 /r , so in order to have a reason­
able limitation on collimation the conversion coef­
ficient should not be too large. 

c) The dependence of a 0 on T/ makes it advis­
able to use a sample with a high concentration of 
the corresponding stable isotope. Then if one has 
a choice one should give preference to crystals with 
the maximum possible atomic density in the element 
of interest. 

d) From the point of view of collimation the 
crystal thickness should be as small as possible. 
The need to include electronic scattering in turn 
imposes quite strict limitations on the value of l. 
On the other hand, to observe the effect the crystal 
thickness must be taken sufficiently large so that 
when the Bragg condition is violated the primary 
beam is practically completely absorbed. The ap­
propriate condition is obtained from the require­
ment that the exponent in (3.17) be large compared 
to unity. It is easy to see that attempts to reduce 
l again lead to the requirement of high concentra­
tion of the corresponding isotope, low energy of 
the y quanta and a sizable value for r1 ;r. The 
analysis shows that one can easily find a range of 
thicknesses satisfying both the restrictions on 
upper and lower limits. 

e) In the case of narrow lines, the phonon spec­
trum and the temperature affect only the condi­
tions of collimation. But these restrictions are 
not very strong, and actually reduce to the require­
ment that the Mossbauer effect be sizable. Let us 
estimate a 0 for the example of Fe57 with Ey 
= 14.4 keV (J0 = %. J = %, rtfr ..... 0.1 ). We set 
Yo"' y1 ..... 1, V0 == 10-27 cm3, z (k) = o, and take 
l = 1~-t (at this thickness and far from the Bragg 
condition, all the radiation is completely absorbed 
resonantly, while the interaction with the electrons 
still does not contribute strongly). Under these 
conditions, a 0 "' 1', i.e., it has a comparatively 
large value. Thus the restrictions on the colli­
mation are entirely reasonable. 
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