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The occupation number representation is used to investigate the behavior of the partition 
function for a Gibbs grand canonical distribution. For the case of a one-dimensional one­
component system interacting through Coulomb or gravitational forces exact formulae for 
the free energy and the equation of state are derived and discussed. Possible approximations 
for the three-dimensional case are discussed. 

1. We consider a system of interacting particles 
subject to the following conditions: on the one hand, 
the mean de Broglie wavelength of the particles 
may be large compared to the mean inter-particle 
spacing, so that it is necessary to take the type of 
statistics obeyed by them into account (i.e., to con­
sider statistical correlations); on the other hand, 
this wavelength is much smaller than the mean 
scattering amplitude, which makes it legitimate to 
describe the interaction classically (i.e., to neglect 
quantum dynamical correlations). 

We use the index s to denote the set of variables 
which describe the individual state of a single par­
ticle (for instance, the coordinate q and momen­
tum p). We shall divide the space of individual 
states (the J..L -space) into cells of equal and suffi­
ciently small volume w (in the case of quantum 
statistics, w = (2rrn) 3, while in the case of classi­
cal statistics, as is well known, the precise value 
of w is unimportant), and denote by ns the number 
of particles occupying the cell which includes the 
state s. Then the microscopic state of the system 
is specified by the set of occupation numbers ns, 
which we shall denote by n. We also write Es for 
the additive part of the energy of the particles in 
the state s (e.g., the kinetic energy and the energy 
in an external field) and Wss' = Ws's for the ab­
solute magnitude of the interaction energy of two 
particles in states s and s' (we assume a pair 
interaction). 

The energy of the system is: 

v2 (I) 
H(n) = ~esns- 2 ~Wss'nsns', 

s ss 

where v 2 is 1 for a negative interaction energy and 
-1 for a positive one (the interaction potential is 
assumed to have a definite sign). The total particle 
number is: 

N(n)= ~n •. (2) 

If we exclude from consideration the other addi­
tive constants of the motion (viz., the total momen­
tum and angular momentum), and assume a distri­
bution which is canonical with respect to energy 
and microcanonical with respect to particle number, 
then the probability of a given microscopic state 
(n) of the system is given by the Gibbs canonical 
distribution in the occupation number representa­
tion: 

w(n) = zN-1 e-H(n)/8 6 [N- N (n)] n v(n.). (3) 

where ® is the modulus of the distribution and the 
statistical weighting factory (s) is introduced to 
take account of the statistics and is given by: 

{

1, ns = 0, 1 (Fermi-Dirac statistics) 

v(ns) = 1, ns = 0, 1, 2 ... (Bose-Einstein statistics) 

(ns!)- 1 (Boltzmann statistics) 

All information on the thermodynamics of the 
system is contained in the partition function 

ZN = L e-II(n)!Elo [N- N(n)] II v(n.), (4) 
(n) 

which, as is well known, can be written in the form 

[ f)N J ZN=(-1)N ;c;~xS(£) , 
u\; £=0 

where:=;(~) is the partition function for a grand 
canonical distribution, which in our case is: 

(5) 

From the theory of Gaussian integrals we have 
the equation: 
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+oo 

= ~ exp{ v ~ ns!ps- : L: w~~ !ps!ps'} DqJ, ( 6) 
-oo s ss' 

where Dcp = BIIdcps, B is a normalization constant 
s 

which has no effect on the thermodynamics of the 
system, and w-1 is the matrix reciprocal to the 
interaction matrix w (i.e.~ w-1 11 W" , = oss'>· 

ss' ss s s 
Substituting (6) in (4) and interchanging the proces-
ses of taking the product over cells and summation 
over occupation numbers, we obtain 

8 m = ~ exp(- ~ LW~:'IPsiPs') 
ss' 

s n, 

) exp (- ~ ~ w~~ IPsiPs') 8o(sl qJ )DqJ, 
ss' 

(7) 

where 

8o(sl qJ) =exp { fJ ~ ln(1- 6se-•.tEHv<p,)} (8) 
8 

is the grand partition function of an ideal quantum 
gas in the presence of an additional external field 
Us = -®v<Ps· Thus we can write 

( 7') 

where the pointed brackets denote an average taken 
with weight 

The significance of the average in (7') will be­
come clear from what follows. In the case 
Wss' = Wqq' = w( lq- q'l) the index stakes a con­
tinuous set of values within the volume V available 
to the system; so in this case the reciprocal ma­
trix w~1s, must be taken as an operator: 

(9) 

... 
where Lq is an operator such that the interaction 
potential wqq' constitutes the corresponding Green 
function. 

Consider in particular the case of an interaction 
propagated by a scalar field; in this case 

so that 
A 1 2 
Lq' = --4 2 (~q·-x ). 

ng 

(10) 

(10') 

where g is the coupling constant and K- 1 the inter­
action radius. Formulae (10) and (10') are the 

well-known equations describing a screened 
Coulomb or gravitational potential (depending on 
the sign of v 2 in (1), (8)). Using (9) and (10'), re­
placing the sums by integrals and integrating by 
parts, we get 

L w ••'-11P•IP•' = 4: z ) [ ( \7 IP )2 + xzqJz] dq. ( 11) 
ss' g 

Consequently we can write Eqs. (7) and (7') in a 
more explicit form: 

8(6)= ~ e-UN>i6 8o(sl'liJ)D'IiJ(q), (12) 

where 

u ("') = _!_ r [ ( \7"') 2 + x2'1iJ2] dq 
8n J 

is the potential energy of the scalar field, and 

( 8') 

Thus (12) is a Gibbsian average, over all possi­
ble configurations of the field propagating the inter­
action of the partition function of an ideal gas 
situated in this field. In the special case of a pure 
Coulomb interaction (K = O) and Boltzmann statis­
tics (6- 0) formula (12) has previously been ob­
tained by Edwards [ t] , starting from the configura­
tion representation for a canonical ensemble. In 
subsequent work[ 2•3J, Edwards and Lenard consid­
ered an electrically neutral multi-component one­
dimensional system of electrically interacting par­
ticles (or, more precisely, charge densities) and 
showed that" in this case the continuous integral 
(12) reduces to a Wiener integral and the calcula­
tion of :=: (~) to the solution of a differential equation 
of the Schrodinger type in a periodic potential. 
However, these authors were prevented by the com­
plexity of their chosen model system from obtain­
ing any detailed results by this method. 

In this work we shall consider only a one-com­
ponent system, with a view to subsequent applica­
tion of the results to the case of most physical 
interest, namely a system with gravitational inter­
actions. It will turn out that the problem can be 
solved exactly for a model one-dimensional gravi­
tational system, and the results used for an approxi­
mate investigation of real (three-dimensional) sys­
tems. 

In the one-dimensional case we have only one 
spatial variable, which we denote by t; t satisfies 
the restriction 0 s t s V, where V is the "volume" 
(i.e., length) of the system. Then we have 

E(s)= ~ exp{--1- fx 2(t)dt- f f[x(t)]dt}Dx(t), 
4D 0 0 (12') 
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2:rrg2 

D=--. E> ' 

2 6+oo 
r(x)=~x2 -- I dpln[1-6~e-P'iZm®+vxJ (13) 

4D w .l 
-00 

The continuous integral (12') is a Wiener integral 
( cf., e.g., [ 4]). It follows from the theory of Wiener 
integrals that 

+oo 
8 = ~ G(x, V)dx, (14) 

where G(x, t) is the Green function of the equation: 

ac o2G 
{it-= D axz - r(x)G, 

(15) 

which satisfies the boundary condition correspond-
ing to a source at t = 0: 

G(x, 0) = b(x). (16) 

Formally, Eq. (15) describes diffusion in a medium 
with a constant diffusion coefficient D and an ab­
sorption coefficient r(x) whose spatial variation is 
described by (13). 

It is probably not possible to obtain an analytic 
expression for the Green function in the general 
case (6 and K arbitrary). We shall consider the 
simplest case, which is at the same time the most 
interesting for our purposes: the case of a classi­
cal system (6 - O) without screening (K - O). Let 
us first single out the case where the interaction 
energy is negative, i.e., v = 1. For a one-dimen­
sional system this corresponds to particles occu­
pying a flat "slab" of thickness V and interacting 
by the Coulomb repulsion. In this case 

r(x) =:so~e", so=l'2:rtm8/w. (13') 

Then the eigenfunctions of (15) are the Bessel func­
tions of the second kind (i.e., with imaginary argu­
ment) of imaginary order, Kp, (z), where 

z = z0exl2 , z0 = (4~so/ D)'"· (17) 

Using these functions we can express the Green 
function for (13') (with (15) and (16)) as a 
Kontorovich-Lebedev integral (cf., e.g., [ 5]) 

G(x, t)= : 2 ~ e-Dt1.'1'K;1.(z)K;~.(z0)A.sh:rtA.dA.. (18)* 

Using the integral representation 
00 

2 r ,,, :rtA. 
8 =- .l e-Dth 'K;1.(zo) ch ~2 dA.. 

:rt 0 

(20) 

Moreover, using the integral representation 

A. 00 

ch :rt2 K;1.(z)= ~ cos(zshy)cosA.ydy (19') 
0 

and putting t =Vas required by (14), we can write 
(20) in the form 

2 00 

8 = =- ~ cos(zo sh y)e-Y'Inv dy. (21) 
l":rrDV 0 

Hence, from (5), 

2 ( 2so )N 1 oo~ ZN- --- --- e-Y'IDV sh2N y dy. (22) 
- (2N- 1)!! D l":rrDV 0 

Since the number of particles N is very large, 
we may calculate the integral (22) by the method .of 
steepest descents. As a result we get the following 
expression for the free energy \It =- ® ln ZN 

'¥ = '¥o + NE>A ('11), (23) 

where \It 0 = - N ® ln (Vv' 2rrm® is the free energy of 
an ideal gas, and 

A(11) = f('ll) + lnf('ll) + T]-1, (24) 

f('ll) =s2 /T]-T] =T]/sh2 s. (25) 

In (25), s = s(TJ) denotes the saddle-point of the 
integrand in (22), which is determined as the root . 
of the transcendental equation 

s ='11th s. (26)* 

Let us clarify the physical meaning of the param­
eter TJ = NDV = 2rrg2NV /® which measures the de­
parture from ideality. The interaction energy of 
the system under consideration, if we assume the 
particles to be uniformly distributed with density 
N/V, is equal (in absolute magnitude) to 
U 0 = 2rrg 2N2V /3, so that 

'I']= 3Uo/ 2Eo, (27) 

where E 0 = ®N/2 is the mean kinetic energy. In the 
one-dimensional case the ratio (27) of the mean 
potential energy to the mean kinetic energy increa­
ses both with increasing particle number and with 
increasing volume, so that in this sense the system 
considered is clearly "non-additive." 

K;1.(z)= ~ e-zchYcosA.ydy, 
0 

(19)t The equation of state derived from (23)-(27) 

we first integrate (18) over x, according to (14). 
This gives: 

*sh = sinh. 

t ch = cosh. 

has the form 

p = Po[i- T]A'(11)], (28) 

where p 0 = N®/V is the pressure of an ideal gas. 

*th =tanh. 
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The mean energy is equal to 

E = Eo[1 + 2TJA' (TJ) ]. (29) 

Here, in view of (24)-(26), 

11A' (l'J) = 1- s2 (l'J) I TJ. (30) 

Using the approximate expressions for the root 
s of the transcendental equation (26) in the limits 
of small and large 17, we get 

f 1 4 
I - Tj --112 

TJA'(TJ) = { 3 45 
l1 - 11 - 41'] e-2TJ, 

'11~1; 

'll~L 

Hence for small 17 (high temperatures) 

1 4 
P = Po+ 3 Poo + 45 Poe l'J' 

4 
E = Eo- Uo - 45 Uo'll, 

while for large 17 (low temperatures) 

p = Poo(1 + 4e-2Tl), 

(31) 

(28') 

(29') 

(28") 

(29") 

Here Poo = 27Tg 2N2 denotes the value of the pressure 
in the limit as 17- oo. 

For (8p/8 V)T we get from (28) 

fJp ( fJp) [ "A"( ] av = -av 0 1 + 11" l'J) ' 

or, using (24)-(26), 

fJp _ ( fJp) s2 (l'J) 2/(l'J) av- av o-'11- 1 + t(:;J). 

(32) 

(32') 

Since f (17) is everywhere positive, (8p/8 V)T < 0 
everywhere, although, as is obvious from (28"), it 
tends to zero very rapidly (in fact exponentially) 
with increasing interaction energy (17- 00 ): 

( ~) (~) ~ - -+- -- 81']2 e-2'1 = - 8 (2Jtg2)- e-2TJ. av T)->00 av o e (33) 

This result illustrates the general thermodynamic 
proposition that no phase transition is possible in a 
one-dimensional system (cf., e.g., [S]) for the par­
ticular example of a system with long-range forces. 

Let us now go on to consider a one-dimensional 
model with positive interaction energy, which 
corresponds to attractive forces (i.e., a one­
dimensional gravitational system). As indicated 
above, the transition to this case is effected by 
making the replacement~?; 0eX- H 0eix in (13'), 
which in the last analysis leads to the replacement 
of sinh y by sin y in the final formula (22) for the 
partition function ZN· Thus for a one-dimensional 

system with attractive forces, 

ZN = 2 ( 2~o )N- 1 ~ e-Y'tnv sin2N ydy. (22') 
(2N-1)!! D l':n:DV 0 

The fundamental thermodynamic functions follow 
from the formulae: 

'I'= 'l'o + N8B('Il), 

B(l'J) =cp(Tj) +lncp('ll) -Tj-1, 

cp(Tj) =cr2 1l'J+TJ='I'Jisin2 cr, 

where u (17) is defined by the equation 

a= 'l'jcotcr, 

Thus, 
1 4 

P = Po-3- Poo +45 PocTJ, 'l'j~i; 

4 
E =Eo+ Uo- 45 Vol], 'l'j~i. 

For large interaction energies ( 17 » 1) 

P = PoJt2 I 41'] =: :rt2poc I 4'1'j2 -+ 0. 

(23') 

(24') 

(25') 

(26') 

(34) 

(35) 

(35') 

The vanishing of the pressure at the walls obviously 
points to a contraction of systems with strong at­
tractive forces. As before, (8p/8 V)T < 0. 

It is of considerable interest to investigate the 
thermodynamic properties of real (three-dimen­
sional) gravitational systems in the non-relativistic 
approximation. It is well known that at sufficiently 
large values of the interaction the long range of the 
gravitational force means that the thermodynamic 
functions of such a system are no longer additive 
functions of the particle number (for constant mean 
particle density). To guarantee the existence of an 
equilibrium state, we must first set not only an 
upper limit to the volume (to avoid the escape of 
the particles to infinity) but also a lower limit, to 
avoid their collapse to a single point; this can be 
done by introducing a short-range repulsion or 
equivalently by assigning a characteristic volume 
to the particles of the system. Once this is done, 
it is possible to investigate the behavior of the 
thermodynamic functions of such a system for in­
teraction energies comparable to the thermal en­
ergy, as functions of parameters such as the tem­
perature and mean density. 

Since a rigorous examination of this problem is 
mathematically difficult, it is of interest to develop 
various approximation methods not based on per­
turbation theory. To conclude this paper we shall 
briefly consider one such possibility. For simplic­
ity we consider a system of gravitationally inter­
acting particles, whose equilibrium state is des-
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cribed by a spherically symmetric density distri­
bution. We shall estimate for such a system the 
contribution to the partition function (12) from 
spherically symmetric distributions of the field 
only: 1/J = 1/J(r) ("quasi-one-dimensional approxi­
mation"). The contribution of any one distribution 
of this type to the field energy is 

f R ( d¢ )2 1 V d 2 
Bn) dr 4nr2dr = Bn) ( di) S2(t)dt, (36) 

ro Vo 

where v 0 « V is the characteristic volume of the 
particles, t is the volume variable, and S(t) 
= (367r) 113t 213 is the area of the surface of the 
sphere of volume t. 

Thus the evaluation of E:, according to ( 14)-(16), 
reduces to the solution of a diffusion equation of 
the type (15) with the same form of r(x) as before, 
but now with a variable diffusion coefficient 

D(t) = D I S2(t) = D I (36n)''•t'''· (37) 

Obviously the corresponding thermodynamic 
formulae will now contain a value of the ''non­
ideality'' parameter T/ which is lower than the true 

value. Further improvement of the results may be 
achieved by choosing T/ on the basis of a compari­
son, in the limit T/ - 0, of the formulae obtained 
in the quasi-one-dimensional approximation with 
the corresponding results of perturbation theory 
for the exact expression (12). 
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