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Owing to the large compressibility near the critical state of matter, the nonlocal connection 
between changes of pressure and density (spatial dispersion) plays an important role. This 
leads to a dependence of the sound speed on the wavelength and, correspondingly, to a change 
in the character of the scattering and absorption of both sound and electromagnetic waves. 
Characteristics of the average and scattered fields (dispersion and absorption of waves, ex­
tinction coefficient of light waves, intensity of the Mandel'shtam-Brillouin doublet etc.) are 
determined on the basis of the general theory of fluctuations of hydrodynamic quantities as 
extended to the case of media with spatial dispersion. These characteristics can be em­
ployed in experimental investigation of the critical transition. 

1. INTRODUCTION 

AS is well known, the curve on which the iso­
thermal sound speed vanishes, 

(ap 1 ap)T = o, (1.1) 

separates the thermodynamically stable states of 
a single-component system from the unstable 
states; therefore, the thermodynamic potentials 
can have a singularity on this curve. [ 1] It is evi­
dent that only the critical point on this curve, de­
fined, in addition to (1.1) by the condition 

(1.2) 

is accessible to experiment. 
The other points on the curve (1.1) can be 

reached only through metastable (superheated or 
supercooled) states, which clearly excludes the 
possibility of their experimental investigation. 

The critical point of a liquid and a gas deter­
mines the termination of the region of two-phase 
systems; for states above the critical, the differ­
ence between the phases disappears. In the existing 
phenomenological theory, [ 1] the equation of state 
of the material near the critical point is obtained 
with the aid of (1.1) and (1.2) as experimental facts. 
It is here assumed that the thermodynamic poten­
tials have no other singularities at the critical 
point or, at least, that these singularities do not 
appear in the approximations customarily used. 

Recently, Voronel' et al [ 2] discovered a logar-

ithmic increase in the specific heats cv of argon 
and oxygen as T 9 ----. Tc (p 0 = p c); the thermodynamic 
consequences to which the presence of sucp. a 
singularity leads were then explained. 1) Since it 
follows, as is well known, from (1.1) and (1.2) that 
in the absence of a singularity, 

Cp ~ (ap I ap)r-1 ~ (To-T c)-1, 

(1.3) 

at Po= Pc• then, owing to the logarithmic singu­
larity of the specific heat, not only the isothermal, 
but also the adiabatic sound speed us approaches 
zero: 

In this connection, experimental studies of sound 
propagation and of the scattering of electromag­
netic waves close to the critical point are very 
important for elucidation of the character of the 
singularities of thermodynamic quantities. 

l)At the critical point, the heat of transition vanishes, in 
which connection the transition at the critical point is akin to a 
second-order transition. For the A transition in helium, it was 
discovered experimentally by Fairbank and others [4 ] that there 
is a logarithmic growth of the heat capacity as T -> TA. Recent­
ly, a theoretical analysis by Pa"'tashinskil and Pokrovskil [5 ] 

and Vedenov and Dykhne (private communication) has given 
evidence of the logarithmic singularity for the A transition at 
the critical point as well. 
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2. SPATIAL DISPERSION, ITS EFFECT ON FLUC­
TUATIONS AND THE SOUND SPEED 

A. Out of all the characteristic peculiarities of 
sound waves near the critical point, of most inter­
est to us is the presence of spatial dispersion, that 
is, the dependence of the sound speed and the ab­
sorption on the wavelength 21r /k. 2' 

We shall assume that the nonlinearity, whose 
role naturally increases as Us ---.. 0, remains unim­
portant at sufficiently low intensities of the sound. 
Actually, the dissipative terms in the hydrody­
namic equations have a nondimensional order 
Ed ~vk2/w ~vw/u; and as Us---.. 0 they grow like 
1/u; (v is the viscosity; in view of the growth of 
the specific heat, the term with the thermal conduc­
tivity is omitted in the estimate). The nonlinear 
terms, which have the order En ~ kv /w ~ v /us 
(v is the amplitude of the velocity in the sound 
wave) increase like 1/us. Therefore, we shall not 
consider the nonlinearity, assuming that the condi­
tion En « Ed or v « vw /us is satisfied, i.e., it is 
assumed, in particular that no significant decrease 
takes place in the viscosity at the critical point. 
We note that, as was shown by Soluyan and Khokh­
lov, [ 7] shock wave formation does not take place 
even for En :S Ed· 3' 

The unlimited growth of the compressibility of 
matter p-1 (8p/8p)T upon approach to the critical 
point leads to a corresponding increase in density 
fluctuations, and also in the distance at which the 
correlation fluctuations become important. The 
correlation radius, which characterizes these dis­
tances, increases sharply close to Tc, in connec­
tion with which the thermodynamic quantities at 
the different points of the medium are shown to be 
essentially connected with one another. This is 
shown in the fact that the equation of state becomes 
nonlocal close to the critical point. A substance 
close to T c behaves as a medium with spatial dis­
persion. 

In accord with the well known formulas, [ 1] 

without account of spatial dispersion, 

(L1p) 2 "' ( ap I ap )T, (L1T)2 "' 1 I Cv, 

i.e., as T 0 ---.. Tc, we have (D.p)2---.. oo, and as a con-

2 )We limit ourselves to the single-phase region around the 
critical point. In the region of stratification of phases, addi­
tional mechanisms of dispersion and nonlinearity must oper­
ate.[6] 

3 )The conditions for shock-wave formation in a medium 
with spatial dispersion have not been studied as yet. However, 
it is natural to expect that spatial dispersion must make the 
formation of discontinuities more difficult. 

sequence of the logarithmic singularity we get 
(D. T) 2 ---.. 0. The finite expressions for (D.{)) 2 are 
obtained under the assumption that there is a weak 
spatial dispersion. This is made clear in the fact 
that in the nonlinear part of the free energy of an 
isothermal system D.F P = JdrF(r) are considered 
as quadratic terms both in the deviations of the 
density p (r) from the equilibrium p 0, and in the 
density gradients [ 1] 

p(r) =p(r)- po, 

(2.1) 

The values of the fluctuations, correlation func­
tions, intensity of light scattering, etc., are cal­
culated with the help of (2 .1). 

B. In what follows, we abandon the assumption 
of weak spatial dispersion, and assume that (as 
a consequence of the neglect of nonlinear effects 
discussed above) there is an arbitrary linear non­
local connection between F(r) and p 2 

F(r)= ~ K(r-r', r-r")p(r')p(r")dr'dr". (2.2) 

The medium is assumed to be homogeneous and 
isotropic, i.e., the gravitational effect is in par­
ticular neglected. 

For the change in the total free energy we have 

L1Fp = ~ Q(r'- r")p(r')p(r")dr'dr", 

Q(r'- r") = 2 ~ K(r- r', r -r")dr. (2.3) 

The kernel Q(r) plays a significant role in the 
following consideration, defining both the fluctua­
tion and acoustic properties of the system. The 
general properties of the kernel Q are discussed 
below. Here we note only that Q(r) depends on the 
temperature and the equilibrium density as param­
eters, while the dependence on r can change 
materially as T 0 ---.. Tc and Po----- Pc· Of most 
interest obviously is a knowledge of the function 
Q(r, T0 - Tc, Pc>. In what follows, we shall omit 
the thermodynamic arguments in Q. 

Equation (2.3) is rewritten in Fourier com­
ponents in the form 

L1Fp=2~ ~Q(k)JpkJ2, 
k 

Q (k) = Q (-k) = 2K(k, -k). 

(2.4) 

The Fourier components are defined by the rela­
tions 

(2.5) 

while, by assuming V to be sufficiently large, we 
also replace the sum over k by an integral: 



(2.6) 

In accord with the Boltzmann principle, it 
follows from (2.4) for the density fluctuations in 
the volume V (kB is the Boltzmann constant) that 

IPk 12 = VkBT I Q(k). (2. 7) 

The weak spatial dispersion corresponds to the 
following form of the kernel K: 

1 
K (r-r', r-r") = yab (r- r') 6 (r- r") 

+ ; bVr·b (r- r') Vr" (r- r"). (2. 8) 

Here (2.3) transforms into (2.1). 
From (2.3) and (2.4) we find in this case 

Q(k) =a+ bk2, (2.9) 

which, after substitution in (2. 7), leads to the well 
known formula of Ornstein and Zernike for the 
fluctuation of the density near the critical point. 

The relation (2.9) is valid only in the case of 
sufficiently small correlation radii r 0• According 
to [i] the correlation radius r 0 = (b/a) 112 - oo like 
(T0 - Tc)-112 (cf. (2.1) and (1.3)), and it must be ex­
pected that Eq. (2.9) ceases to be valid in the im­
mediate vicinity of Tc· In this,.very case, however, 
if the thermodynamic potentials have a singularity 
at Tc, the expansions (2.8) and (2.9) generally do 
not hold. 

In the general case, the form of Q(k) cannot be 
obtained in phenomenological theory and must be 
determined by comparison with experiment. As 
such experiments, in addition to acoustic ones, one 
can use the phenomenon of critical opalescence, 
since the intensity of the scattered light is deter­
mined by the values of (2. 7), where k is the change 
in the wave vector of the light in the scattering 
process. [B] 

When considering wave scattering it is more 
convenient to use an average characteristic of the 
fluctuations, which does not depend on the volume. 
In this case, we introduce the correlation function 
WP(r- r 1): 

p (r) p (r') = p2WP (r- r'). (2.10) 

Comparing the definitions (2.6) and (2.10), we 
get 

I pk 12 = i)2VWP (k). (2.11) 

Thus, in accord with (2.7) and (2.11), Q(k) is 
directly connected with the Fourier component of 
the correlation function: 

[p (r) p (r')Jk = i)2WP (k) = kiJT I Q (k). (2.12) 

C. We shall now show that the function p 0Q(k) 

represents the isothermal speed of sound with 
wavelength 21r /k. 

The work oR expended on a unit mass when 
changing the density by a value p is evidently 
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oR = p 02 (p0 + p) p, where p(r) is the deviation of 
the pressure from the equilibrium value p 0• The 
work performed on the entire body is equal to 

r p(r) 
t'!.R = .l--p(r)dr. 

Po 
(2.13) 

ForT = const, we have ~R = ~Fp. Comparing 
(2.13) with (2.3), we find that there exists a non­
local connection between the change in pressure 
and density: 

p(r) =Po~ Q(r- r1 )p(r1)dr1 • (2.14) 

This relation becomes evident also when we use 
functional derivatives to replace the ordinary 
derivatives in the well known thermodynamic 
formulas (for T = const): 

{)F p \ d I I 6Fp 
p0 +p(r)=pof:Jp(r)' t'!.Fp= .l rp(r) f:Jp(r1), 

f:J2F 
Q(r- r') = f:Jp(r)f:J;(r1 ) (2.15) 

In the presence of spatial dispersion, the speed 
of sound is an operator. The square of the iso­
thermal speed of sound should be determined as 
the variational derivative of the pressure with 
respect to the density: 

uT2(r- r') == 6p(r) I 6p(r1 ) = p0Q(r- r1). (2.16) 

The Fourier components of this quantity uT(k) 
have the physical meaning of the sound speed (for 
a disturbance with a given value of the wave vec­
tor k); we get for uT(k) from (2.12), 

UT2 (k) = p0Q(k) = pokBT lp2WP(k). (2.17) 

This relation is analogous to the well known 
quantum relation of Feynman, [ 9] which connects 
the correlation function with the excitation spec­
trum in liquid helium. 

The adiabatic sound speed, as is not difficult to 
establish, has a Fourier component Us(k) equal to 

u8 2(k) = uT2(k) + ___!y_ ( f}p ) 2 (2.18) 
Cvpo2 aT p 

Here, by virtue of the smallness of the temperature 
fluctuations, the assumption is used that there is a 
local connection between the pressure and the tem­
perature, owing to which (Bp/BT)p does not depend 
on k and has the meaning of the ordinary thermo­
dynamic derivative; that is, for the case T ""const, 
(2.14) can be written in the form 

p(r)=po 'Q(r-r')p(r')dr1 + (-0TP\) T(r). 
• f) p 

(2.19) 
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The dispersion equation for svc~nd waves, with 
neglect of viscosity and thermal conductivity, has 
the usual form w 2 = u§ (k)k 2, but the sound speed 
is a function of the wave vector. 4 l 

The quantity Q(k) is real, i.e., the spatial dis­
persion itself does not lead to sound absorption. 
Account of the dispersion coefficients requires, 
generally speaking, account also of temporal dis­
persion. The relations which generalize (2.12) 
and (2.1 7) are obtained below with the help of the 
general Landau and Lifshitz theory of the fluctua­
tion of hydrodynamic quantities [ 10], applied to the 
case of media with spatial dispersion. 5' 

3. HYDRODYNAMIC FLUCTUATIONS IN A MED­
IUM WITH SPATIAL DISPERSION 

A. According to the fluctuation-dissipation 
theory, the temporal Fourier component of the 
correlation function of the variable x can be ex­
pressed in terms of an entirely different problem 
of the response of the system to the influence of an 
external force f of the same frequency w, which 
leads to a deviation of the value of x from its 
equilibrium value. It is convenient to unite these 
two problems formally by considering that the 
fluctuations of the value of x are brought about by 
the action on the system of an external random 
force f. From this view point, the content of the 
fluctuation-dissipation theorem reduces to the re­
sult that the power entering the system because of 
the work of the external forces must be entirely 
dissipated and given off to the thermostat in order 
that the equilibrium state of the system not be 
disturbed. 

All the general relations of the theory of fluc­
tuations in the form proposed by Landau and 
Lifshitz [8] and by Rytov[ 12] are directly appli­
cable to the case of spatial dispersion, if one takes 
it into account that the generalized coordinates 
Xn (r) depend not only on discrete (n), but also on 
continuous parameters-the coordinate r. 

4 )The logarithmic singularity of the specific heat near the 
'A point and the critical point (see the footnote 1) is connected 
with the existence of quasiparticles with occupation numbers 
nk- \pk\' and with dispersion law fk = Ak'''. Thus, for suffi­
ciently small k, one has Q(k) = a + bk'12 • Here the correlation 
function for T 0 = Tc has the form W(r) - r _,,, (instead of W(r)­
r-1 for (2.9)). The dispersion law of sound at the critical point 
has a form close to parabolic, w = (p 0 B)"'F'<, where the coef­
ficient B is equal in order of magnitude to B- d312 u2 /p 0 - 10-2 

cm 13 / 2 

g sec2 • 

5 )The extension of the theory of electromagnetic fluctua­
tions to the case of spatial dispersion was made by Bass and 
Kaganov.[11 ] 

The equations which describe the motion of a 
system under the action of a force f give the rela­
tion between x and f at the frequency w. Solving 
these equations, we find 

Xn(r) = )' ~ dr'anm(r, r')fm(r'). (3.1) 
m 

The quantities Gnm(r, r') represent thew com­
ponent of the Green's tensor equations of motion 
which connect f and x. According to the fluctuation­
dissipation theorem, the Fourier components of 
the correlation functions can be expressed in their 
terms. [ 8] 

In a homogeneous medium, the kinetic coeffi­
cients a are functions of the difference in the co­
ordinates Gnm(r, r') = Gnm(r ~ r'), in which con­
nection it is convenient to transform to the spatial 
Fourier components of the correlation function 

(xn (r) Xm (r')lo,. k 

_ ih 3 • hw 
- 4:rt (2:rt) (anm (w, k) -amn(w, k)) cth 2k T. (3.2)* 

B 

The dependence on w written above is omitted 
here and account is taken of the fact that the k 
component of a* ( ~ r) is equal to a * (k). 

The generalized relations of the symmetry of 
the kinetic coefficients (the Onsager relations) 
take the form 

Umn(r, r') = ±amn(r', r),'anm(w, k) = +amn(W, -k). 
(3.3) 

The symbols ± in (3. 3) refer to the cases in 
which the generalized coordinates Xn and Xm in 
(3.2) have respectively the same or different sym­
metry relative to time reversal. 

The Fourier components of the correlation func­
tion (xnxm)w, k = x2 Wnm (w, k) are connected with 
the correlators of the components of the Fourier 
quantities (in a homogeneous, stationary system) 
by the following relation [ 8] (cf. (2.11)): 

.T 11 (w, k) Xm (w', k') = (XnXmlo,, k 6 (w + w') 6 (k + k'J. (3.4) 

B. The rate of change of the energy of the 
liquia is [GJ 

1ZU (" a' ik (. iJvi iJvk ' 
~= _\- +- - )dV 
clt • 2 'iJxh iJxi -

\ V ·T 1 pop 
- .\ qi--'-dV + .l dV. 

• To po dt 

(3 .5) 

The last term follows from the component -pd(1/p) 
in the thermodynamic identity for the energy, and 
is real in the case of spatial dispersion. 

Equation (3~5) takes a more convenient form 

*cth = coth. 



in terms of the total stress tensor O"ik = O"ik' 
- poik), with account of the equation of continuity: 

dU = (' CJih ( OV; + OVA) dV- (' q; v ;T dY. (3.6) 
dt .l 2 \ OXh OXi .l T 0 

As a generalization of (2.19) we assume non­
local coupling between the temporal Fourier com­
ponents of pressure and density: 

p(r,w) = ~ dr'p0Q(r-r',w)p(r',w) + ( :; )PT(r,w), 

(3. 7) 

and express the values of Uik' and q in the usual 
fashion in terms of the gradients of the velocities 
and the temperatures, that is, in essence, spatial 
dispersion of only the second viscosity is taken into 
account. 

As is well known, [sJ the correspondence be­
tween the quantities f and x is established with the 
aid of the equation 

dU I dt =-~ ~ drfn(r)xn(r). (3. 7a) 
n 

Comparison with (3.6) makes it possible to deter­
mine two types of generalized forces and coordin­
ates, which differ in the number of indices in the 
corresponding quantities: s> 

(J ext 
fnm=~, 

~(t) 

i 
Xnm = 2(knVm + kmvn), 

- q;ext 
/;=--.-, 

~(!) 

ik;T 
X;= --r;;-· (3.8) 

Here and throughout this section, we shall, 
without speaking of it each time, use the Fourier 
components of the quantities p, T, v ~ ei(k · r-wt). 

For the calculation of the correlators of hydro­
dynamic quantities of the type (3. 2), it is necessary 
to find the Green tensor of the hydrodynamic equa-

6 )The correlators for the extraneous flows a~:t and qext, 
with account of spatial dispersion, are obtained from the for­
mulas of Landau and Lifshitz ['"] by adding to Re((w)O(r-r) 
the component (p~/ w) ImQ (r-r', w). Inasmuch as the spatial dis­
persion is essentially connected with infinite compressibility, 
then it is natural to assume that it will in no way be signifi­
cant in the first viscosity and in thermal conductivity, al­
though it is difficult to write down the general relations. For 
this purpose, it would be necessary to replace in ['"] 

T] (ro)cS(r- r'), ~(ro)cS(r-r') and x(ro)cS(r-r') 

by the corresponding relations 

'I'J(r-r', ro), ~(r-r', w), x(r-r', ro), 

the definition of which is evident. In our case, we kept ((w), 
along with Q(r-r', w), only in order that the formulas have the 
customary form with the addition of an extra term with disper­
sion. 
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tions. The set of linear equations with extraneous 
flows 

- iwpov; = - ipk;- k 2r)V;- ( ~ + i-) (kv) k; + ik1ailex~ 
- iwp =- i(kv)po, p = p0Q(k, w)p + (op/OT)p T, 

-iwpoToS = -xk2T- ikqex~ (3.9) 

has the following solution for an unbounded med­
ium 

V; = {w I pok2 )Rlk; (kqext)- MilkmCJlmex} 

T = F(kqext)- (wTo/pok2)Rlk;kLCJilex~ 

p = RJ (kqex~)- {/I k2) k;klailex,t 

where the following notation is introduced: 

[ 1 wTo ( op ) ]/(· , . xk2
) F- --+-- -- RJ (!),~--

- pocv Cvpo2 ' aT p PoCv I ' 

R = ( 0
0PT J / pocv (w + i xk2

), 
'p poCv 

J = k2j [ w2 - k2p0Q + i ::~ ( ~ 11 + ~) J , 
T 0 (opfoT)p2 

poQ=poQ+-----. 
po2 Cv + ixk2/wpo 

(3.10) 

(3.11) 

We note that forK = 0, the value of p 0Q has the 
meaning of an adiabatic sound speed (with fre­
quency w and wave vector k). Substituting now in 
(3. 9) the generalized forces and coordinates (3. 8), 
we get relations of the type (3.1), from which we 
can easily find the values of u: 

ail= wk;klF I To, amn, pr = wkp(kmMnr + knMmr) I 2, 

(3.12) 

As is seen from (3.12), the Onsager relations (3.3) 
are satisfied. 

The values given for the generalized kinetic 
coefficient make it possible, according to (3.2), 
taken in the classical limiting case 

hw 2kBT cth-----+--- (3.12a) 
2kBT hw 

to write down the correlation coefficients for all 
the hydrodynamic quantities. For the density and 
temperature, we have 

p = pok;v; I w = PoXmm I iw, T = Tok;X; I ik2, (3.12b) 

that is, 
2 

(p (r) P (r'))oo,k = : 2 (Xmm (r) Xnn (r'))oo, k, 

(T (r) T (r'))oo, k = T 02;:kk (x; (r) xk (r'))oo,k, 
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(p(r)T(r'))ro,k=p~~~ ki(Xmm(r)xi(r'))ro,k· (3.13) 

As an example, we take the expression for the 
Fourier component of the correlators of density 
and temperature (see[t2]): 

(p (r) p (r'))ro,k =- kB~:o (2:rr) 3 Im J, 

k T 2 

(T (r) T (r'))ro,k =-~ (2:rr) 3 Im F, 

(p (r) T (r'))ro,k =- }!_H: 02 (2n:) 3 Im (RJ). (3 .14) 

To establish the connection with the considera­
tions given above, we note that the real quantities 
Q(r - r', 0) and Q(k, O) enter in the formulas of 
Sec. 2. (The absence of time dispersion means 
that Q(r, t) = Q(r) 6(t).) In contrast with these, 
Q(r- r', w) and Q(k, w) are complex quantities. 

Carrying out an inverse (spatial) Fourier trans­
formation in (3.14), we have 

, kBToPo 
(p(r) p(r ))ro =- --

:rrro 

\ dk k2eik(r-r') 
X Im ~ -- . (3.15) 

• (2:rr)3 ro2 - k2p0 Q + irok2 ( 4/a'YJ + WPo 

Using the Kramers-Kronig relations, as was 
done by Landau and Lifshitz, [B] we get for the 
correlations at a given moment of time 

dk ik(r-r') 
p (r, t) p (r', t) =kETo~ (2n:) 3 ~ (k, O), (3 .16) 

which agrees with the expression (2.12) obtained 
above, but ( 3 .16) is obtained under more general 
assumptions-without neglect of viscosity and 
thermal conductivity. 

4. SOUND PROPAGATION CLOSE TO THE CRITI­
CAL POINT 

A. The spectrum of hydrodynamic excitations is 
determined by the poles of the Green's tensors 
(3.11) of the hydrodynamic equations (3.9). The 
poles wp 0 = ik2-r} and 0.;p 0 = -iKk2/cv correspond 
respectively to vortex and entropy (temperature) 
"waves." The dispersion equation which contains 
the acoustic branch has the form 

( ~)2- poQ(k ro)-~ (8p/OT)v2 
k ' po2 Cv + ixk2/ wpo 

+ i ~ ( _4 T] + \;) = 0. 
Po · 3 , 

(4.1) 

We now consider some special cases. 
1. In the immediate vicinity of the critical point, 

in accord with (1.4), cv increases without limit, and 
one can expand Eq. (4.1) in the small quantity 1/cv. 

Then, if the viscosity is not too large 
(1J/p 0 < p 0Q/w), the acoustic wave is propagated 
with isothermal speed uT(k, w). The absorption 
takes place as the result of viscosity, and not by 
virtue of thermal conductivity, if the kinetic coeffi­
cients do not have singularities at the critical 
point. Thus the conclusions are physically under­
standable, for owing to the infinite growth of the 
heat conductivity upon approach to the critical 
point the propagation of a sound wave in such a 
medium is pr~ctically unaccompanied by a change 
in temperature. 

2. In the critical region, but not in the immed­
iate vicinity of the critical point, when there is still 
no singularity and the inequality (kr0) 2 « 1 is satis­
fied (r0 is the correlation radius), that is, where 
one can consider the spatial dispersion to be weak, 
Q(k) has the form of (2.9). One then gets [from 
Eq. (4.1)] a small [ ~ (kr0) 2] correction to the adia­
batic sound velocity in the absence of dispersion.[ 13 ] 

3. The dependence of Q on w, i.e., the temporal 
dispersion of the second viscosity considered by 
Mandel'shtam and Leontovich, is important in the 
presence of slow processes if the period of the 
sound wave is comparable with the relaxation time 
in the system. In the critical region, the macro­
scopic processes are materially slowed, and one 
can expect the appearance of long relaxation times. 
In the simplest case, in which there is a single 
relaxation time T, the dependence of Q on w would 
have the form 

Q ( ro) = ( U.o2 + u."'hwT) / Po ( 1 + iwT) . 

Here, in accord with [B], the coefficient of absorp­
tion along the wave is proportional to WT (for 
WT « 1) or 1/wT (for WT » 1). 

B. The scattering by the fluctuations also leads 
to the appearance of dispersion and additional 
sound absorption [ 14- 17] due to the pumping of 
energy into the fluctuating part of the field. In 
view of the specific nature of the critical point, it 
suffices to consider scattering only by density 
fluctuations, which we shall consider to be thermal 
only at the end of the calculation. 

In the system of hydrodynamic equations, the 
terms containing the viscosity and thermal conduc­
tivity will be omitted for simplicity in the calcula­
tion of additional absorption. 

We now separate the various components of the 
general density p(r) and velocity v(r): 

P =Po+ n + p, n=n0 +n', (4.2) 

Here p 0 is the equilibrium density, p the fluctuating 
change in density, n the density change connected 
with the passage of the sound wave, while n 0 is its 



regular (average) value and n' its fluctuating part. 
Similarly, v and v' are the regular and fluctuating 
parts of the velocity in the sound wave. By defini­
tion, p = n' = V' = 0. 

We carry out a linearization of the hydrody­
namic equations in the variables n and v associa­
ted with the passage of the sound wave. However, 
it is necessary to keep the nonlinear terms which 
describe the coupling of the sound field n with the 
thermal fluctuations of the density p. Here, using 
the condition (1.2), and neglecting the nonlinear 
terms which contain (& 2p/&p 2) Tc, we get 

~7 + div (p0v) =- div (pv), 

!Jv + ~ (' dr' dt' n (r', t') v.Q (r- r', t- t') at p,) + p J 

= ( p,1n )2 (' dr' dt'p (r', t') V.Q (r- r', t- t'). (4.3) 
Po+ P J 

We shall consider the stationary and nonstationary 
fluctuations separately. 

C. In the stationary case, we assume that p 

does not depend on t ; eliminating v(r) from the 
system (4.3), we get an equation for n(r, w). 

The resultant equation, like the Maxwell equa­
tions in a fluctuating medium (see Sec. 5B), is of 
the form L0n = l (p)n, where l (p) is an operator 
defined with the help of the random function p (r). 
An approximate method of solution of such an 
equation, suggested by I. Lifshitz et alL 14l, is 
given below. Averaging the initial equation and 
subtracting the resulting equation from the initial 
one, we get 

L0n' = ln0 + (ln' -in'). (4.4) 

Limiting ourselves to the firs_!_approximation, 
we neglect the components Zn' -Zn' in (4.4) in com­
parison with Zn 0• Account of higher approximations 
calls as usual for involved calculations. [ H] From 
the first equation of (4.4), we find n' = L01 Zn0, 

where L01 is the Green operator inverse to L0• 

Substituting this value of n' in the first of Eqs. 
( 4.4), we get the initial equation for the mean field 
in first approximation: 

(L0 -lLo -1l) n0 = 0. (4.5) 

The Fourier component of (4.5) determines the 
dispersion equation. 7l In our case, it is very com-

7)As is shown in a number of works, [14 ' 17 ] this method of 
calculation is more accurate than the usual perturbation meth­
od, since it essentially renormalizes an interaction described 
(in the case of electrodynamics) by the dielectric permittivity. 
According to [17), renormalizations of higher orders can be car­
ried out in a similar fashion. 
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plicated because of the presence of the quadruple 
correlator 

(p(r"')p(r") / [po + p(r')] [Po+ p(r)]) 

of the random function p (r). We limit ourselves to 
consideration of small fluctuations in the density 
of a medium with an arbitrary dispersion and large 
fluctuations in a medium with small spatial disper­
sion. 

1. For small fluctuations, we can expand 
( p 0 + p r 1 in a series and limit ourselves to the 
first term in the expansion. We then get from (4.5) 
the dispersion equation 

X [p2q2 + (Pq) 2] = 0. (4.6) 

In (4.6) the Fourier component of the correlation 
function of the density fluctuations WP (q- p) de­
fined in (2.10) is introduced; here (4.6) is valid for 
sound scattering by density fluctuations of arbi­
trary origin, for example, of turbulent origin. For 
thermal density fluctuations, the relation (2.12) is 
valid and (4.6) takes the form 

q2poQ(q)- w2 - kBTS ~ {J(q ·- p)[p2q2 +(pq)2J = o. 
(2n)3 po(J (P) p2- 002 

(4. 7) 

Dispersion of the sound velocity and additional 
absorption can be calculated from (4. 7) for an ar­
bitrary value of the spatial dispersion. Thus, for 
Q(k) = Bk312, the coefficient of absorption along the 
wave is proportional to w 617• 

2. Equation (4.5) is simplified also in the case 
of large fluctuations but weak spatial dispersion. 
For simplicity, we set down the results for the 
nondispersive medium. The dispersion equation 
obtained in (4.5) again has the form of (4.6) (with 
p 0Q = u§) but the random function p (r) is replaced 
by 17 (r) = ln [ p 0 + p (r)] and, correspondingly, {52 

and W(r - r') by 17 2 and w17 (r - r'). 
3. In the absence of spatial dispersion (p 0Q(k) 

= u~) the effect on the absorption coefficient and 
the sound velocity of scattering by the fluctuations 
can be obtained in general form.C14,15J We turn to 
Eq. (4.6) which, after application of the inverse 
Fourier transformation to the function WP (q- p), 
can be written in the form 

( w ) 2 iJ2 (' dp 
q2- u; - Po2 .\ (2n)a [p2- (wfu.)2] 

X(' dreiP•(q2p2-q·q·-8-2-) 
.\ ' J 8r; 8r; 

X WP (r) e-iqr = 0. (4.8) 
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The absence of spatial dispersion corresponds to 
thermal fluctuations kr0 « 1, therefore, after inte­
gration over the wave vector, one can expand eikr 
in a series. Owing to the isotropy of the medium, 
we assume that the correlation function depends 
only on the modulus of r. Finally, substituting 
q--. k in the correction term, we have 

q2 =( u: Y(1+ ~: (k2ro2+itksr0s)] (4.9) 

where the correlation function WP(r) is normalized 
by the condition 

r02 = ~ rWP(r)dr, 

where p 2 = kBT/47rbr 0 for thermal fluctuations. 
Thus, in the case kr0 « 1, the change in the 

sound velocl.ty brought about by scattering from the 
fluctuations is proportional tow 2, while the coeffi­
cient of absorption along the wave is ~ w 3• 

4. Equation (4.9) was obtained for small fluc­
tuations. This result remains valid however for 
large fluctuations (in the case of small spatial dis­
persion) but, in correspondence with what was 
pointed out above, one must replace{;'!. by 7Jl, and 
the correlation radius r 0 in (4.9) is determined by 
means of the function WTI (r). 

5. In the case of weak fluctuations, one can 
forego the condition of stationarity of the fluctua­
tions and assume p = p 0(r, t), which is important 
in the critical region, since the appearance of tem­
poral dispersion and corresponding relaxation 
phenomena are possible. 

In this case, it is convenient to apply the method 
described by the operator relations (4.4)-(4.5) to 
each of Eqs. (4.3), and the dispersion equation is 
obtained as a condition of compatibility of the solu­
tions of the two equations for the regular values n0 

and v. The dispersion equation here has the form 
(4.6) but the Fourier components of W(r) and Q(r) 
also depend on the frequency, i.e., in (4.6), 
Q = Q(p- q, w) and W = W(p- q, w). Correspond­
ingly, integration in (4.6) is carried out not only 
in wave vector space, but also over the frequencies. 

5. SCATTERING OF ELECTROMAGNETIC WAVES 

A. The scattering of electromagnetic waves is 
described by the correlator of the fluctuations of 
the dielectric permittivity 

6s(r,t)6e(r',t') = 6e2W"(r-r',t-t'), 

connected with the correlation functions of the 
hydrodynamic quantities, which are found above 
with account of spatial dispersion. If we take into 

account only scattering from density fluctuations, 
then 

6s2W• = (as;ap)T2 6p2WP. 

The extinction coefficient per unit solid angle 
dh/do' is expressed in terms of Q(q, O) and (3.16), 
and depends essentially on the spatial dispersion 

dh oo4 ( as ) 2 kBT . 2 

do' = (4n) 2c4 ap T Q(q, 0) Slll e, (5.1) 

where q = k- k' is the change in the wave vector 
in the scattering process, while, for small change 
in frequency, 

oo e 
q =2-sin--

c 2 

( e is the angle between k and k'). The angle factor 
in (5.1) corresponds to the case of linearly polar­
ized waves. 

We note that for Q(q) = Bq312 the intensity of the 
scattered light in the immediate vicinity of the 
critical point is proportional to q 512, and not to q 2• 

Furthermore, for Q(q) = Bq312, integration of 
(5.1) over the angles leads to a finite expression 
for the total extinction coefficient, while for Q(q) 
= a + bq2, a logarithmic divergence is obtained at 
the critical point (a = 0), as is well known. [ B] 

In the presence of spatial dispersion, the well 
known ratio of Landau-Placzek[a] is also altered; 
this ratio, Idoubllltot = cv/cp, describes the ratio 
of the intensity of the Mandel'shtam-Brillouin 
doublet ldoubl to the total intensity of the line 
Itot = ldoubl + Iunshift: 

l doubl /[ To ( ap ) 2 ] uT2(q) 
-~- . poQ(q) poQ(q) +--2- ar p = ~(-) . 

unsh1ft c"po Us q 

(5.2) 
For weak dispersion, (5.2) transforms to the 

corresponding formula of Vladimirskil .c 13] 

It follows from (5.2) that, the intensity of the 
unshifted line is decreased (ldoubllltot -- 1) in the 
immediate vicinity of the critical point, as cv -co, 

in the presence of spatial dispersion. In the ab­
SEtnce of spatial dispersion, we would have obtained 
a decrease in the intensity of the doublet (cv/cp 
-- 0). 

A more detailed formula for the Rayleigh scat­
tering line shape is obtained from the expression 

dh oo4 ( as j 2 ---
do'doo' = (4n)2c4 ap;T6p2WP(q,oo-oo')sin28. (5.3) 

Thus the investigation of the line shape of the 
scattered light, determined by (5.1)-(5.3) for differ­
ent frequencies and angles of observation, is a con­
venient method for the experimental determination 
of the values of Q(k, O) and Q(k, w). 



B. The scattering of electromagnetic waves also 
leads to an additional damping and dispersion of the 
mean field associated with the transfer of energy 
to the fluctuating part of the field, which can distort 
the scattering picture. The damping of the average 
field could be described (as was shown by Lifshitz, 
Kaganov and Tsukernik[ 14J; see also[tH7J), with 
the help of the effective dielectric permittivity 
E?~· Separating the field and the dielectric sus­
ceptibility into the regular and fluctuating parts, 
and substituting them in Maxwell's equation, we get 
equations of the type (4.4), which are solved by the 
method given in Sec. 4. The dispersion equation 
has the form 

(5.4) 

e~f = e6zm- 6e2 [ 6zm -( : ykl:m J ~ ~:~ 
(w/c) 26zm-ktkm/e W•(k- Q) 

X k2 -(w/c)2e q, · 
(5.5) 

The dielectric permittivity (5.5), because of the 
presence of poles in the integrand, is a complex 
quantity which corresponds to dispersion and ab­
sorption of the mean field. 

If we write Ez~ = E6zm + AEe~, then the solution 
of the dispersion equation (5.4~ in the linear ap­
proximation in 6E2 is 

w2 [ eff ( w -·)] k2 =--· e+~e·· w _,,e 2 t1 I 7 , • c \ c 
(5.6) 

In the case of stationary fluctuations W E(k, Q) 
= 27TWE(k) 6 (Q) and the well known expression for 
Ez~ follows from (5.5).c 14 •15J This can be estab­
lished by transforming to the coordinate represen­
tation under the integral sign. 

C. Let us make some final remarks. As is well 
known, the growth of density fluctuations near the 
critical point leads to the result that the fluctua­
tions are correlated over significant distances. 
This spatial correlation is a consequence of the 
simple fact that if there is a significant departure 
of the density at any point from the equilibrium 
value, the material from neighboring points must 
enter into this point. The nonlocal coupling arising 
in this case between the pressure and the density, 
(2.19) and (3.7), leads to a dependence of the sound 
velocity on the wave vector k (spatial dispersion). 

Both the density correlator and the isothermal 
sound speed are expressed in terms of the kernel 
Q(r, T - T c) (2 .3) of the non-equilibrium part of the 
free energy and are connected by (2.17) and (3.16), 
a relation similar to the Feynman relation between 
the correlation function and the excitation spec­
trum in liquid helium. Thus the measurement of the 
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dispersion of the sound speed enables us in princi­
ple to determine the excitation spectrum of 
Q(k, T - Tc) near the critical point. Another 
method of determining the spectrum is to measure 
the Fourier components of the density correlator 
(for example, from the wave scattering). The 
correlators of hydrodynamic quantities with ac­
count of spatial dispersion were obtained in Sec. 3. 

The determination of the spectrum is of interest 
in connection with the problem of second-order 
phase transitions, since the experimentally dis­
covered singularity of the thermodynamic quanti­
ties at the transition point means that the spectrum 
of Q(k) for T = T c must also contain a singularity 
for k = 0, and the expansion Q(k) = a + bk2 is in­
valid. The experimentally observed logarithmic 
singularities of cv at the critical point evidently 
correspond to the dispersion law Q(k) =a + Bk312 

(see footnote 4>). 
We note that as a consequence of the spatial dis­

persion, neither the isothermal nor the adiabatic 
sound speed vanishes at T = T c and k ~ 0. B> The 
advantage of the acoustic measurements is the 
possibility of realizing different relations between 
the sound parameters and the parameters of the 
material as a function of the degree of approach to 
the critical point and the selection of the sound 
frequency which can vary over wide ranges 
10 5-10 9 cps[tBJ. 

Valuable information can be obtained in investi­
gations of the angular dependence of small-angle 
Rayleigh scattering of electromagnetic waves, and 
also in investigations of the Mandel'shtam-Brillouin 
doublet, in particular the Landau-Placzek ratio 
with spatial dispersion (5.2) (see Sec. 5, and also 
the review of Fabelinskil [ 19]). In this connection, 
the experiments of Drickamer et al [ 2o] are of in­
terest, in which regions were discovered with 
different dependences of the scattered light inten­
sity on the wave length, depending on the approach 
to the critical point. 

The value of the sound absorption and, conse­
quently, the possibility of acoustic experiments, 
depends essentially on the behavior close to the 

B)The few existing experiments on the propagation of sound 
in the critical region [18 ] show that on approaching the critical 
point the absorption increases while the sound speed de­
creases. These experiments were carried out under conditions 
of weak spatial dispersion, i.e., the decrease of sound speed 
is approximately determined by the relation (1.4) U 8 - 1/~, 
and since when the distance to the critical point changes by 
two orders of magnitude (from ~T = 1° to ~T = (10-2)~ the heat 
capacity of argon increases by a factor of four, the sound 
speed decreases only by a factor of two. 
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critical point of the thermal conductivity and the 
viscosity, which have not been studied to date. 

In addition, in a medium with strongly fluctuat­
ing parameters, there is a specific mechanism of 
absorption of waves associated with the transfer of 
energy to the fluctuating part of the field (Sec. 4B, C 
and Sec. 5B), which can lead to distortion of the 
usual scattering picture. 
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