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A theory is developed of Rayleigh light scattering in piezoelectric semiconductors during 
sound instability. The case of relatively weak growth of sound fluctuations is considered, so 
that the linear theory is applicable. However, even in this case, it is shown that the inten
sity of scattering can exceed the scattering intensity from sound fluctuations in thermody
namic equilibrium by two or three orders of magnitude. The spectral distribution of scat
tered light is investigated and the width of the Rayleigh line is determined. For this purpose, 
the theory of increasing fluctuations developed in [8 , 9] is generalized to include time corre
lation of the fluctuations. 

1. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

RECENTLY, the phenomenon of sound instability 
in piezoelectric semiconductors in a constant elec
tric field has been discovered and investigated in 
a series of researches. [2- 7] As shown in the works 
of one of the authors [8, 9] 1l (see alsoC 10J), the sound 
instability in the simplest case is convective :2 l 
the sound fluctuations are stationary in time, but 
increase in space "along the flow." If the finite 
dimensions of the crystal limit the intensity of the 
increasing fluctuations to such a level in which the 
nonlinear effects no longer play a role (the 
"linear region"), then the intensity of the fluctua
tions is determined by the linear theory developed 
in I and II. However, if the intensity of the fluc
tuations exceeds some critical level, their fur-
ther growth is limited by the nonlinear effects. 

The role of nonlinear effects in the conditions 
for the amplification of a single sound wave has 
previously been investigated. [12- 14] In the problem 
involving increasing fluctuations, the nonlinear 
effects consist in the interaction of many waves. 
The corresponding theory has not yet been de
veloped. There are only the qualitative considera
tions of Hutson, [15] which, unfortunately, do not 
permit us to obtain quantitative characteristics of 
this unique and hitherto almost uninvestigated 
state, which arises in the case of sound instability 
in the nonlinear region. 

1lThe papers[• • 9 ] will be denoted below by I and II, and 
these numbers will be written in references to the formulas. 

2) The concept of convective instability was first 
introduced in the book of Landau and Lifshitz.["] 

What sort of experiments could be used to 
study this state? For transparent crystals, exper
iments on Rayleigh light scattering give suffi
ciently complete information on the intensity of 
sound fluctuations. Under normal conditions, the 
Rayleigh scattering of light by sound fluctuations 
is very small, because of the low intensity of the 
fluctuations in the state of thermodynamic equili-
brium. 

Under conditions of sound instability, the in
tensity of the longwave fluctuations, which corre
spond to light scattering, can increase, relative 
to the equilibrium value, by a hundred- or thou
sand-fold. Moreover, this intensity depends very 
critically on an external parameter-the electric 
field-which can easily be changed. The first cir
cumstance should guarantee the possibility of ob
servation of light scattering during sound insta
bility in the "linear" region. Not only is the total 
intensity of light scattering determined in a given 
direction, but also the shape of the Rayleigh scat
tering line. As is well known, [16] the line shape is 
Lorentzian in the case of spatially homogeneous 
fluctuations, while its width is proportional to the 
damping coefficient of sound vibrations y. There
fore, it is natural to raise the question as to how 
the width of the Rayleigh line behaves when the 
damping coefficient y decreases to zero and then 
changes sign. It is shown that as y approaches 
zero, the line loses its Lorentz shape and its form 
begins to be determined by the dimensions of the 
semiconductor in the direction in which the growth 
of fluctuations takes place. When y, after changing 
sign, begins to increase in absolute value, the shape 
of the line again becomes Lorentzian, and its 
width is determined by the modulus of y. 
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In order to determine the shape of the Rayleigh 
line, i.e., to investigate the change in the light 
frequency upon scattering, it is necessary to ob
tain an expression for the time correlation of the 
fluctuations. Therefore, we shall, in the second 
section, construct a linear phenomenological 
theory of the time correlation of increasing sound 
fluctuations. From this point of view, the second 
section of the present paper must be regarded as 
the direct continuation of reference II, in which 
fluctuations are considered at a single instant of 
time, and we shall simply refer to the formulas 
and notation of that paper without rewriting them. 

In the following section, the scattering of light 
by piezoelectrics will be investigated on the basis 
of this theory. Expressions will be obtained for 
the extinction coefficient, which can be compared 
with experiment. By means of such a comparison, 
one can establish the conditions under which the 
nonlinear effects begin. (No theory for this exists 
at the present time.) The experimental investiga
tion of these effects with the help of the sensitive 
method of Rayleigh light scattering is a very in
teresting and attractive task. 

2. TIME CORRELATION OF THE FLUCTUATIONS 

We begin with the consideration of spatially 
homogeneous fluctuations. We shall consider any 
of the random variables ~¥1) ( m = 1, 2, 3) intro
duced in II, taken at the time t + T ( T > 0 ). It 
satisfies the equation 

:'1: ~~'!') (t + -r) + (iromq' + Ymq'/2) ~~'!') (t + -r) = y~'!') (t + -r), 
(2 .1) 

while 

y~n)• (t) y~'!') (t') = Yv:n l'lq•ql'l (t'- t). (2 .2) 

We multiply (2 .1) by ~ <nl* ( t) and average. Taking 
it into account that q 

Sq(n)*(t)yq•(m)(t + -r) = 0 

(inasmuch as the value of a random quantity at a 
much earlier moment cannot depend on the value 
of the random force at a much later moment), we 
get an equation for the function 

m~~ (t, -r) = ~~n)• (t) ~~'!') (t + -r), 
which characterizes the correlation of the fluc
tuations: 

a 
o-r !lt~~ (t, -r) + (iromq' + Ymq•/2) m~; (t, -r) = 0. (2.3) 

As an initial condition for (2.3), we set 

mmn (t -r) I - = Amn (t) = t(n)' (t) t(m) (t) q'q ' ,_g q'q ':!q "'q' • (2.4) 

The function (2 .4) is determined with the help of 
the theory of fluctuations at a single instant of 
time, as developed in I and II. 

The value of the correlator !ll ~~ ( t, - T) for 
- T < 0 is found with the help of tne relation 

!ll~~ (t, - T) = (!ll~~ (t- T, 't'))*. (2 .5) 

In the stationary case, in which neither of the 
quantities entering into the problem depends ex
plicitly on t, it follows from (2.3)-(2.5) that 
( T > 0 ): 

!ll~~ = A~~exp(-iromq•T-Ymq•'t'/2). (2.6) 

We proceed to the consideration of the time 
correlation of spatially inhomogeneous fluctua
tions, including those arising during convective 
instability of the system. We shall start out from 
the equation for the random quantity ~ (m) ( r', t + r) 
in the coordinate representation: 

a \ . 
l'hs<ml(r', t + -r)- J d3r1amm(r'- rl)S<m>(rt, t + -r) 

= y<m>(r',t+-r). (2. 7) 

We multiply (2.7) by ~(nl(r, t) and average: 

{}~ s<n>(r, t)'g,(m)(r', t + T)- ~ d3rtUmm(r'- ri) 

(2 .8) 

Our purpose is to obtain an expression for the 
correlator 

~Q?k·. QR = s~"it· <t> st~- <t + -r> 

in the wave packet representation considered in 
II. For this purpose, we multiply (2.8) by 
V02 1J!QR ( r) IJ!Q'R' ( r') and integrate over r and 
r'. The integral of the first component is obvi
ously alar~ Q,rk, ,QR" In the second component, 

we expand the functions IJ!QR ( r) and lfQ'R' ( r') 

and the kernel amm ( r' - r 1 ) in Fourier series, 
after which we carry out integration over r, r' 
and r 1• As a result, we obtain an equation for the 
function ~: 

a~ ~Q?k', QR (t, -r) + ~o 2] mQ:::.k', Q+k (t, -r) 
kk' 

X [exp (ik'R'- ikR)J (irom, Q'+k' + Ym, Q'+k'/2) = 0. (2 .9) 

The solution of this must satisfy the initial condi
tion 

~'Q~R'. QR (t, -r) 1,=0 = BQ-'R·. QR <t> = sli'~· <t> ~&'!'~. (t). (2 .1o) 

The values of the function ~ for - T < 0 are 
determined with the aid of the relation 

(2.11) 
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In the stationary case, the solution of Eq. (2 .9), 
with account of (2 .10), has the following form, as 
is easy to prove: 

3 

~Q;' QR ('r) = ; ~ A mn exp (- ikR + ik'R') 
' 0 kk' Q'+k', Q+k 

X exp (- iwm, Q'+k''t'- Ym, Q'+k''t'/2). 

The coefficient of light scattering, as we shall see 
below, is expressed in terms of the diagonal 
( n = m, Q = Q') elements of the matrix ~. which 
we shall therefore compute. Expanding wm,Q' +k' 
and 'Ym,Q+k' in powers of k', and limiting our
selves in the first case to the zero and first, and 
in the second, only to the zero, terms of the ex
pansion, we get, for T > 0: 

~Q-;', QR ('t') = a3V01 exp (- iwnQ't'- YnQ't'/2) 

X~ A'Q~k', Q+k exp (- ikR + ik'R'- ik'wn't'). (2 .12) 
kk' 

By considering that A~~q is a function of the 

half-sum and difference of its arguments, as was 
done in II, and transforming in (2 .12) to summa

tion over k 0 = (k + k' )/2 and ~k = k- k', we get, 
with the stated accuracy, 

~nQ~' QR = exp(-iWnQ't'-YnQ't'/2)~ Ann(Q, ~k) 
' Ak 

relative to such operations. Therefore, with the 
given accuracy, one can replace it by o[~RJ,O• 

where [ ~R] is the R-lattice vector closest to the 
~R. Then, taking (2 .11. II) into account, we obtain 

~Q~', QR = exp [- iwnQ't'- YnQ't'/2] B'Q (R) lin, [R'-w<]• 

(2 .16) 

This is the final expression for the time correla
tion of increasing fluctuations. 

The inverse transition from the function ~ to 
the function m is carried out according to the 
following general formula: 

3 

lllQ'·'::-k·, Q+k=; ~ ~Q';·, Qnexp(ikR- ik'R'). (2.17) 
O RR' 

The coefficient of light scattering is expressed, 
as we shall see below, in terms of the function 
mQn+k, +k" Evidently, the vector k can be taken 
as equ3 to zero without loss of generality. Trans
forming (2 .17) from summation to integration in 
this case, and replacing the Kronecker symbol by 
the o function, we get, for T > 0, 

Ill~~ ('t') = ~j d3R ~ d:lR'Bqn (R') II (R- R'- Wnq't') 

X exp (- iWnq't'- Ynq't'/2) =[Ill~~(- 't')t. (2.18) 

X exp [- it:1k (Ro- Wn't'/2)] D (L1R\ 

where 

(2.13) 3. CALCULATION OF THE EXTINCTION 
COEFFICIENT 

R' = R'- Wn't, Mt = R- R', Ro = (R + R') / 2, 
~ a3 ~ 

D (~R) = V ~ exp (- ik011R). (2.14) 
0 k, 

The vector R', generally speaking, is not a 
vector of the R lattice (i.e., its components are 
not multiples of the elementary length a). There
fore, the function D ( ~R) is not equal to o~R . 

•0 
However, if, completing the sum, we use the ex-
plicit expression for this function 

a3 nt:1X nSY n~Z (2 .15) 
D(~R) = n3~X~YL1Zsin-a-sin--;;-sin-a-, 

then it is not difficult to see that it possesses the 
following two properties: 1) it falls off sufficiently 
rapidly for I ~R I » a; 2) ~D (~R) = 1, while, by 

R 
virtue of the property 1), summation is actually 
carried out over such vectors of the R lattice 
which are not appreciably different from R'. 

As will be seen below, the expression for the 
quantities that characterize the light scattering is 
obtained by multiplication of (2.13) by some 
smooth function of ~R (in the simplest case, by a 
constant) and by subsequent summation over ~R. 
But, the function D ( ~R) behaves like a o-symbol 

The differential extinction coefficient 
dh = h ( o) do is the ratio of the light intensity 
scattered in a given range of angle do to the size 
of this interval, the density of the incident light 
flux and the volume of the scattering medium 
(sec [tsJ, p. 495). In the case of a spatial growth 
in the fluctuations, the scattering ability of the 
crystal is a function of the coordinate. Therefore, 
we agree to interpret the extinction coefficient as 
a quantity averaged over the entire volume of the 
crystal. 

For Rayleigh light scattering, the change in the 
light frequency w0 is very small. Therefore, one 
can consider the light scattering by assuming that 
the fluctuation with wave vector q, equal to the 
difference in the wave vectors of the scattered and 
incident light, makes a contribution to the dielec
tric permittivity E(f~(w 0 ), equal to 3l 

<'leii,(Wo, r, t) = a;kzmUzm(q) + Vz, ;kitlq - 4nmu,-1e2n q I wo2• 

(3.1) 

3 )The last component in (3.1) is described in the effective 
mass approximation. This does not affect the subsequent esti
mates called upon to demonstrate the smallness of this quantity. 
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Here E is the charge on the electron, m;~ is the 

tensor of its reciprocal effective mass, uzm ( q) 
= ( i/2) ( U[q q + Umq qz) is the fluctuation deforma
tion ( uzq is the Z-th component of the amplitude of 
the displacement vector in the sound wave with 
wave vector q), itzq is the fluctuation electric 
field, and nq is the fluctuating concentration. 
Each of these three quantities is expressed 
linearly in terms of three independent random 
functions ~ C1J, ;~land ; (3) which were introduced 
for the piez~electric in H. Finally, the extinction 
coeffcient h is expressed in terms of the average 
of the square of o Eik• i.e., in terms of the func

tion OC ~W which can exceed the thermodynamic 
average by a factor of a hundred or a thousand 
during instability. 

For q · V > 0 ( V is the drift velocity of the 
electron conductivity), only ;~l grows as a con

sequence of the instability of the three functions, 
; &n l. 4 l Correspondingly, in linear relations which 

express uzm ( q), fB lq and nq in terms of the ~g), 
we keep only terms proportional to ;&O· As are

sult, the extinction coefficient is expressed in 

terms of the average d1l*dl) =A" which by 
"q "q qq' ' 

virtue of (2.18), is represented in the form of an 
integral of the function BQ ( R) = UQ ( R ). 

We estimate the relative order of the different 
components in (3.1). The second component in 
(3.1) can be neglected in comparison with the first 
by virtue of the inequalities 

(3.2) 

(A. is the modulus of elasticity, Ea is an electric 
field of atomic order), which are satisfied for 
most piezoelectrics. The third component in (3.1) 
can be neglected if w0 » 47Tf3e/Emc "" 10 13 sec- 1; 

this condition is satisfied for visible light. 
We also note that the contribution to, o E from 

~ (3 ) is small in every case if n0 ~ m 2w6 T/e4A.. 

T~is inequality will also be assumed to be satis
fied below. 

We denote by h 0 ( o) the extinction coefficient 
at thermodynamic equilibrium. The problem of 
the computation of h0 in crystals is considered in 
the book of Vol'kenshte1n.[17] During sound insta
bility, we have 

: 0 = ~ d3RU Q (R)f2U QT· (3.3) 

4lconversely, for q·V < 0, ~q(2 ) increases. The case q·V < 0 
is considered in analogous fashion, and we limit ourselves to 
stating the final results. 

Here UQT = T/pV0wQ~ is the mean square ampli
tude of the sound wave with wave vector Q in the 
state of thermodynamic equilibrium; the factor 2 
in the denominator of (3.3) is brought about in the 
final analysis by the fact that of the two waves 
traveling in opposite directions, only one is 
amplified in the electric field. 

The spectral distribution of the light can be 
characterized by the function I ( w ), which satis-

fies the normalization condition j_ :1 ( w) dw = I. 

In the case under consideration, 
00 

I (ro) = [n~d3RU Q (R)r1 Re ~ d-ce-it,oo,-Yq'/2 ~ d3R 
0 

x ~ d3R'6(R' -R-w-c) UQ(R). (3.4) 

Here .6.w = w - w0 - Wqo for q · V > 0 and .6.w 
= w - w0 + Wqo for q · V < 0. The integral over T 

converges even for Yq < 0, since integration over 
R and R' is carried out over the finite volume of 
the crystal. 

We consider these expressions in the simplest 
case, where the piezoelectric has the shape of a 
plate of thickness L, the plane of which is per
pendicular to the X axis. We shall also neglect 
the lattice sound absorption and assume that 
y0/l y I » 1, and that the electron noise tempera
ture Te is identical with the lattice temperature 
T. Then [see (6.3. I) and (2.26. II)] 

U Q = U QT(Yo/y)[i- exp (- yXfwx)], (3.5) 

h/ho = (yo/2y){1- (wx/yL)[i- exp(- yX/wx)]}, (3.6) 

2wx y!lro . !lroL ( yL )} --- sm-- ex --- . 
yL !lro2 + y2/4 Wx p Wx 

( 3. 7) 

Let us consider how this expression behaves 
in the various limiting cases. For y > 0 and 
yL » wx, the theory of spatially inhomogeneous 
fluctuations is appropriate, and (3.7) transforms 
into the well known[tS] expression which gives the 
Lorentz line shape: 

I( ) - 1 y 
ro - 2n dro2 + y2/4 · 

(3.8) 

For I y I L/wx « 1, 

2 Wx 1 ( Wx droL ) /(ro) =------ 1---sin-- . 
n L (!lro) 2 !lroL Wx 

(3.9) 
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In this case, to the generally smooth change in the 
function I ( w) are added higher-frequency oscilla
ations with period 21lWx/L. These oscillations 
actually take place if the scatter in the values of 
the length L over the cross section of the speci
men is much less than the sound wavelength. 

Finally, for 'Y < 0 and I 'Y I L/wx » 1, 

1 lv I 
J(ro) = 2~ l\ro2 + y2/4 (3.10) 

In this case, the shape of the line is Lorentzian 
as before, while the intensity of the scattered light 
increases exponentially. It is interesting to note 
that inasmuch as only the traveling waves which 
are propagated in one direction are amplified, the 
intensity of only one component of the Mandel'
shtam-Brillouin doublet increases, namely, the 
anti-Stokes line, if the light scattering takes place 
in the direction of the sound amplifidcation, and 
the Stokes line if the scattering takes place in the 
opposite direction. 
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