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A kinetic equation for waves in a weakly turbulent plasma is derived in a form that yields 
simple symmetry relations for various terms of the equation. Some consequences of these 
relations are discussed. It is shown, in particular, that in several cases the "number" of 
waves (quasiparticles) is conserved during "non-decay" interaction. 

1. INTRODUCTION 

AT present there are many papers devoted to the 
nonlinear interaction of waves in a plasma. There 
are two different approaches to this problem. One 
is purely dynamic, without using an averaging pro
cedure in any of the intermediate stages (for ex
ample [i] ). Such a method is convenient in investi
gations of the nonlinear interaction of a finite 
number of waves. In a weakly turbulent plasma, it 
is necessary to go over from the dynamic descrip
tion to the statistical one, i.e., to resort to aver
aging over some statistical ensemble during one 
stage or another. The principles of the statistical 
approach were first used in the quasilinear theory 
of waves in a plasma [2, 3]. The derivation of the 
kinetic equations for waves in a weakly turbulent 
plasma and their application to various concrete 
cases have been the subject of many papers [3- 4]. 

However, these equations are too cumbersome to 
investigate in sufficiently general cases, and con
crete applications have as a rule the character of 
more or less crude estimates. 

In this paper we derive the kinetic equation for 
the waves in a form which, in our opinion, is quite 
convenient for a general investigation and for con
crete applications, and whose individual terms 
admit of sufficiently simple interpretation. It 
makes it therefore possible to obtain several sym
metry relations for the kernel of the kinetic equa
tion, from which follow certain conservation laws 
which in many cases facilitate the investigation of 
wave kinetics in a weakly turbulent plasma. In 
particular, it turns out that if "decays" of the 
waves are impossible (i.e., Wk' + Wk" ;e Wk' +k"), 
then under certain conditions, which are satisfied 
in most cases of interest, the nonlinear interac
tion cannot lead to a change in the total number of 
waves. 

For convenience in exposition we first consider 
in detail the derivation of the kinetic equations for 
waves and of the symmetry relations in the cases 
of potential oscillations (Sees. 2 and 3). In Sec. 4 
we consider the conservation laws that follow from 
the symmetry relations. It is shown in Sec. 5 that 
all the symmetry relations and the corresponding 
conservation laws obtained for potential oscilla
tions are valid also in the general case of oscilla
tions with arbitrary polarization. By way of illu
stration we consider several examples: the con
servation laws for nonlinear interaction of poten
tial oscillations in a plasma without a magnetic 
field and in a plasma with a magnetic field in the 
presence of longitudinal current (Sec. 4), and the 
interaction between plasmons and photons in a 
plasma without a magnetic field (Sec. 6). 

2. KINETIC EQUATION FOR WAVES 
(POTENTIAL OSCILLATIONS) 

We consider first the case of potential oscilla
tions in a plasma. The fundamental equations for 
such oscillations are of the form 

E=-gradcp, 8E/8t=-4:rtJ. (2.1) 

The polarization current density vector J, with 
allowance for the terms nonlinear in E, can be 
represented in the form 

J = J(l>{E} + J<2>{E} + J<3>{E} + ... , (2.2) 

where J(nl { E} is some functional of the electric 
field, of order n. 

The currents J(nl{E} can be expressed in 
terms of corresponding increments to the plasma 
particle distribution function. To determine these 
quantities we start from the kinetic equation for 
the particle distribution function, which we find 
expedient to write in the form 
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8f.18t + UIC, /] =- [.1t'Jn1, f.], 
J J J J 

(2 .3) 

where JCj-Hamiltonian ?f the plasma in the ab
sence of oscillations; JC~nt_part of the Hamiltonian 
describing the interactiJn of the particles with the 
field of the waves: 

Jt'i = - 1- (p - _12_ A0 )
2 

, H0 = rot A0 , (2 .4)* 
2mi c 

{Jt~nt ~~~Pi (r) cp (r) dr, pi (r) = ei'l (r- ri (t)), (2 .5) 

where H0-intensity of the stationary magnetic 
field; j = e, i ( e-electrons, i-ions ). This sub
script will be left out from now on if there is no 
summation with respect to j; r ( t )-radius vector 
of the particle at the instant of time t. We neglect 
collisions between particles, so that there is no 
collision integral in (2.3). 

Going over to the Lagrangian variables r 0 and 
Po corresponding to the motion of the particle and 
an external stationary magnetic field, we obtain 
in place of (2.3) af/at = -[JCint, f]; from this we 
get for the n-th order increment to the distribu
tion function 

t 1n-1 
r> (ro, Po; t) = (- 1)n ~ dt1 ... ~ dtn 

-00 -00 

[ "fflint ( ) "fflint ( o X o& t1 ... [o& tn), j ] ... ], (2 .6) 

where f0 = f 0 ( r 0, Po )-unperturbed distribution 
function. With the aid of formula (2.6) we can de
termine the polarization currents J(n): 

t tn-1 

J(n)(r,t)=(-1t~ni~dr 1 ... drn ~ dt1 ... ~ dtn 
J -00 -00 

(2.7) 

where nj-particle-number density, and the angle 
brackets denote integration over the Lagrangian 
variables r 0 and, Po of the particle, while the 
square brackets are Poisson brackets with re
spect to these variables: 

[F <D] = 8F 8<D _ 8F 8<D (2 .S) 
' opo oro oro opo. 

It follows from. (2.7) that the connection be
tween the Fourier components of the n-th order 
currents and the Fourier components of the po
tential can be represented by 

4nJ(n)(k, w) = (Z:~ n-lk2 ~ ~ dw1 ... dwno(w- W1- ... - Wn) 
k1+ ... +kn-=k 

X ~l(n)(k, w; k!, Wj; ... ; kn, Wn)cp(k~, w!) ... cp(kn, Wn), 

1 )The normalization volume is set equal to unity 
everywhere. 

*rot = curl. 

(2 .9) 

00 

cp (k, w) = ~ dr ~ dtcp (r, t) e-i(kr-wt), 

-00 

-00 -00 

n 

X 'ljJ(n) (r 1 , t1; ... ; rn, tn) exp [i ~ (krrz- Wzt!) J, 
1~1 

(2 .10) 

(2 .11) 

In (2.11) L.:JU denotes the sum over all possible 
permutations of the wave numbers k 1, ••• , kn 
(and accordingly the frequencies). The quantity 
1/J (n) ( r 1, t 1, ••• rn, tn) is defined by the formula 

'ljJ(rl- r, t1- t;., .; fn- r, tn-t)= (-1)n4Jt L ni 

(2 .12) 

Following [15], we shall call the quantities 
11 (k, w, ... , kn, Wn) the n-th order responses. 
For convenience we have included among the ar
guments of the responses the wave vectors k and 
the frequencies w, and it must be assumed through
out that the responses 11 (k, w; k 1, w1; ••• ; kn, wn) 
differ from zero only if 

n n 

k = ~ kz, (•) = ~ Wr. 
1=1 l=l 

Going over to the Fourier components in (2.1), 
we obtain the dynamic equation for the waves with 
account of the nonlinear effects up to third order 
inclusive: 

kwe(k, w) cp (k, w) = 4nJ<2> (k, w) + 4n:J<3> (k, w), (2 .13) 

where J(2 ) and J(3) are determined from (2.9), 
and E (k, w) is the dielectric constant of the 
plasma for longitudinal oscillations: 

e(k, w) = 1- 1-l(l)(k, w) I k 2• (2 .14) 

We shall solve (2.13) by successive approxima
tions, choosing for the first approximation the 
solution of the linearized equation 

e(k, w)cp(k, ctl) = 0. (2 .15) 

If the dispersion equation E ( k, w ) = 0 has real 
roots wk, then the solution of (2 .15) takes the 
form cp (1 l ( k, w) = 27Tcp~ ( w - wk). In the presence 
of absorption or instability, wk is complex. In 
this case the solution of (2 .15) can be represented 
in the form 

(2 .16) 
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1 .6), (2.16a) 
(J)-(J)k+ l 

where o is a symbol indicating the rule for going 
around the poles when integrating the expression 
in (2 .16a) with respect to w: in the first term in 
the parentheses the contour circles from below, 
and in the second from above, regardless of the 
sign2 ) of Im Wk. The time-dependent solution of 
(2.15) can be represented in the form 

1 00 

<p(1) (k, t) = - r <p(1) (k, (!)) e-iwt dro' 
2:rt J 

-oo 

which, taking into account the rules for going 
around the poles in cp (1) ( k, w) leads to cp (1) ( k, t) 
= <Pk exp ( -iwkt) for all values of t. 

Using (2.16), we obtain for the second and third 
approximations an expression of the form 

m(2l(k ro) - 1 ~ r dro'dro" 6(ro- ro'- ro") 
., ' - 2:rtk2e (k, ro) ~ J 

k'+k"=k 

X j.t(k, ro; k' ro'; k", ro")<p<1>(k', ro')<p<1>(k", ro"), (2.17) 

rp(3l (k ro) = 1 ~ ~ dro' dro" dro"' 
' (2:rt)2k2e(k, ro)k'+k"+k'"=k 

X6(ro- ro'- ro"- ro"') 

x{2~ r dQI'l(ro-ro'-Q) 
~ J 2 ( Q) !l(k, ro; k', ro'; q, Q) 
q q E q, 

X j.t(q, Q; k", ro"; k"', ro"') 

+ j.t(k, ro; k', ro'; k", ro"; k"', ro"')} 

X <p<1>(k', ro') <p<1>(k", ro") rp<1>(k"', ro"'). (2.18) 

We now calculate d I cp ( k, t) 12 /dt, confining 
ourselves to terms up to fourth order in <Pk· The 
bar denotes averaging over the phases of the 
initial amplitudes wk that enter in the first ap
proximation (2.16). These phases, as in [G,7J, are 
assumed to have random distributions for differ
ent k. 

Representing cp ( k, t) in the form of a Fourier 
integral, we obtain 

~ I rp (k, t) 12 = ( 2~) 2 Im ~ dro dro' (ro- ro') 

X rp (k, ro) <p* (k, ro') e-i(oo-oo')t =' 2yk I cpk 12 

+ (2!)2 Im ~ dro dro' (ro- ro') [2<p<al (k, rotll)<p<ll* (k, ro') 

+cp<2l (k, ro) cp<2l* (k, ro')J e-i(oo-w')t, (2.19) 

2)1t is convenient to regard a as a certain function of 
w, different from zero only in an arbitrarily small interval 
near the point w = Rewk, at which point a > I lm Wk I· Then 
the integration in (2.16) can be carried out along the real axis. 

where 'Yk = Im Wk-linear increment or decrement 
of the wave. In terms of fourth order in cp we are 
justified3) in neglecting the imaginary part of Wk 

if I 'Yk I« I wk 1. In this case~ (w- wk) in 
(2.16) is replaced by a 6-function. Substituting in 
(2.19) the values of cp(2)(k, w) and cp<3)(k, w) from 
(2 .17) and (2 .18), we obtain the kinetic equation for 
the waves in the form 

{ 
"1;1 [ \ dro6 (rok- rok'- ro) 

X Im ~ 8 J I k- k' 12 8 (k - k'' ro) 

X j.t(k,rok;k',rok'; k-k',ro) 

X 11 (k-k', ro; k, rok; -k',- rok·) 

+ 6~.t (k, rok; k', rok·; k, rok ;- k',- rok·) J I <pk 121 <pk, 12 

4:rt '1\;1 + e' ~ Ill (k, rok; k', rok'; k", rok" )12 1 <pk' 121 <pk.l2 
k k', k" 

X 6(rok-rok'-rok")}, 

where 

8k' = 0:8 (k, ro).,="'k' 

(2 .20) 

It must be noted in connection with (2.20) that 
the entire deviation presented above was a for
mal expansion in powers of the oscillation field, 
corresponding to usual perturbation theory. How
ever, such an expansion contains divergences that 
are eliminated by a certain renormalization, cor
responding to the transition to the nonlinear 
theory. Thus, in the expression for /.1 lk, wk; k', 
Wk'; k', Wk'; -k', -Wk') we encounter a diverging 
term proportional to 

0 t' t" 

~ dt' ~ dt" ~ dt"' ([[[p_k(O), pk(t')] pk'(t")] P-k' (t'")] / 0 ) 

-00 -00 -00 

X exp {- i [rokt' + rok' (t"- t"')]}, (2 .21) 

[ Pk ( t) is the Fourier component of p ( r, t) ] and 
containing a Poisson bracket [P-k(O), Pk(t')] 
identical to the bracket in the first-order current. 
Analogous terms are included also in higher
order currents. It can be shown [ts] that summa
tion of an infinite series consisting of such terms 
is equivalent to quasilinear renormalization of the 
first-order current, namely to replacing in (2.12) 
the unperturbed distribution function f0 by a 
slowly-varying distribution function f0 ( t ). This 
leads to a corresponding renormalization of 

3)This means that we neglect terms of order YkT-1/wk2 , 

where r- characteristic time of variation of the energy of 
the wave as a result of the nonlinear interaction. 
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E (k, w) and replacement of the linear increment 
by a quasilinear one. Thus, all terms of the type 
(2 .21) will henceforth be omitted, and the distribu
tion function f0, and accordingly E ( k, w ) , will 
be assumed the same as in the quasilinear 
theory4l. The complete equation for the back
ground distribution function, with account of both 
the quasilinear renormalization and the wave in
teraction, can be found, for example, in [14 • 16] and 
will not be considered here. 

We note now that the integrand with respect to 
w in the right side of (2 .20) has a pole at w = Wk", 
k" = k- k', since E(k", Wk") = 0. During the 
integration this pole must be circuited from above. 
We can therefore write 

-1 " 1 .b(ffi-(t)k") 
e (k , ffi) = P (k" ) - :m , (k" ) , e , ffi e , ffik" 

where P-symbol for the principal value. 
It is further convenient to introduce in place of 

\ <Pk \2 the "number of waves" (quasiparticles) 
nk, defined by the relation 

1 -1 a 1 (k ) 1 k2l 12 1 k' , I 12 nk = 8rt (!)k o(!) (l)e , (!) w="'k <Jlk 1 = 8rt -ek <Jlk , 

(2 .22) 

so that nkWk is the spectral density of the oscilla
tion energy. We introduce also the quantities 

3. SYMMETRY RELATIONS FOR THE KINETIC 
EQUATION 

The quantities ljJ(2 ) and ljJ< 3l in (2.12) which 
determine the second- and third-order responses, 
satisfy definite symmetry relations which follow 
from the properties of Poisson brackets. These 
relations turn out to be quite useful in investiga
tions of the kinetic equation (2 .26) for the waves. 
Let us consider first the properties of the re
sponses of the second order. From (2.12) we can 
easily obtain 

'1jJ<2J (r', t'; r", t") = -'ljl<2J ( -r', -t'; r"- r', t" - t'), 

'ljl<2l(r', t'; r", t") + '1jJ< 2l(r"- r'; t"- t'; -r', -t') 

+ '1jJ<2l(-r", -t"; r' -r"; t'- t") = 0. 

(3.1) 

( 3.2) 

Equations (3.1) and (3.2) still do not lead directly 
to any relations for the quantity 11 defined by 
(2.11), since the integration with respect to t is 
carried out in (2.11) along the semi-axis from -oo 

to 0. However, if we introduce the complete 
Fourier component of the function ljJ <2 ): 

00 

j:i: (k, Q; k', Q'; k", Q") = ~ dr' dr" ~ dt' dt"'ljl (r', t'; r", t") 

X exp i (k'r' + k"r"- Q't'- Q"t"), 

D (k ) _ 8 e (k, ffi) 
,(!)- rt-~--

Bk' j ' 
(2.23) k = k' + k", Q = Q' + Q", (3.3) 

(2 .24) 

N. , = (8 )2 fl (k, (t)k·; k', (t)k•; k, (!)k; - k', - ffik·) (2 .25) 
kk rt I k2ek' k'2ek.' I 

The kinetic equation for the waves then takes the 
form 

dnk 1 
dt = 2yknk + 8rt 

then we get for this component from (3.1) and 
(3.2) 

~ (k, Q; k', Q'; k", Q") = 

-t-t(-k', -·Q'; -k, -Q; k", Q"), 

-;-;(k,Q; k',Q';k", Q") 

+~(-k', -Q'; k", Q"; -k, -Q) 

(3.4) 

+ ~(-k", -Q"; -k, --~2; k', Q') = 0. (3.5) 

The response 11 <2 ) of interest to us is connected 
with j;C2) by the relation 

. 1 dQ'dQ" 
"(k (!)' k' (!)'· k" (!)") = I _____ _ 
,.. ' ' ' ' ' 2 (2:rti)2 .l ffi- Q + ie 

{ ~(k Q· k' Q'· k" Q") ~(k ~~· k" Q"· k' Q')} 
X ' ,' 'Q" + .' + , ,' ~' +. , . (t) - Le (!) - Le 

(3.6) 

(2.26) To clarify the meaning of the formula (3.6) we 

4)For this reason we have left out from formula (3.12) 
for J.L(k,wk; k ', Wk •; k, wk; - k ', - Wk') the two terms with 
jl(k, ~; k, 0''; k', 0'; -k', 0'") and J.L(k, ~; k, ~"; 
-k', 0""'; k', f!'). 

consider in greater detail the structure of the 
quantities il(k, ~; k', ~'; k", ~"). Substituting 
1jJ(2 ) from (2.12) in (3.3) we obtain, after integrat
ing with respect to r' and r", 

00 

~(k, Q; k', Q'; k", Q") = .. ~ 4nelni ~ dt'dt" 
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X ( [[ 6(ro), exp i (k'r(t') - Q't') l 

X exp i (k"r(t")- Q"t")lfiO). (3.7) 

Differentiation with respect to the Lagrangian 
variables r 0 and Po is implied in the Poisson 
brackets, and the angle brackets denote integra
tion over these variables. In the presence of a 
constant magnetic field we must substitute for 
r (t) 

r(t) =ro+ ~ v(t')dt'=ro+ [hv(t)]- [hvol +h(hv0)t, 
0 WH WH 

(3.8)* 

where wH-Larmor frequency (of the correspond
ing particles), and h-unit vector directed along 
H0• After integrating with respect to t' and t", 
we get in place of the exponentials in (3. 7) a
functions of the form a (Q'- kzVz- n'wH) and 
a (Q"- kz"Vz- n"wH), where n' and n" are in
tegers. It is important here that the a-functions 
contain Q and k with the same index. These a
functions are acted upon by certain differential 
operators in the momenta p. If there is no ex
ternal magnetic field, the quantities 71 assume a 
specially simple form. In this case r ( t) = r 0 

+ vt and it follows from (3.7) that 

!l(k, Q; k', Q'; k", Q") 

= ~ Woj2 ei i dv6 (Q'- k'v) k _t?_{ 6 (Q"- k"v) k" !!i}, 
. mi J fJv fJv 

' (3.9) 

.vhere Woj = ( 47fejn/mj )112 is the Langmuir fre
quency. After substituting (3.9) in (3.6) and inte
grating with respect to Q' and Q ", we obtain an 
expression of the same type as in (3.9) except that 
in lieu of a ( Q - kv) we have Q - k · v + ie. 

It is clear from the foregoing that, for example 
in the expansion (3.6) for 11 ( k' + k"; Wk' + Wk"; 
k', Wk'; k", Wk" ), the half-residues are due to the 
resonances between the oscillations and the parti
cles of velocity 

wk~-n'wH 
V = -=--ko-z..,-, -= 

(3.10) 

wk'-t-rok"-mWH (H =f=O) (3.11) 
kz' + kz" 0 • 

The first two cases in (3.10) and (3.11) correspond 
to resonances between the natural oscillations 
(with frequencies Wk' and wk) and the plasma 
particles, while the last case corresponds to the 
resonance between the forced oscillations (with 
frequency wk' + wk") and the particles. In all 
the nonlinear terms we shall henceforth neglect 
*(h v 0) = h X Vo• 

the half-residues due to resonances with the 
natural frequencies. This is justified by the fact 
that these resonances make contributions already 
to the linear terms, and the corresponding linear 
contribution cannot compete with them. 

For the third-order response we can also write 
a relation of the type (3.6) 

1 1 dQ' dQ" dQ"' 
= - 6 (2ni)3 ,\ wk- Q + ie 

' { ~(k,Q;k',Q';k,Q";-k',Q'") 
X (wk- wk'- Q"- Q'" + ie) (- wk'- Q'" + ie) 

~ (k, Q; k', Q', -k', Q"'; k, Q") 
+ ( wk- wk'- Q"- Q"' + ie) (wk- Q" + ie) 

~(k, Q, -k', Q'"; k, Q", k', Q') 
+ ( wk + wk' - Q" - Q' + ie) ( wk' - Q' + ie) 

,:1 (k, Q;- k', Q"'; k', Q'; k, Q") } 
+ (wk-t-wk'-Q"-Q'-t-ie)(rok-Q"-t-ie) ,(3·12) 

00 

- (k r.. k' Q' · k" ,...,, k"' ,...,,) = C dr' dr" dr"' ( dt' dt" dt"i ,_.. ' ~'' ' ' ' ~' ' ' ~' .) J 
-00 

X 11' (r', t'; r", t"; r'", t'") 

X exp i (k'r' + k"r" + k"'r"'- Q't'- Q"t"- Q"'t"'), 

k = k' + k" + k';', Q = Q' + Q" + Q"'. (3.13) 

Expression (3.12) is written for the responses 
contained in the right side of the kinetic equation 
(2.26). We note further that in (3.12) we have left 
out two terms containing 

~(k, Q; k, Q"; k', Q'; -k', Q"') 

and i(k, Q; k', Q"; -k', Q'"; k', Q') 

(see footnote 4). The quantities 71 (a) contained in 
(3.12) have symmetry properties analogous to 
(3.4) and (3.5) (see the appendix). Relations (3.6) 
and (3.12) will henceforth be called the spectral 
expansions of the second- and third-order re
sponses. 

The spectral expansions are useful in the in
vestigation of the symmetry properties of the re
sponses. As shown in the appendix, it follows 
from the properties of 1i (k, Q; k', Q '; k", Q") and 
(3.6) that we can obtain the following relation for 
the response 11 (k, w; k', w'; k", w") 

!l(k, w; k', ro'; k", w") 

= 11* (k', w' - iO; k, ro - iO; -k", -w"). (3.14) 

The symbol -iO following the frequencies in the 
right side of (3.14) denotes that in the correspond
ing spectral expansion we replace in the denomi-
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nators containing these frequencies the imaginary 
additions, which determine the rule of going 
around the poles in integrating by their negative 
values. 

We introduce the quantity 

Lk'k" (w', w") = (S:rt)'/, It (k, w-iO; k', w'; k", w"). (3. 15) 
I k2ek' k'2ek/ k"2ek"' 1'1' 

It differs from Mk'k" (w', w") [see (2.24)] only in 
the sign of the imaginary addition to the frequency 
w. It follows from (3 .14) that 

order response satisfies the following symmetry 
relation: 
Im It± (k, wk; k', wk·; k, wk; - k', - wk·) 

= ±lm~.t±(k',wk·;k,wk;k',wk'; -k, -wk)· (3.20) 

4. CONSERVATION LAWS 

We represent the kinetic equation (2 .26) in the 
form 

(3.16) where 

(we recall that we have neglected in the nonlinear 
terms the half-residues due to resonances with 
the natural frequencies). We now consider the 
symmetry relations for the imaginary part of the 
response f-l (k, wk; k', wk'; k, wk; -k', -wk' ). 

Putting Wk > 0 and Wk' > 0, we break it up into 
two parts: 

Im It (k, wk; k', wk·; k, wk;-k',- wk') 

= Im It- (k, wk; k', wk·; k, wk;- k', - wk·) 

(3.17) 

--_i_ \ dQ'dQ"dQ"' 
- 6 (2ni) 3 ,' ( wk- Q + ie) (wk- wk'- Q"- Q'" + ie) 

X r , ' ' ' ' ' ' { Im r7(k Q· k' Q'· k Q"·- k' Q"') 
- wk'- Q"' + ie 

Im ;;- (k Q· k' Q'· - k' 0'"· k Q")} + r ' ' ' ' '..,_ , ' ... 
wk-Q" + ie ' 

(3.18) 

i . dQ'dQ"dQ"' 
=- 6(2ni) 3 ~ (wk-Q + ie) (wk + wk·- Q'' -Q' + ie) 

{ Im ~ (k, Q;- k', Q'"; k, Q"; k', Q') 
X "'+. ffik'- >~ lE 

+ Im ~ (k, Q; -k', Q'", k', Q'; k, Q")} 
wk-Q" + ie · 

(3.19) 

The quanti ties ji' (3), in terms of which the re
sponse 11 (k, Wk; k', Wk'; k, wk;- k', -Wk') is ex
pressed in (3.12), can have, generally speaking, 
nonvanishing imaginary and real parts. It turns 
out, however, that their real parts made no 
contribution5l to Im f-l (k, Wk; k', Wk'; k, Wk; -k', 
-Wk') (see the appendix). We have therefore re
placed /J (3) everywhere in (3.18) and (3.19) by 
i Im /J (3). We prove in the appendix that the third-

S)We are grateful to A. A. Galeev who called our at
tention to this. 

(!)k" 
-2-- ReMk'k"(wk'• ffik•) I wk" I 
X M-k'k (- wk'• wk) nknk·J o (wk- wk'- wk"), 

k' 

W {n} = ~ R~k'nknk·= 
k' 

(4.2) 

(4.3) 

In (4.3) and (4.4) the quantities M are replaced by 
L, in accordance with (3.16). The summation in 
the right sides of (4.3) and (4.4) is carried out 
only over positive frequencies. 

The term S { n} describes the "decay" inter
action of the waves, for which the following condi
tions are satisfied 

(4.6) 

The wave interaction described by the terms 
R- { n} and R + { n} which, unlike that considered 
above, can be called "non-decaying," is due to the 
resonance interaction between the waves and the 
particles. In this case an important role is played 
by resonances with the forced oscillations at the 
frequencies I Wk I-I Wk' I. in R- {n} and at the 
frequencies I wk I + I wk' I in R + { n }. In most 
concrete cases the term R + { n} is considerably 
smaller than R- { n}. Relation (3.20) can be re
written in the form 
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Im N:k' = ± Im Nf,k. 

Taking into account the obvious equalities 

M~'k" (rok'• COJ<•) =M-k'-k" (- rok'•- COJ<•), 

(4.7) 

L~'k•(cok'• CO.~<•)=L-k'-k"(-cok'• -ro.~<•), (4.8) 

we easily obtain 

M-k'k (- rok'• rok)= M:kk' (- cok, COJ<•), 

Lk',k (- cok'• cok) = L:kk' (- rok, cok')· (4.9) 

It follows from (4. 7) and (4.9) that the part 
Rkk' of the kernel of the kinetic equation is anti
symmetrical, while the part Rkk' is symmetrical, 
i.e., R:kk' = -R:k'k and Rkk' =Rk'k· If the "decay" 
conditions (4.6) cannot be satisfied, and the term 
R + { n} is negligibly small compared with R- {n}, 
then the kinetic equation (4.1) takes on the form 

dnk "" _ dt = 2yknk + ~ Rkk'nknk'· 
lr' 

Owing to antisymmetry of R:kk' the change in 
the total number of quasiparticles is determined 
by the equation 

from which we see that in the case when the 'Yk 
can be regarded as equal to zero (this can occur, 
for example, as a result of the particle distribu
tion function acquiring a quasilinear "plateau" in 
the region of resonance with the natural vibra
tion [ 2 • 3~, the total number of waves (quasipar
ticles) is conserved: ~knk = const. 

The quasiparticle conservation law leads to 
important corollaries. Let the spectrum of vibra
tions be such that their frequencies change little 
with variation of k. This takes place, for example, 
for electron Langmuir vibrations for which Wk 
=w 0e[1+(%)(krn)2 ], where rn=velwoe• 
and krn « 1. As a result of the law of conser
vation of the number of quasiparticles, the total 
energy will be conserved in this case in the first 
non vanishing approximation [accurate to ( krn )2 ], 

i.e., in this approximation the nonlinear interac
tion causes energy to be pumped over from one 
part of the spectrum to another. If the energy 
transfer is in this case from the shorter to the 
longer waves, then in the next higher approxima
tion in ( krn )2 the nonlinear interaction leads to 
a net attenuation of the wave energy. On the other 
hand, if the waves are pumped over in the opposite 
direction, then we have in the next higher approxi
mation an overall increase in the energy of the 

waves in the packet6). Such a case is realized, for 
example, in the presence of currents in the plasma 
(i.e., when the electron motion relative to the 
ions exceeds some critical velocity). 

Perfectly analogous corollaries follow from the 
quasiparticle conservation law also for the 
Drummond-Rosenbluth oscillations [17], which are 
excited when current flows along the magnetic 
field in a plasma in which Te ~ Ti, and whose 
frequency is very close to the Larmor ion fre
quency. 

In the case of ion-sound oscillations without a 
magnetic field, the dispersion equation takes the 
form 

COJ<2 = k 2T./mi (1 + k 2rv 2 ) 

(we put for simplicity Ti = 0 ). The energy-pump
ing effect plays here the major role only when the 
wave frequencies are close to woi• i.e., krn » 1. 
In the opposite case, generally speaking, the pump
ing effect and the total change in energy are of the 
same order of magnitude. 

We now consider the case when Yk > 0 for all 
the waves present. From (4.1) it then follows that 

d 
dt 2] nk>O, 

k 

i.e., the linear damping alone cannot compensate 
for the wave growth due to linear instability, and 
a stationary state cannot be established in this 
case. The erroneous conclusions concerning the 
establishment of a stationary state in this case[s,a] 
are due to the fact that, owing to the cumbersome 
initial equations and derivations, no notice was 
taken of the antisymmetry of the kernel of the 
kinetic equation for the waves. It must be noted, 
however, that a stationary state can, in principle, 
be established if 'Yk < 0 for a fraction of the 
waves in the packet. (An investigation of the sta
tionary state for several concrete examples is 
reported in [tG].) 

Let us consider, finally, another case when 
2Yknk and R{n} can be neglected in (4.1), so that 
the principal role is assumed by the "decay" in
teraction of the waves (case of a "transparent" 
medium). Taking (3.16) into account, the "decay" 
term in the kinetic equation (4.1) can be rewritten 
in the form 

1 S {n} = 16:n: 2] {\ Mk'k" (cok'• rok•) \2 (nk'nk·- nknk'- nknk•) 

X <'l(rok- cok'-rok" )'6 (co~·- rok- CO.~<•)}, 

(4.10') 

6)This, however, must not be regarded as a nonlinear 
instability, since I. kn k = const. 

' 
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(the summation is over the region k' + k" == k; 
Wk', Wk" > 0). The decay part of the kinetic equa
tion was obtained earlier in [4•6] for waves of the 
form (4.10) from the hydrodynamic equations of a 
magnetized plasma. We note that if fi- 0 (4.10) 
has the same form as the right side of the kinetic 
equation for phonons in a solid.n From (4.10) 
follow directly the energy and momentum conser
vation laws !:nkWk == const and !:nkk == const. The 
number of quasiparticles !:nk, of course, is not 
conserved in this case. 

In concluding this section we note that the form 
obtained here for the kinetic equation is very con
venient for concrete applications, since the re
sponses J1. are relatively easy to calculate 0 (For 
more details see [16], where kinetic equations are 
considered for potential oscillations in a plasma 
without a magnetic field, and also for Drummond
Rosenbluth oscillations [1T] arising in the presence 
of a longitudinal current in the magnetic field). 

5. KINETIC EQUATION FOR WAVES WITH 
ARBITRARY POLARIZATION 

Let us generalize the results obtained above to 
include the case of oscillations with arbitrary 
polarization. Let A0 be the vector potential of the 
external stationary field, and A the potential of 
the alternating field of the oscillations. We shall 
find it convenient to use a gauge in which the 
scalar potential is cp == 0, so that E == c- 1aA/Bt 
and H ==curl (A+ A0 ). From Maxwell's equations 
we obtain 

1 82A 4n 
rotrotA+--- = -Jo (5.1)* 

c2 8t2 c 
The interaction Hamiltonian JCint, describing 

the interaction of the particles with the wave field, 
is of the form 

e ( e ) e2 :Jeint = --- p--Ao A+--A2 
me c mc2 ' 

(5.2) 

JCint is nonlinear in A. In addition, the particle 
velocity expressed in terms of its momentum 

v = !_(p-~A0 -~A), 
m c c 

depends not only on the vector potential of the ex
ternal field, but also on the potential of the oscil
lation field. In this connection, the expression for 
the current in terms of A turns out to be quite 
cumbersome. Proceeding in the same manner as 

7)A quantum approach to the derivation of the decay 
part of the kinetic equation for waves in a plasma was con
sidered by the Vedenov[••]. 

*rot =curl. 

in the case of longitudinal oscillations, we obtain 
in the required order in A the following expres
sions for the contributions to the average current 
density 

t 

loYl(r, t) = ~ ~j { S dr1 S dt1 <Ua(r, t), jp{l1 , t 1 )]JD> 
J -oo 

I I ej2 } 
X Ap(r, t) - m; Aa(r, t) , (5.3) 

t' t' 

la<2l(r, t) = ~ :; { s dr1dr" s dt1 s· dt" 
..1 -oo 

X <Ua(r,t),jp(r',t)]iv(r",t")JD> Ap(r', t'}Av(r", t") 
t 

- 2~ S dr' S dt'(<Ua(r, t),p(r', t')]fD)A2(r', t') 
j -co 

-[- 2 ( [p (r, t), h (r', t')] fD) A a (r, t)Ap (r', t')}, (5.4) 

I t' t'' 

la<3l(r, t) = ~ ~{ S dr'dr"dr"' S dt1 S dt" S dt111 

j 

X ( [[Ua(r, t}, j~(r1, t1 )]iv(r", t")]i6(l111, t 111 )]f0) 

X Ap(r', t')Av(r", t'') 

f ,: 

X Ao(r'", t'")- ;~ 0 S dr'dr" S dt' ) dt" 
J -oo -oo 

X ( ( Wa (r, t), h (r', t') ]p (r", t") lf0 ) Ap (r', t')A2 (r", t") 

+ ( Wa(r, t), p(r', t')}jp(r", t")]fO) A2(r', t')Ap(r", t") 

+ ( [ [p (r, t), jp (r', t')] iv (r", t") lfD) Aa(r, t)Ap (r', t') 
2 t 

XAv(r",t"))+ 2~ 2 ~dr' Sdt'([p(r,t),p(r',t')}jD) 
l -co 

X Aa(r, t)A2(r', t') }. (5.5) 

where 

j(r, t) =: ( p- ~Ao) ~(r- r(t) }, p(r, t) = e~(r- r(t) ), 

r ( t) == r ( r 0, p 0; t) is the law of motion of the 
quasiparticles in the external field; the angle 
brackets, as in (2. 7), denote integration over the 
Lagrangian variables of the particles. 

In the general case the connection between the 
Fourier components of the currents and the 
Fourier components of the vector potential can be 
represented in the form 

4n (n) 1 r d d 
-c-la. (k, oo) = (2n)n-1 ~ l OOio 0 0 ffin 

k1+oo·+kn=k 

(5.6) 
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The quantities K, like IJ., will be called responses 
and we assume that they differ from zero if 

n n 

1=1 !=1 

In deriving the kinetic equation for oscillations 
with arbitrary polarization we encounter, unlike 
in the case of longitudinal oscillations, a compli
cation, due to the fact that the initial equation (5.1) 
is a vector equation. Taking the Fourier trans
form and confining ourselves to currents up to 
third order in A, we obtain from (5.1) 

[~;8a~(k, ro) +kak~-k2<'1a~ ]A~(k, ro) 

=- 4:n;[la<2l(k, ro) + la<3l(k, ro)], 8a~ = <'Ia~ + c2
2 xap. c . (!) 

(5.7) 

We shall solve (5.7) by the method of successive 
approximations. For the first approximation 
A (1) ( k, w) we choose the solution of the linearized 
equation 

(5.8) 

where D. ( w - Wk) is defined by (2.16a), and 
a r ( k) are polarization vectors satisfying the 
linearized equation when w = w~; w~ -natural 
frequencies of the oscillations, ck-scalar ampli
tudes, with the index r denoting polarization. The 
natural frequencies wk can be determined from 
the dispersion equation which is obtained by set
ting the determinant of the left side of (5. 7) equal 
to zero. 

As before, we confine ourselves to the case 
I Yk I « I wk 1. We normalize the polarization 
vectors a ( k) in such a way that I Ck 12 has the 
meaning of the density of the number of quanta nk, 
i.e., nkWk is the spectral energy density W(k). 
As is well known [19], the spectral energy density 
is given by 

X Aa"(k, ro)AJl(k, ro), (5.9) 

from which we easily obtain the following normali
zation condition for a (k) 

1__ [k2<'1ap-kakJl+ 00"
2 (ro8aJl) 1 _ J aa•(k)all(k) = lro~<l· 8:n: c2 ro-roh 

. (5.10) 

We note that (5.9) and (5.10) are meaningful only 
for an almost "transparent" medium, i.e., when 
the antihermitian part E a{3 can be neglected [19]. 

This is precisely the case we are considering 
when we assume that 11'k I « I wk 1. 

In order to find the next approximation 

A (2 ) (k, w ), it is necessary to retain in the right 
side of (5. 7) terms of second order in Ck, and to 
replace A ( k, w) in the left side by A <2 y-( k, w). 

With the aid of (5.6) and (5.8) we obtain 

[ ~: eaa(k, ro) + kaka- k2<'>aJl] A11<2l(k, ro) 

=- 2:n: ~XaJlv(k, ro; k', rok,k", rok.)a13(k')av(k") 
k', k" 

(5.11) 

Henceforth k will denote the aggregate comprising 
the components of the vector k and the polariza
tion index r, and summation over k will mean 
summation over k and r. The solution of (5.11) 
is 

~ ar(k, ro) 
A<2l(k, ro) = -2:n: Li r ~Mk'k"(Wk', Wk") 

r D(k,w)k',k" 

X C~t•C~t"<'l ( (!) - ffik' - ffik"), (5.12) 

where 

Mk, ... kn (ro~o ... , ron)= aa+(k, ro)aa,(kt, Wt) ... a"'n(kn, ron) 

D(k, ro) = ')..(k, ro)a+.(k, ro)a(k, ro), 

>. ( k, w) are the eigenvalues and a ( k, w ) the 
eigenvectors of the equation 

(5.13), 

(5.14) 

[~\IZJl(k,ro) +kakJl-k20aJl Ja~(1c,ro) =')..(k,w)aa(k,w), 

(5.15) 

while a+ ( k, w ) are the eigenvectors of the equa
tion conjugate to (5.15). 

In calculating the nonlinear approximations we 
neglect throughout the non-hermitian part 
Eaf3 (k, wk ). Continuing the iteration, we easily 
obtain the third approximation: 

A<3> (k, ro) = 2:n; ~ ~~k~ ro) ~ { 2~ ~ dro'<'l(ro- Wk + ro') 
r ( ,w)k',k",k"' q D(q,ro') 

X Mk'q (wk', ro') Mk"k'" (rok", ffik"') 

+ Mk'k"k'" (ro~t•, Wk", Wk"')} 

(5.16) 

Mk'k"k"' ( Wk', Wk", Wk"') and D ( q, w') are de
termined by (5.13) and (5.14). 

The rest of the procedure for obtaining the 
kinetic equation for waves with arbitrary polari
zation coincides fully with that used in Sec. 2 for 
longitudinal waves. Performing the appropriate 
calculations, we obtain 

dntt 
dt--=2yknk 
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1 { ~[ M~t',k-k'(wk',wk·-wk')M-k'k(-wh',wk) +- Im .L.i 8P , 
8lt k' D(k-k,wk-wk') 

+ 6Nkk' J nknk' + ~- ~ [ IMk'k" (w~t•, Wk") l 2 nk'nk" 
k'+l<"=k 

X nknk'] 6(wk- W~t'- W~t') }, 

Nkk' = Mk' k-k'(Wk', Wk- W~t'). 

(5.17) 

(5.18) 

In the derivation of (5.17) we made use of the 
fact that 

a D(k 8 wk aw . ' (J)) C!l=roh = lt I Wk I' 
This equation can be readily obtained by multiply
ing both sides of (5.15) by a{3+ (k, w), differenti
ating with respect to w, and taking into account 
the fact that A. (k, Wk) = 0 and a(k, Wk) =a (k ). 
Equation (5.17) differs in form from the kinetic 
equation for the longitudinal oscillations (2 .26) 
only in the additional summation over the polari
zations in the right side. It can be proved that for 
longitudinal waves the quantities D (k, w ), 
Mk'k" (w', w"), and Nkk'• calculated with the aid 
of (5.13), (5.14), and (5.18), go over into the cor
responding quantities determined in (2.23)-(2.25). 
This proof is cumbersome and will not be presented 
here. 

We now show how to generalize the symmetry 
relations, established in Sees. 3 and 4 for longi
tudinal oscillations, to the case of oscillations with 
arbitrary polarization. We break up the responses 
into two parts: 

0 
Xa ... an (k, w; ... ; kn, Wn) = Xa ... an (k, w; ... ; kn, Wn) 

+ X~ ... a. (k,w; ... ; kn, Wn). (5.19) 

The part K~ ••• 'an (k, w; •.• ;kn, wn) of there

sponse is defined in terms of Poisson brackets of 
the microcurrents in the unperturbed plasma 
j(r,t): 

0 
Xaa, ... an (k, w; kt, W1; .•. ; kn, Wn) 

0 t,._t 

= _!_ ~ 5'~ dr1 ... drn) dt1 ... ) dtn 
nl -00 -oo 

X Waa, ... a. (r~, t1; ••• ; rn, t,) exr{ i ± (kzrz- wztz)}, 
l=l 

(5.20) 

1jJaa 1 ••• a. (r1- r, t1- t; ... ; rn- r, tn-t) 

= c!:1 ~ nj([ ... Ua (r, t), ia, (r1, ti)] ... ian (rn, t,) ]/;D), 
j 

(5.21) 

where 5'-permutation operator. 
The tensors K~,. a (k, w; ... ; kn, wn) can 

<..4'-41• • • n 
be expressed in terms of the lower-order tensors 
K 0• Thus, for example, it follows from (5.4) and 
(5.5) that 

' (k k' '· k" ") Xaflv , w; , w, , w 

=..!.[~xav0 (k-k', w-w'; k", w") 
2 6Aop 

+~ O(k-k" w-w"· k' w') 
iiAov Xall ' ' ' 

+ ~Xap0 (k, w; k' + k", w' + w")], 
c'IAov 

' (k k' '. k" "· k"' "') Xa~vo , w; , w, , w , , w 

( 5.22) 

_.!r <'Ia 0 (k- k' - '· k" "· k"' w"') - --Xavo , w w , , w , , , 
3 6Ao11 

+ .ba 0 (k- k" - "· k"' w"'· k' w') -A Xal!fl W W, , ' ' 
b Oy 

-l- ba o (k- k"' w - w"'. k' w' • k" w"). 
' bAoo Xaflv ' ' ' ' ' 

+ bv o (k . k' + k" '+ w"· k"' w"')-bAoll Xavo , w, , w • • 

+ c'lo 0 (k · k" + k'" w" + w"' · k' w') bAov XaO!I , w, , • • 

+ c'lp 0 (k · k"' + k' w"' + w'· k" w") J 
c'IAoo Xallv ' w, ' ' ' 

+ 1 [ c'la c'lv O(k- k' - '· k"+ k"' w"+w'") -· -----Xav , W W' • 
6 6Aop c'IAoo 

+ ~~ O(k- k" w- co"· k"' + k' w"' + w') 
bAov iiAop Xao ' ' ' 

+~~ O(k-k"'w-w"'· k'+k" w'+w")] 6Aao iiAov Xaf! ' ' ' 

(5.23) 

where 6a/6A0 denotes differentiation of the cur
rent with index a with respect to A0• For exam
ple, the term in the right side of (5.22) takes the 
form 

ila O(k- k' - w'· k" w") -A Xav ,w , , 
('I Ol! 

= ~~ ~ ni) dr' ~ dt' ([ iJj;~r:llt), iv(r', t') J /0 ) 

3 -oo 

X exp {i(k"r'- w"t')}. 

We introduce the quantities 

M2•k•(w', w") =- aa+(k, w)ap(k~w')av(k", w") 

0 (k . k' _, k" ") XXaflv , w, , w, , W , (5.24) 
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0 

Nklv = aa.*(k)a~(k')av(k)aa*(k') 
0 

X Xrx~va (k. wk; k', ffik,; k, Wk; -k', -wk.); 

a(k) = a(k, WR.). 

From a comparison of (5.20), (5.21) with (2.11), 
(2 .12) we see that these quantities have the same 
structure as the quantities Mklk"(w', w") and 
Nkkl which we considered above. It follows di
rectly that they satisfy symmetry relations of the 
type (3.16) and (4.7). As regards the quantities 
M:k1k" (w 1, w") and N:kk1• which are determined 
by the parts K 1 of the responses, analogous rela
tions for them can be directly obtained by repre
senting K 1 in the form (5.22), (5.23). It is neces
sary to put 

N{"t- = aa. • (k) a~ ( k1 ) a., (k) a6• ( k1 ) 

(5.26) 

I 
xa.~v6(k, Wk; k', Wk'; k, ron; -k' -wi<•) 

= ~[~x~vo(k- k', Wn- Wn•; k, ron;- k',- Wn•) 
3 1\Ao~ 

+ Abo x~a~(k, Wk; k- k', Wk- Wn'; k', Wn') J 
6 ov 

+ ~~~xO..,(k-k' Wk- Wn•' k- k' Wk- ffik') 
6 6Ao~ 1\Aoa ~, ' ' ' ' 

(5.27) 

1 [ Oa. 0 I =- -- Xa.Bv (k + k, ffik + ffik'; k', Wn•; k, Wn) 
3 1\Aoa 

+ AOv x~va (k, WR.; k + k', Wk + WR.•; - k', - ffik') J1 
6 0~ 

+ 1 Oa. Ofl 0 k k' k I 6 I\Ao6 1\Aov Xa~ ( + , ffik + ffiR.'; + k, Wk + Wn•). 

(5.28) 

We have left out from (5.27) and (5.28) the terms 
connected with the quasilinear renormalization. 
Thus, the symmetry relations (3.16) and (4.7) and 
all their corollaries remain in force also in the 
case of oscillations with arbitrary polarization. 

6. INTERACTION BETWEEN LONGITUDINAL 
AND TRANSVERSE OSCILLATIONS IN A 
PLASMA WITHOUT A MAGNETIC FIELD 

In conclusion we consider, by way of a simple 
example, the interaction between plasmons and 
photons in a plasma without a stationary magnetic 
field. Using the formulas obtained in Sec. 5 for 
the matrix elements Mk1k" ( Wkl, wk" ), Nkkl, and 
D ( k, w ) , contained in the kinetic equation for the 
waves, we find that in our case these quantities 
are expressed as follows: 

+ k6'vtl(ka."vv+kv~_c:±-kk"vv8/8ka.) J ·---::-1 __ 
w' - k'v + is w - kv + is 

+ Oa.flVvka" + --~a.vv!'!!__ + ~-vVa.ko __ } _!_L 
(!) 11 - k"v +is w' - k'v + is (!) - kv + is avo ' 

(6.1) 

k-k1 at 
X _(J)_k __ W_k_' --(k--k') v + is av , 

(6 .2) 

ro2 
D ( k, w) = - I a ( k, w) J2 - [ka ( k, w) ]2 

c2 

~ wo;2ro \ va{k, w) a(k w) fJj dv + . c2 J (!) - kv + is ' av ' 
J 

(6.3) 

where w~j = 47rejlmj, and the polarization vectors 
are normalized in accordance with (5.10). It is 
important here that the contribution from the term 
R + can be neglected, so that the law of conserva
tion of the total number of quasi-particles of all 
polarizations holds true here for a nonlinear 
"non-decay" interaction. 

With the aid of (5.17) and (6.1)-(6.3) we can 
consider a great variety of plasmon and photon 
interaction processes. We shall not discuss all 
the possible cases, and confine ourselves to a 
question of interest in astrophysics (see, for 
example, [20 •21] ), that of transformation of plas
mons into photons (we shall henceforth denote the 
plasmon wave vector by p and that of the photon 
by q). 

We consider first the formation of photons with 
a frequency close to the plasma frequency woe· 
This process is described by a "non-decay" term 
in the kinetic equation for the waves. Substituting 
in (6.1) and (6.2) the Maxwellian distribution func
tion, we readily obtain an equation describing the 
process in question. It turns out here that the 
main contribution is made by the scattering of 
plasmons from ions (compare with the analogous 
situation in [14]). The equation takes the form 

dnq =- Yn W~e \ d [pqj2 _g_ ex [- (_g_)2 ] 
dt (2rt)3 neT J P p2q2 pvi p pvi 

X {[X (P~i)- 2 r + rt (P~i )2 
exp [- 2 (P~i r ]}-1

npnq, 

(6 .4 )* 

*[p q) = p X q. 
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where 
z 

X (z) = 2ze-z' ~ e1' dt, Q = Wq- Wp, 

2 2 + 2 2 2 2 (1 + 3 2 2) Wq = Woe C q , Wp = Woe z p r D , (6 .5) 

vj = ( 2T/mj )t/2-thermal velocities of the elec
trons and ions (we assume for simplicity that the 
plasma is isothermal) and rn = Ve/Woe-Debye 
radius of the electrons. 

From (6.4) we see that the process of wave 
transformation proceeds in a direction from the 
high-frequency oscillations to the low-frequency 
ones. The maximum rate of growth of the number 
of photons corresponds to the wave-number region 

Ve Ve 
- (Pmin - op) < q < ---'-- Pmin, 
c c 

(6.6) 

These photons interact effectively with the plas
mons in the interval from Pmin to Pmin + op, and 
the effective growth time of the photons in the re
gion (6.6) is of the order of 

( 1 woinp 2 -IV me ]-! 
t; ~ 6(4n) 3 neT p rn m; · (6.7) 

An estimate of the contribution from the scattering 
by electrons leads to a photon growth time (due to 
the electrons only) which is 

times larger than (6.7), where b.r-phase volume 
of the plasmon wave packet. 

Let us consider also the process of merging of 
two plasmons to produce a photon with frequency 
of the order of 2w0e (and wave number q ~ 
-13 w0elc ). This process is described by the 
"decay" term in the kinetic equation. From (6.1) 
and (5.17) we get 

dnq Jt WoeVe 2 1 (p2- p'2) [pp'j2 
-d = -8 -1, 2j 2 '2 2 nvnv·O (wq- Wp·- wp)· 

t n,. p'+p=q p p q 
(6.8) 

The authors are grateful to A. A. Galeev and 
R. Z. Sagdeev for fruitful discussions. 

APPENDIX 

Let us prove (3.14) and (3.20). According to 
(3.6) we have 

ft(k, w; k', w', k", w") 

(" ft ' ' ' ' ' 
1 dQ' dQ" { ~ (k Q· k' Q'· k" R. ") 

= 2(2ni)2.J w- Q + ie w"- Q" + ie 

7.(k Q· k" Q"· k' Q')} +r ' ' ' ' ' 
w'- Q' + ie · 

(A.1) 

Transforming 71 (k, Q; k', Q'; k", Q") in (A.1) with 
the aid of (3.4), and 11 (k, Q; k", Q"; k', Q') with 
the aid of (3.5), and interchanging the integration 
variables, we obtain 

1 dQ'dQ" 
"(k w· k' w'· k" w") = ~-- 5--:---:::--:--:
r ' ' ' ' ' 2 (2ni)2 w'- Q + ie 

\
'{--;,*(k' Q· k Q'· -k" Q")l ~.(k' Q· -k" Q"· k Q')} X r ' ' ' ' ' I+ _ft __ ,_, ___ : __ ,_,_ 

-w"- Q"- ie , w- Q' + ie 

= ft* (k', w'- iO; k, w- iO; -k", -w"). (A.2) 

To prove (3.20) we need the following formulas 

~(k, Q; k', Q'; k", Q"; k"', Q"') 

= -i(-k', -Q'; -k, -Q; k", Q"; k"', Q"'), (A.3) 

~(k n.k' r>'·k" Q"·k"1 Q'")- ~(k Q·k' Q'·k"' Q"'·k" Q") 
J.l ' ~~' ' ~l::i ' ' ' ' f..L ' ' ' ' ' ' ' 

= -f:;:(-k", -Q"; k"', Q'"; -k, -Q; k', Q') 

+ ~(-k", -Q"; k'", Q"', k', Q'; -k, -Q), (A.4) 

~(k, Q; k', Q'; k", Q"; k"', Q'") 

= ;l'(k, Q; k", Q"; k', Q'; k"', Q"') 

-~( -k', -Q'; k", Q"; -k, -Q; k"', Q'"), (A.5) 

which follow from the properties of the Poisson 
brackets and are analogous to (3.4) and (3.5). We 
show first that the real parts of the quantities in 
the numerators of the spectral expansion (3.12) 
make no contribution to lm 11 ( k, wk; k', Wk'; k, 
wk; -k', -wk ). To this end it is sufficient to 
prove that the quantity 11p(k, wk: k', wk'; k, wk; 
-k', Wk' ), which is obtained if all the poles in 
(3.12) are integrated in the sense of the principal 
value, is real. According to (3.12) we have 

=---P 
1 ~ dQ'dQ"dQ''' 

6 (2ni)3 cuk- Q 

{ ;l'(k, Q; k'Q'; k, Q"; -k', Q"') 
X (wk- Wk'- ~2"- Q"')(-wk'- Q"') 

+ 
;:t (k, Q; k', Q'; -k', Q'"; k,Q") 

(wk- wk'- Q"- Q"') (wk- Q") 

+ ,l(k, Q;- k', Q"'; k, Q"; k', Q') 
(wk + wk'- Q"- Q')(wk'- Q')-

- (k n. - k' Q"'· k' Q'· k Q") + fJ.. '~~, ' ' ' ' , "' 
( Wk + (Ilk'- Q"- Q') ((Ilk- Q") 

[:t(k, Q; k, Q"; k', Q'; -k',Q'") 
+ ( Q' Q'") ( . Q'") - - -(Ilk·- ' 

i1 (k, Q; k; Q"; - k'' Q'"; k'' Q') } 
+ (-Q'-Q"')(wk·-Q') · 

(A.6) 
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We have retained for the time being the renormalization terms in (A.6). The right side of (A.6) can be 
rewritten in the form 

--1 - p \ dQ'dQ"dQ"' 
6 (2ni)3 ~ 

{ ;:t(k, Q; k', Q'; -k', Q"'; k, Q")-i(k, Q; k', Q'; k, Q"; -k', Q'") 
X (rok- Q) (rok- rok'- Q"- Q'") (wk-Q") 

+ 11 (k, Q;- k', Q"'; k', Q'; k, Q")- il (k, Q;- k', Q'"; k, Q"; k', Q') 
(rok- Q) (ro~.: + ro~.:·- Q"- Q') (ro~.:- Q") 

r7'(k Q· k' Q'· k Q"·-k' Q'") ;;(k Q· -k' Q"'· k Q"· k' Q') +r ' ' ' ' ' ' ' +r ' ' ' ' ' ' ' 
(rok- Q) (ro~.:- Q")(- ro~.:·- Q"') (rok- Q) (ro~.:- Q") (rok·- Q') 

-;;.(k Q· k Q"· k' Q'· -k' Q'") ;;'(k Q· k Q"· -k' Q"'· k' Q')} + r ' ... , ' ' ' ' ' + r- ' ' ' ~ ' ' ' 
(ro~.:- Q)(- Q'- Q'")(-rok' -Q'") (ro~.:- Q)(- Q'- Q'")(rok'- Q') · 

(A.7) 

If the numerator in the first term of the curly brackets is transformed in accordance with (A.4), and then 
and the integration variables are interchanged, we obtain 

;:t·(k, Q; k', Q'; -k', Q'"; k, Q")-il.(k, Q; k', Q';·k, Q"; -k', Q'") 
(rok- Q) (rok- rok'- Q"- Q'") (rok- Q") 

(A.8) 

From this we see that this term makes only a real contribution to /-! p ( k, Wk; k', Wk'; k, Wk; - k', - Wk'). 
We prove the same thing in exactly the same way for the second term. By transforming the numerator of 
the third term in the curly brackets in (A. 7) with the aid of (A. 5), and the fourth with the aid of (A.3), the 
remaining part of /-! p ( k, wk; k', Wk'; k, wk; - k', - Wk') can be represented in the form 

- _1_ p (' dQ'dQ"dQ"'i{il (k, Q; k, Q"; k', Q'; -k', Q"')-IJ,(-k', -Q';k, Q"; -k,-Q;-k,Q'") 
6 (2nW ~ (rok- Q) (rok- Q") (- rok'- Q'") 

_;:t(k', -Q'"; -k, -Q; k, Q"; k', Q') + ji(k, Q;k, Q";k', Q';-k',Q'") :+ i(k, Q; k, Q",-k', Q"';k', Q')} 
(ro~.:- Q) (rok- Q") (rok' -Q') (rok-Q)(-Q'-Q'")(-rok·-Q"')I (rok- Q) (- Q'- Q'")(rok'- Q') 

= _ _ z_· -. p \ dQ'dQ"dQ"'{Im;:t(k', Q; -k, Q'; k, Q"; k', Q'") + Imji(k, Q; k, Q"; -k', Q"'; k', Q')} (A.9) 
3(2m)3 .l (-rok-Q')(rok-Q")(ro~.:·-~~"') (ro~.:-Q)(-Q'-Q'")(rok•-Q') 

in such a way that this part is also real. We now proceed directly to prove (3.20). We write formula 
(3.18) in the form 

i . dQ'dQ"dQ"' 
l.l-(k, rok; k', ffik•; k, rok; -k', -rok·) = l:i(Zni)3~ (ro .. -Q)(-wk·-Q'") 

X {Im;:t(k, Q; k', Q'; -k', Q"'; k, Q")-Im~,(k,Q; k',Q'; k, Q"; -k', Q"') _ Imil(k, Q; k', Q'; -k', Q'"; k, Q") } . 
~-~-~-Q+~ ~-~ 

(A.10) 

The last term in the curly brackets of (A.10) can be neglected, since all its denominators contain only the 
natural frequencies. Then it follows immediately from (A.4) that 

i dQ'dQ"dQ'" 
Im 11- (k, rok; k', rok'; k, rok! - k', - ro~.:·) = 6 (2ni)a ~ (rok' _ Q)(rok' _ rok _ Q" __ Q'" _ ie)( -rok- Q'") 

X {Imj'.i'(k', Q; k, Q'; -k, Q"'; k', Q")-Im'j1(k',Q;k,Q';k',Q";-k,Q")} 



1056 L. M. AL'TSHUL' and V.I. KARPMAN 

The correctness of (3.20) for Imp+ (k, wk; k', 
Wk'; k, Wk; -k', -Wk' ) is proved in the same 
manner. 
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