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Formulas for the characteristic asymmetry of a resonance level arising in the angular dis
tribution of reaction products when the resonances of a compound nucleus are described as 
moving Regge poles have been derived taking the Coulomb interaction into account. Results 
of numerical calculations of this asymmetry are presented for the case of elastic resonance 
scattering of a particles by C12 nuclei for a particles with energies lying in the range up 
to 5 MeV. 

1. INTRODUCTION 

As has been noted by Shapiro (private communi
cation) and by Rebolia and Viano [i], when reso
nances of a compound nucleus are interpreted as 
moving Regge poles in the plane of complex angu
lar momentum 71. one can expect the appearance of 
a characteristic forward-backward asymmetry in 
the angular distribution of products of a nuclear 
reaction (the so-called "characteristic asymme
try" of a resonance level-CAL). The question 
of the possibility of observing CAL experimentally 
has been discussed in a preceding paper by the 
present authors [2] (henceforth denoted by I) with
in the framework of the hypothesis of smooth com
pensation of nonresonant phases. For reactions 
between spinless particles in the case of no Cou
lomb interaction formulas were obtained in I for 
the function Rz (cos (}) which determines CAL, 
and an investigation was made of the problem of 
determining the range of the scattering angles (} 
for which an essential contribution to the amplitude 
of a nuclear reaction is made by only a single 
Regge pole which produces an isolated resonance, 
and in which it is possible to neglect the integral 
term in the "Reggeized" form of the amplitude. 

The reduction carried out in I of experimental 
data [3 J on the phase analysis of elastic resonance 
scattering of a particles by C12 nuclei apparently 
gives support to the hypothesis of a smooth com
pensation of non-resonance phases and indicates 
the possibility of experimentally observing CAL. 

However, for a precise quantitative comparison 
of theory with experiment it is necessary to take 
into account the effect on CAL of the Coulomb in
teraction between the particles participating in the 
reaction. In the present paper formulas have been 

obtained for the function Rl (cos (} ) which de
scribes the CAL for charged spinless particles. 
It is shown that the Coulomb interaction changes 
the behavior of the CAL in an essential manner, 
particularly in the domain of large scattering 
angles. Results are presented of a numerical cal
culation of Rf (cos (}) for the elastic scattering 
process c 12 (a, a )c12• 

2. REGGEIZED FORM OF THE AMPLITUDE IN 
THE PRESENCE OF COULOMB INTERACTION 

The amplitude for the scattering of charged 
spinless particles can be conveniently represented 
as a sum of the Coulomb amplitude fC ( E, z) and 
of a "nuclear" amplitude FN ( E, z) [4]: 

I (E, z) = 2:k ~ (2n + 1) e2i{crn+5n> Pn (z) 
n=O 

= l (E, z) +IN (E, z), (1) 

1 co c (YJ) 
lc (E, z) = 2ik n~o (2n + 1) e2ion Pn (z) = k (1- z)l+in ' (2) 

TJ = Z1Z2e 2/liv is the Coulomb parameter, 

ezi"n = r(n + 1 + iYJ) I r(n + 1- iYJ), C(YJ) = -YJ2iTJe2i"', 

IN (E, z) = ! ~ (2n + 1) e2i"nlnN(E) Pn (z), 
n=O 

on = on (E) are the so-called nuclear scattering 
phases. Here E, k, and (} are the kinetic energy 
of the colliding particles, the wave number and 

(3) 

the scattering angle in the center-of-mass system, 
z =cos (}, 

For a generalization of the results of I to 
charged particles it is necessary to write fN ( E, z) 
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in Reggeized form. As in I, we assume that the 
partial amplitude 

f"A(E) = - 1/ 2 iexp [2i(a'A(E) + l'h(E))] 

is an analytic function of the complex angular mo
mentum A., which for Re A. > - 'l'2 has only simple 
poles, and that its behavior on the circumference 
of a large circle allows the Watson -Sommerfeld 
transformation to be carried out. Since the Cou
lomb partial amplitude 

N(E) = - 1/2 i exp [2ia1.(E)] 

= r (~c + 1 + i11 ) 1 [2ir (~c + 1 - i11 ) J 
is bounded as I A. I - oo and does not have for 
E > 0 any singularities in the half-plane Re A. 
> - 1/ 2, then all the poles with respect to A. of the 
functions fA. ( E ) and 

f"AN(E) = exp [i6"A(E)] sin6"A(E) 

for Re A. > - 'l'2 and E > 0 coincide. This corre
sponds to the fact that the resonances in the scat
tering of charged particles are due to poles with 
respect to E ( E = E 0 - ir /2) in the nuclear ampli
tude f~ ( E ) . The properties of f;I ( E ) are basic
ally determined by the nuclear interactions and, 
in particular, for n > L :::::; kR the amplitudes f~ ( E ) 
fall off exponentially with increasing n. 

In accordance with the above the function 

00 

JN (E, z) = ~ (2n + 1) fr;. (E) Pn (z) (4) 
r&=O 

can be written in Reggeized form analogous to 
formula (2) in I. We note that if the functions 
fi (z) (i = 1, 2, 3) can be expanded in series in 
terms of Legendre polynomials 

00 

~ Cl /; (z) = LJ (2n + 1) an' Pn (z), 
n=o 

with a~> = a~1 >a~>, then 

Ia (z) = Ia (n1n2) = f:rt ~ l1 (n1n) /2 (n2n) dQn, (5) 

where n1, n2, n are unit vectors, ds:ln = sin~d~dcp 0 

utilizing (5) we obtain from (2), (3) and formula (2) 

from I the desired Reggeized form for FN ( E, z ) : 

:rt (2ao + 1) r N (E) 
f"'~ (E, z) = --~ ' 0 "' P~o ( ~ z) 

k LJ S!ll:rtCX· ' 
i ' 

(6) 

where ai = ai (E) are the poles of f~ (E) for Re A. 
> - 1/ 2, r~i (E) is the residue of fr (E) at the pole 
A. = C¥i, while the function P~ ( z) is determined by 

the integral representation 1 > 

P/ (z) = ~: ~ PA (n1n) /" (n2n) dQn 

1 27t 

= iC ('11) 1 dz' \0 drp . p 
2:rt ,\ .\ (1 - z')l+'~ A 

-1 0 

(7) 

The expansion of PX ( z ) in terms of Legendre 
polynomials has the form 

p'Ac(z)=sin:rtA ~ (-t (-1__ 1 )e2ianPn(Z)o 
:rt n=o A - n A+ n + 1 (S) 

For integral A. = n 

Pnc (z) =lim PAc (z) = e2ian Pn (z)o (9) 
A-+n 

We note that usually the Reggeized form of the 
amplitude is obtained from the expansion of the 
amplitude in terms of partial waves with the aid 
of the Watson-Sommerfeld transformation [5]. In 
this case, as can be seen from (3), the problem 
arises of the analytic continuation into the A.-plane 
of the function e 2icrnpn ( z) from the integral points 
A. = n. There exist at least two different analytic 
functions of A. which satisfy the conditions re
quired for carrying out the Watson-Sommerfeld 
transformation, whose values at A.= n coincide with 
e2iCTnpn(z): PX,(z) and [r(A.+1+i7J)/r(A.+1-i7J)]x 
PA,(Z ). From the first of these we obtain (6), while 
the utilization of the second one leads to the for
mula 

:rt (2a· + 1) rN (E) 0 

jN(E z)=--'1 '0 "i e2'a";(E)P".(-z) 
' k Li sm :n:a; ' 

i 

- 1/2+ioo 

__ 1_ (' (2A + 1) j N (E) 2iaA (E) p ( _ ) dA (1 0) 
2ik ~ sin :rtA A e A z 0 0 

_lf:t.-iOO 

In their exact form (6) and (1 0) agree identically, 
differing only by relative contributions made to 
fN ( E, z) by the sum over the poles and by the in
tegral. However, we are interested in the case 
when in the amplitude fN ( E, z) we can retain only 
a single pole term, neglecting the other poles 
(which at a given energy lie far from the real 
axis) and the integral term. In formula (10) this 
approximation cannot be made, as can be seen 
from the following. We neglect in (6) and (10) all 
terms except for the term corresponding to the 
pole a ( E ) = l + v ( E ) ( I ( E ) I « 1 ) . In this approx
imation the resonance partial amplitudes fr ( E ) 
obtained from (6) and (10) coincide, while for small 

l)The integral over z' in (7) must be interpreted in the 

regularized sense (cf. Appendix). 
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nonresonance phases (adjacent to the resonance 
phase) o~ (E) R:J f~ (E), n "*- l we obtain: from (6) 

6n(E)zr(J.N(E)(nl l- n+1l+1 )• (6a) 

from (10) 

6n(E)zexp(2i(Gz-On)]r(J.N(E)(n 1 
1-n+:+i) · 

(lOa) 

Formula (6a) coincides with (10) from I and does 
not contradict general physical considerations, 
while in (1 Oa) the Coulomb factor exp [ 2i ( a-z - un) 1 
makes the nuclear phase On ( E ) complex even in 
the case when only a single elastic scattering chan
nel is open. This shows that in (10) even in the 
case of an isolated resonance it is not possible to 
neglect the integral term. 

3. THE CHARACTERISTIC ASYMMETRY OF A 
LEVEL IN THE CASE OF CHARGED PAR
TICLES 

We assume that at an energy E R:J E 0 one of the 
poles a (E) passes close to a positive integral 
value of Z: 

a(E) = l + v(E), lv(E) I~ 1. (11) 

We pick out in (6) the term f~(E, z) correspond
ing to this pole: 

I (1. N (E, z) = - (2ot + 1) r (1. N (E) -. _n- P: (- z) 
smnot 

=- (2ot + 1) raN (E) e2iaz [ :(~/ + R1c (z) + 0 (v)] , (12) 

where 

Rzc (z) = (- )le-2iaz [ :'), P·{ (- z) t=l· (13) 

The first term in (12) is the usual Breit-Wigner 
resonance amplitude. By analogy with I we shall 
refer to the second term Rf ( z) as CAL. 

With the aid of (12) we obtain from (6) 

fN (E, z) =-= - (2a + 1) raN (E) e2ial 

X [Pz(z) I v(E) + Rt(z) + gzc(E, z)], (14) 

where gf ( E, c ) denotes the contribution arising 
from the other poles ai "*- a and from the integral. 
It can be seen from (6a) that the phases correspond
ing to the pole amplitude f~( E, z) behave as On (E) 
...... 1/n2 for n ......... co • Therefore, gf ( E, z) in (14) 
guarantees the exponential falling off of On for 
large n and cannot be neglected over the whole 
range of angles 0 < e < 1r ( cf., analogous consid
erations in I). In order to estimate the relative 
contributions of Rf ( z) and gf ( E, z) we write 

f~ (E) in the form 

InN (E) = r(J.N (E) ( n 1 ot- n + ~ + 1) £n: (15) 

where ~n is a cut-off factor analogous to the one 
introduced in I. 

In accordance with the hypothesis introduced 
in I we assume that a smooth compensation of pole 
phases occurs, i.e., for 0 ::s: n ::s: L ...... kR, ~n is a 
slowly varying function of n close to unity (we re
call that ~z Rj 1 ). Utilizing for ~n a rough model 
with a sharp cut-off (cf., formula (12) from I) we 
obtain for L » l, YJ 2> 

c (E ) ~ ( _2_)'/, cos (LB + n/4) 2i(aL -az) 
gz ' z ~ n sin 8 L'f, sin (8/2) e ' 

0 < e ~ 8 ~ n- e, e > 1 I L, (16) 

which up to an unessential phase factor 
exp [ 2i ( rJL- a-z )] coincides with the estimate for 
g( E, z) in I. For angles e satisfying the relation 

Ft(8) = (sin 8)'1• sin (8 I 2) IRz"(cos 8) I ;;:;: 0.8 I L"'6, (17) 

the inequality I gf ( E, z )/Rl ( z) I ::s: 6 will hold. 
When 6 « 1 we can neglect for these angles e 
the effect of the compensation of distant pole 
phases 3> and we can approximate the nuclear am
plitude fN(E,z) by the pole amplitude f~(E,z). 

Utilizing the relation 

- (2a + 1)raN(E) / v(E) = (2l + 1)ei6z sin Bz + O(v), 

(18) 

where oz (E) is the resonance phase, we obtain 
from (1) and (14) for angles e satisfying (17) the 
formula for the differential scattering cross sec
tion 

2)ln the case of scattering of a-particles with energies 

of several MeV by light nuclei we have TJ ~ 1 -2. 
3)We stress that the estimates obtained for the range of 

angles 8 in which the compensation is not essential depend 
very little on the specific model utilized for the cut-off fac
tor .fn(E). For example, a model which is more realistic than 
the model with a sharp cut-off is the one given by .fn ~ 
exp [- (n -l)/L], which correctly represents the exponential 
character of the decrease of distant phases 80 for n >> l. 
With the aid of this model we obtain in the case TJ = 0 (ab
sence of Coulomb interaction) and l = 0 the following range 
of angles e in which CAL is distorted as a result of compen
sation by not more than 10%: 26° < e < 87° for L = 6 and 
17° < e < 100° for L = 10. Comparison with the corresponding 
values given in I, § 2 for a model with a sharp cut-off clearly 
shows that in order to draw the conclusion that it is possible 
to observe CAL over a wide range of angles that assumption 
of a smooth variation of .fn near the resonance value n = l 
is essential, while the details of the behavior of .fn for 
n >> l are unimportant. 
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~~ =lfc(E,z) 

+ 2l k 1 ei(2oz+Sz) sin 61 [Pz (z) + v (E) Rzc (z)]l2
• (19) 

Thus, knowing the variation with energy of the res
onance phase oz ( E ) we can obtain from the angular 
distribution of a resonance nuclear reaction the 
trajectory of the Regge pole a (E) = l + v (E) in 
the neighborhood of the resonance due to it. In 
contrast to the case when Coulomb interaction is 
absent the function Rf ( z) is complex and, there
fore, from an analysis of the angular distribution 
one can derive not only Re v ( E ) , but also Im v ( E ) . 
We note that from (13) and (16) it follows that the 
formulas for non-resonance nuclear phases remain 
unchanged in the presence of Coulomb interaction, 
and this was already utilized in I, Sec. 3. 

The quantities characterizing resonance scat
tering in the theory of moving Regge poles can be 
easily related to parameters utilized in the formal 
theory of resonance nuclear reactions. In this the
ory the dependence of the resonance phase oz ( E ) 
on the energy is given by the formula[ 7J: 

fiz (E) = {jz(r) (E) + <Dz (E), 
2 

/)Cr> -1 YicSz -1(Fz) 
z =tan E1c + 1'11c _ E, <Dz =-tan -G . (20) 

l r=R 

Here Et.. are the formal resonance energy levels, 
tlt.. is the level shift, E 0 = Et.. + ~A. is the energy 
of the resonance observed experimentally, sz 
= kRPz, Pz = ( G~ + F~ )~~R is the penetrability 
coefficient, Fz(r) and Gz(r) are the regular and 
the singular Coulomb radial wave functions, R is 
the channel radius, ~Z = ~l- uz, ~l is the scatter
ing phase for an impenetrable charged sphere, uz 
is the Coulomb scattering phase. For a narrow 
resonance (r « E 0 ) we obtain from (18) and (20) 
the relation: 

(21) 

where M is the reduced mass, e~ is the dimen
sionless reduced width and all the quantities which 
depend on the energy are taken at E = E 0• In the 
absence of Coulomb interaction (21) reduces to (8) 
of I. 

4. RESULTS OF NUMERICAL CALCULATIONS 

With the aid of formula (A4) of the Appendix the 
function Rf (cos e) was calculated for the case of 
elastic resonance scattering of a-particles by c12, 

C14, and 0 16 nuclei. Owing to lack of space we 
shall give results only for several resonances in 
the scattering process C12 ( a, a )C 12 • Figure 1a 

!.5 
a 

1.0 

\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 

' 

1!0 l.fD 
8, deg. 

' ' ' ....... 
o~~~~~~~~~~~~~~ 

JO 50 §0 1!0 !.fO !60 
tl, deg. 

FIG. 1 

shows the real (dotted curve ) and the imaginary 
(solid curve ) parts of the function R~ (cos (} ) for 
the o• resonance (the resonance energy is Ei 
= 5.47 MeV, 71 = 1.62 ). Figure 1b compares the 
quantity I R~ (cos e) I (solid curve) for this reso
nance with the quantity I R0 (cos e ) I (dotted curve ) 
calculated for 71 = 0. As can be seen from the dia
gram, for 71 .<:. 1 the Coulomb interaction radically 
changes the behavior and the value of CAL, par
ticularly in the domain of large angles. 

The table gives values of the functions Rf (cos e) 
for the resonances 1- (Er = 3.205 MeV, 71 = 2.10) 
and 4+ (Er = 4.241 MeV, 71 = 1.83 ), for which we 
have constructed in I on the basis of phase analy
sis data the trajectories of the Regge poles a 1 ( E ) 
and a 4 (E). As was noted in I, a measurement of 
the angular distribution of the a particles for 
these resonances is of great interest from the 
point of view of checking the theory. 

Figure 2 gives graphs of the functions Ff (cos e ) 
(solid curve ) and Ff (cos e ) (dotted curve ) for the 
resonances r and 4•. From Fig. 2 and formula 
(17) it can be seen that for L .<:. 5-6 the effect of 
CAL on the angular distribution should be observed 
over a wider energy range than in the case without 
Coulomb interaction ( cf., Fig. 2 in I). It was shown 
in I that in the neighborhood of the resonance 1- the 
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F/fS) 

r.o 

ReRz (cos 6) 

e, deg 
1=1, 11=4, 11=2.10 11=1.83 

25 0.284 -0.148 
28 0,084 0.104 
31 -0.156 0.295 
34 -0.394 0.411 
37 -0:605 0.450 
40 -0,775 0.422 
42.5 -0.883 0.357 
45 -0.959 0.262 
47.5 -1.007 0.149 
50 -1.028 0.025 
52.5 -1.028 -0.101 
55 -1.008 -0.221 
57.5 -0.973 -0:329 
60 -0.926 -0.420 
62.5 -0.870 -0.489 
65 -o:8o7 -0.534 
67.5 -0.740 -0.554 
70 -0.670 -0.547 
72.5 -0.600 -0,517 
75 -0.531 -0,463 
77,5 -0.465 -0.390 
80 -0.401 -0.300 
82.5 -0.340 -0.198 
85 -0,284 -0.089 
87.5 -0.233 0.025 
90 -0.186 0.137 
92.5 -0.145 0.244 
95 -0.108 o:342 
97.5 -0.077 0.428 

100 -0.050 0.498 
102.5 -0.028 0.552 

0, deg. 

FIG. 2 

ImR! (cos 6) 

1=1, 11=4, 11=2.10 11=1.83 

-1.405 0.034 
-1,544 0.261 
-1.585 o:379 
-1.538 0.418 
-1.424 0,404 
-1.264 0.361 
-1.109 0.314 
-0.944 0,265 
-0,777 0.218 
-0,614 o:179 
-0.458 0.149 
-0.314 0.129 
-0.183 0.120 
-0.067 0.120 

o:o35 o:130 
0,121 0,148 
0.192 0.171 
0.249 o: 198 
0.292 0.227 
0.321 o:256 
0,339 0.282 
0.345 0,304 
0.342 0.320 
0.329 0.329 
0.307 0.329 
0.278 0.320 
0,242 0.302 
0.201 0,274 
0,154 0.238 
0.103 0.193 
0.049 0.141 

only essential contribution is from the single Regge 
pole a 1 (E) = 1 + v1 (E). utilizing the value v1 ( Er) 
R: i0.06 obtained in I and the data of the table we 
have calculated by means of formula (19) the dif
ferential cross section da/dQ for E = Er = 3.205 
MeV. The results are shown in Fig. 3a where along 
the vertical axis we have plotted the logarithm of 
the ratio of da/dQ to the differential cross section 
for Coulomb scattering dac/dQ = J fC(E, z )J 2• The 
dotted curve corresponds to the calculation without 
CAL ( v1 = 0), the solid curve corresponds to the 
calculation taking CAL into account ( v1 = i0.06 ). 

ReR! (cos 6) ImRz (cos 6) 

6, deg 
1=1, 11=4, 1=1. I 1=4, 

11=2.10 11=1.83 11=2.10 11=1.83 

105 -0.011 0,587 -0.009 0.084 
107.5 0.002 0,603 -0.069 0.023 
110 o:ow 0.601 -0.131 -0.041 
112,5 0.015 0.580 -0.195 -0.104 
115 o:o16 o:544 -0:259 -0:166 
117.5 0.014 0.493 -0.324 -0.224 
120 0.009 o:431 -0.389 -0.276 
122.5 0.001 o:36o -OA54 -0.320 
125 -0.009 0.283 -0.518 -0.355 
127.5 -o:o21 0,204 -0:581 -0.379 
130 -0.035 0.125 -0.644 -0.391 
132.5 -0.050 o:o5o -0.705 -0.391 
135 -o:o66 -0.019 -0:763 -0.377 
137.5 -o:o84 -0.080 -0.820 -0.351 
140 -0.101 -0.132 -0.875 -0.312 
142.5 -0.119 -0.171 -0.927 -0.261 
145 -0.138 -0.199 -0.977 -0,200 
147.5 -0.155 -0.215 -1.024 -0.129 
150 -0.173 -0.219 -1.068 -0.051 
152.5 -0:190 -0.213 -1.109 0.033 
155 -0.206 -0.197 -1.147 0.121 
157.5 -0.221 -0.173 -1.182 o:2o9 
160 -0.235 -0.143 -1.213 0.296 
162.5 -0:248 -0.110 -1.241 0.380 
165 -0,259 -0,076 -1.265 0.457 
167.5 -0.269 -0.042 -1.286 0.527 
170 -0:277 -0.011 -1.303 0.587 
172,5 -0.284 0.015 -1.316 0.635 
175 -0.288 0.034 -1.325 o:671 
177.5 -0,291 o:o47 -1.331 0.693 
180 -0.292 0.051 -1.333 0. 700 

From the diagram it can be seen that in the domain 
of large angles the contribution of CAL to da/dn 
attains a value of 15-20%. Figure 3b shows the 
ratio of the differential cross section taking CAL 
into account to the differential cross section with
out CAL for the 1- resonance. Figures 3a and b 
do not show the domain of angles close to e = 110°, 
since at these angles there occurs a compensation 
of the Coulomb and the Breit-Wigner amplitudes, 
and for accidental reasons Rf (cos e ) is also close 
to zero, and this makes the calculations unreliable. 

From the results of numerical calculations we 
can draw the following conclusions: 1) the contri
bution of CAL to the differential cross section of 
resonance scattering can attain a value of 5-20% 
and should be easily observed experimentally; 
2) allowance for the Coulomb interaction sharply 
increases the effect of CAL for large scattering 
angles. 

The authors express their sincere gratitude to 
I. S. Shapiro for discussions and to A. S. Kronrod 
and L. M. Voronina for carrying out the numerical 
calculations. 

APPENDIX 

Integration over cp in (7) with the aid of for
mulas (8. 794) and (8. 796) from [GJ yields 
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FIG. 3 

1 

P~-.c (z) = iC (YJ) li~ [P~-. (z) \. P~-. (z') (1- z')-P dz' 
P-+1+11) • 

-z 

-z 

+PA(-z) ~ P~-.(-z') (1-z')-Pdz'], 

-1 

C(YJ) = -YJ2i1Je2i~o, (A1) 

where prior to integration one must assume Re p 
< 1. From this it follows that 

1 

P~-.c(-z)=iC(YJ) lim~ P~-.(-z<)P~-.(z>)(1-z')-Pdz', 
P-+H11l -\ (A2) 

where z> =max (z, z' ), z< =min (z, z' ). 
From (13), (A2), and formula (A4) of I for Rz(z) 

R1 (z) = (-)1 [ :')., P~-. (- z) l~z = P1 (z) In 1 
2 z + V1 (z) 

it follows that 

x lim ~ [Pz (z) P1 (z')ln (1 + z>) (1 - z<) 
P-+1+i1l .. \ 4 

+ Pz (z>) V1 (z<) + Pz (- z<) V1 (- z>) J (1- z'fPdz'. 

(A3) 

For the evaluation of the integrals in (A3) we 

must introduce ~ = ( 1- z )/2, ~' = ( 1- z' )/2 and 
utilize the relations 

l 

Pz (1 - 2£) = LJ azk£k, 
k~o 

<ilk= (-)k (l + k)! 
(k!)2 (l- k)! 

Vz(z)- (-)ZVz(-z) = 2Wz-!(z), 

W ( ) = _i__ C Pz (z) - Pz (z') d , 
1-1 z 2 .l z - z' z 

-1 

and formula (7 .127) from [6]. The polynomial 
Wz_1 (z) is defined by formula (8.831) of [6J. 
Comparatively awkward calculations lead to the 
result: 

[
1-£-i1) . l 1 

R{ (z) = P1 (z) i - 2tYJ LJ k2 + 2 

YJ k~1 '11 

- ~ 1; _:_~i1l dt- iYJe2i(a,-az) £-i1l/z (£, YJ) J 
l 

+ (- )lVz (- z)- 2iTje2i(a,-az J Wz-1 (z) LJ -k <izk_ £k-i1l 
-lYJ 

k~o (A4) 

Here z=cosfJ, ~=sin2 (fJ/2), 

0 for l = 0, 
( l-1 l 

/l (£, 'I'J) = ~ "' £n "' Cizk t ..:::..J ..:::..J (k- n) (k- i'l']) 
n~o k~n+1 

for l )d (A5) 

c We note some properties of Rz ( z ) . 
1. For 'rJ- 0 Rf(z)- Rz(z ), and, moreover, 

for 'rJ « 1 Rf ( z ) significantly differs from Rz ( z ) 
only for angles 0 :$ fJ :$ fJc, fJc "' exp ( -1/ Y7). 

2. For fJ -o Rz (z) has a singularity of a power 
type "' [sin ( fJ/2 )]- 21Y7 in contrast to the logarithmic 
singularity Rz(cos fJ)"' ln sin(fJ/2). 

3. In the experimentally interesting range of 
angles fJ close to 180° CAL is small in the absence 
of Coulomb interaction since Rz( -1) = 0. 

In accordance with (A4) we have 

Rz<(-1)=(-)1['1J(1)-'IJ(1-iYJ)-2iYJ ± k2! 2 
k~1 '11 

- iYJe2i(a,-az) /z (1, 'I'J)} (A6) 

1 azk ( 1 1 ) 
fz (1, YJ) = LJ k- iYJ 1 + 2 + · · · + k 

k~1 

and for 'rJ z 1 CAL can have an appreciable value 
in the case of backward scattering. 

4. The general character of the behavior of 
Rf (cos fJ ) can be seen from the following asym
ptotic formula: 

R{ (cos 6) = (-)1 exp (2ia1) 

x[z!i12 Jo((z+-})cr) -cpJ1((z+ ~)cr)J 
cp = :n:- 6, o <:;;;: cp ~ :n:z-r, 
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which is valid for l » 1 (J0 and J 1 are Bessel 
functions). Comparison with the results of nu
merical calculations in accordance with formula 
(A4) shows that already for l = 4 the accuracy of 
the asymptotic formula is ~ 10% in the range of 
angles 90° < () < 180° which is sufficient for qual
itative conclusions. 
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