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The interactions of arbitrary radiations (particles, light quanta) with complex systems (mole­
cules, liquids, etc) are discussed to see what information about the structure and dynamics of 
a complex system can be gotten from an analysis of data concerning its interaction with the 
probe system, and conversely what characteristics of the complex system must be known in 
order to predict the results of such an interaction. It is shown that the time correlation func­
tion (TCF) is a convenient formalism for this purpose; in the special case where the inter­
action of the radiation and the s~stem can be treated in the Born approximation, the results 
agree with those of Van Hove. [1 

WE consider the basic properties of the TCF's 
corresponding to different types of probe particles 
and their interaction with the system. In particular 
it is shown that the TCF is generally complex and 
becomes real only when one neglects "recoil" of 
the system, which is equivalent to going over to the 
classical limit (11--0). If the system is in thermal 
equilibrium, the real and imaginary parts of the 
TCF are connected by relations which are a conse­
quence of the Nyquist fluctuation dissipation 
theorem. The formalism is generalized to the case 
where effects of damping in the initial state are 
important. As an example, we treat the shift and 
distortion of lines for recoilless resonant absorp­
tion or emission of y quanta which result from the 
difference in the Hamiltonians for the atomic mo­
tion in the ground and excited states of the Moss­
bauer nucleus. Integral relations connecting the 
Mossbauer probability (as a function of tempera­
ture) with the shape of the Mossbauer line are ob­
tained. It is shown that when there are discrete 
degrees of freedom the Mossbauer line will not 
only shift but will also be markedly distorted. 

1. INTRODUCTION 

The experimental study of complex atomic sys­
tems (molecules, crystals, liquids) and other quan­
tum mechanical systems with a large number of 
degrees of freedom is done as a rule by studying 
their interaction with simpler objects, whose states 
are relatively easily distinguished experimentally: 
for example, by studying the scattering, absorption 

and emission of light quanta, electrons, slow neu­
trons, etc. The system under investigation is 
frequently a statistical ensemble (in particular it 
may be in thermal equilibrium at temperature T). 
The question arises: what is the maximal informa­
tion about the investigated system that can be 
gotten from such experiments if we assume that 
the states of the directly measured object (the 
"probing radiation") before and after interaction 
can be determined to arbitrary accuracy? Another 
aspect of the problem is: what properties of the 
system "under investigation" must one know in 
order to predict the result of its interaction with 
the ''probe partie les'' ? 

In the particular case of scattering, for the case 
where the Born approximation is applicable, this 
question was discussed by Van Hove. [ 1] In the 
Born approximation, except for a trivial factor the 
differential scattering cross section 82a/8E8Q de­
pends only on four independent variables: the en­
ergy transfer ll.E and the momentum transfer D.p. 
Van Hove showed that it can be related uniquely to 
the pair correlation function in space and time of 
the particles constituting the scattering system. 
For example, if scattering occurs only from one of 
the nuclei of the system, 

82 00 • 

fJE;Q Gr.> ~ exp (- ~ ME) K(t) dt, (1.1) 
-oo 

where K(t) is the statistical and quantum mechan­
ipal average of t~e operator f+ (t) T (0), where 
T(t) = exp (ill.p · R(t)/11), where R(t) is the Reisen-
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berg operator for the coordinate of the scattering 
particle. Van Hove's approach proved to be ex­
tremely fruitful in describing and interpreting the 
potential scattering of neutrons (and also the 
Moss bauer effect) in complex atomic systems. 

Earlier [2] the Van Hove formalism was gener­
alized to the case of resonance scattering of neu­
trons andy quanta by atomic systems. In the 
present work we show that formula (1.1) is en­
tirely general: different types of probe particles 
and their interaction with the system under study 
are distin~uished only by the particular type of 
operator T(t) (i.e., by its dependence on the 
parameters of the probe radiation). Each such 
operator can be regarded as a sort of dynamic 
variable characterizing the system under investi­
gation. The corresponding function K(t) is the time 
correlation function (TC F) of this dynamical vari­
able. The form of the operator T(t) for various 
special cases is discussed. As an example we con­
sider the question of the shift and deformation of 
the Mossbauer line because of the difference in the 
Hamiltonians for the atomic motion when the 
Mossbauer nucleus is in the ground state and in 
the excited state. This question has been consid­
ered previously only in special cases, in connec­
tion with the so -called isomer or chemical shift [3l 

and the temperature or Doppler [4- 6] shift. 

2. DERIVATION OF GENERAL FORMULAS 

We denote the sets of variables, the quantum 
numbers and the energy of the system by R, p and 
EP, respectively; similarly, for the probe parti­
cles, we use the symbols Z, sand ES. The final 
states will be marked by a subscript f and the ini­
tial states by i. The set of quantities characteriz­
ing the system includes indices giving the type of 
particle (which may change in the course of the 
interaction). 

We also introduce the operator T, the scattering 
matrix, [ 7] which coincides in first order perturba­
tion theory with the operator for the energy of in­
teraction of the systems; the matrix elements of 
f are related to those of the § matrix by 

(Ptst IS- 111;;p;) = -2:n:i6 (El + Bt~ - E;P- e;t) 

x(Ptst 1 r (z, R) ls;p;). (2 .1) 

In addition we introduce the notation F(l;'f)ds f for 
the number of final states of the probe particle in 
the interval of quantum numbers dsf• gff for the 
statistical weight of the state I Pi) of the system 
under investigation, with ~igip = 1. The proba­
bility for transition into unit interval of the quan­
tum numbers of the probe system per unit time is 

' l; A rji (R) = (st 1 r (Z, R) 11;;), (2. 2) 

We introduce the Heisenberg operators 

T1;~(R, t) = exp(iilt I n)T1;b{R)exp(-iHt In), (2.3) 

where H is the Hamiltonian for the investigated 
system alone. To do this we write the o function in 
the energy as a Fourier integral and carry out the 
summation over Pf· The result is 

00 

W (1;t, 1;;) = n,-2p (1;t) \ dt exp (- iwtit) 
•' -oo 

' l;+ ' l; X'((Tit (R, t) Tti (R, 0))), (2.4) 

where the angular brackets denote an average over 
the initial states of the investigated system: 

Thus the transition probability is the time Fourier 
component of the function KK(t) = Kji(t, 0), where 

Kti~(t,t') = <(Ti!~+(R,t)Tti'(R,t'))>, (2.5) 

i.e., knowing KK(t) as a function oft, one can 
uniquely determine W(l;'f, si). 

The problem of reconstructing KK(t) from data 
on W(sf. /;"i) is more complicated, since the inverse 
formula 

fl,2 00 

Ktir.(t) =zit~ dwrioxp(iwtit)W(1;1, 1;;)/F(1;r) 
-00 

is meaningless, since sf and si are a complete set 
of variables and Wfi is a single valued function of 
l;f and Si· Thus to solve this problem one must go 
over from the variables Sf and ti to a set of new 
variables '17fi and Wfi (each of which, in general, 
depends on the parameters of the probing system 
in both the initial and final states), including wfi as 
an independent variable. In the case of scattering 
such variables might be the energy transfer 
.6E = nwfi and the momentum transfer ..6p =77n; 
for emission (absorption) they might be the energy 
transfer and the angle of emergence, etc. 

It may happen that the operator TA(R) when ex­
pressed in terms of the new variables (Tj~(R)) is 
independent of Wfi. Then obviously K(t) must also 
be independent of Wfi, i.e., it is a function only of 
'17fi and t, and the problem of reconstructing K(t) 
from W is solved using the formula 
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Ktt' (t) = ;; ~ dffiti exp (iffit;t) W (1J!i• ffit;) p-t (1Jti,ffit;); 
-00 

(2. 6) 

A7JW The operator T fi (R) does not depend on w fi in 
the case of scattering if the Born approximation 
is applicable. If this operator can be written as 
T(7Jfi, Wfi) f{~(R), where T(7Jfi' wfi) does not con­
tain the varilbles R, while the operator f{{(R) 
does not depend on wfi' the function 

satisfies the relation 

This case occurs when the particles (or light 
quanta) are emitted (absorbed) within an energy 
interval small compared to their energy, for ex­
ample in the case of interaction of visible or harder 
radiation with atomic systems. One may hope that 
the range of problems where the dependence on 
w fi of the operator T(R), and consequently also of 
K(t), is weak will be quite extensive. 

Thus the answer to the question: what informa­
tion about the system can be obtained from analysis 
of its interaction with the probe particles and what 
data are needed to predict the result of such an 
interaction, is closely related to the question of 
the properties of KK(t), which will also be the main 

object of our further investigation. This function, 
as we see from its definition, is the TC F of the 
dynamical variable corresponding to the operator 
1-f. (R) (which acts on the state vector of the system 
ana contains the quantum numbers of the probe 
system as parameters). 

In certain cases the function KK(t) can be rela­
ted to the usual two particle Green's functions for 
the investigated system. Thus if the system is an 
ensemble of N identical particles and the operator 
TK(R) is additive over these particles, 

N 
A ~ A ;:; 

Tti (R) = ~ Tt; (R;), (2.8) 
i=l 

where T lf (R) is an operator acting only on the 

variables Rj of the j -th particle, then in the second 
quantization representation (under conditions where 
the number of particles of the investigated system 
is conserved), 

fffir. (k, k') = (k I ti' (R;) I k'); (2. 9) 

Kt;~ (t) = ~ f!;/·· (k, k') fftir. (k"', k") 
k, k', k", k'" 

(2.10) 

where ak and ak are the creation and annihilation 
operators for particles in state I k) .. Formula (2.10) 
means that in this case the TCF is a linear com­
bination of the standard two-particle, two-time 
correlation functions, which are closely related to 
the Green's functions (cf., for example, [BJ). 

The approximation (2.8) is unsatisfactory in 
many cases; further improvement is possible in 
two directions: 

1. By including in the expression for the opera­
tor fK (R) the contribution of binary operators and 

terms of higher order. In place of (2.8) we then get 

A l; N A •v 1 N A "''(, 

T1; (R) = ~ T1/~ (R;) + z ~ Ttl' (R;, Rr) + .... 
i=l i;<oi' 

In the second quantization formulation the corre­
lation function Kfi (t) takes the form 

00 

Ktl'(t) = ~ Kt;1r.(t), 
1=1 

where Klff(t) is a linear combination of 2l-particle 

two-time correlation functions of the creation and 
annihilation operators, where KiF(t) is given by 
(2.10). 

2. By using the distorted wave approximation, 
which is more suited for the inclusion of many­
body effects. According to this approximation, the 
effect of the operator f on the plane waves of the 
probe particles is equivalent to the action of an 
additive operator of the type (2. 8) on the Hartree­
Fock functions of the probe particles in the effec­
tive potential (generally complex) produced by all 
the particles of the system. 

To conclude this section we discuss the specific 
form of the operator Tfi(R) in various cases of 

practical interest. If the probing radiation is a 
current of slow neutrons or light quanta, the inter­
action has a 6-function character, and as a rule it 
is permissible to use the Born approximation 

(2.11) 

where p is the momentum of the probe particle, 
while C is an energy-independent constant charac­
terizing the interaction with the j -th particle of the 
investigated system. Near resonances, where there 
is a significant formation of an intermediate state, 
(2 .11) should be replaced [2] by 
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N 
A I; ~ i'C. il; A p t; 
Tt; (R) = ~ exp (- iR;p/li) [C1, +ct; j(H- E;- e; )] 

J=l 

X exp (iR;p;fli), 

where the c's are also constants. In addition, near 
resonances it may sometimes be necessary to in­
clude the distortion of the wave function of the 
probe particle (method of distorted waves). 

The Born approximation is also applicable to 
the description of the scattering of fast electrons 
and muons in matter. The scattering of slow elec­
trons and muons far from resonances is satisfac­
torily described by the method of distorted waves. 
Near resonances, formula (2.11') or its modifica­
tion to include distortion of the plane waves is ap­
plicable. 

The interaction of heavy charged particles and 
of ions and atoms with atomic systems is more 
complicated. But on the other hand such particles, 
in passing through matter, produce strong per­
turbations, and are poorly suited to the investiga­
tion of the dynamics of electrons and nuclei in 
atomic systems. 

The TCF formalism is also applicable to nuclei. 
In particular, the scattering of electrons by nuclei 
was treated using the TC F method by Czyz and 
Gottfried. [9] The above remarks also apply to the 
interaction of mesons, hyperons and light quanta 
with atomic nuclei. The question of the applicability 
of the TCF method to the analysis of the interac­
tion of nucleons with nuclei requires a special ex­
amination, since we have not considered the effects 
of anti symmetry of the probe system and the sys­
tern under study. In addition it should be empha­
sized that the distorted wave approximation seems 
to be effective only for the description of direct 
processes and does not permit the inclusion of ef­
fects caused by the formation of a compound nuc­
leus. 

3. GENERAL PROPERTIES OF THE TIME 
CORRELATION FUNCTION 

1. According to the definition (2.5), Kff:_(t, t') de-
. 1 

pends only on the d1fference t - t': 

(3.1) 

2. In general the TCF is complex. From the 
reality of the transition probability W(f:f, l:i) it 
follows immediately that 

(3.2) 

or 
ReKt;~(t) = ReKt;~(-t), lmKt;~(t) = -ImKt;"(-t). 

(3.2') 

3. From the unitarity of the S matrix, using 
(2.1), it follows that 

-oo 

"\ I;+ ' I; 
= ((1 ii (R)- T;; (R))). (3.3) 

This relation is the content of the so-called "opti­
cal theorem." 

4. If the degenerate states of the system appear 
in the statistical ensemble with equal weights, then 
in the absence of a magnetic field 

(3.4) 

5. The behavior of the TCF at small times is 
conveniently investigated using relations that are 
obtained immediately by differentiating (2.5) with 
respect to t (t' = 0): 

.t: _ ~ 1 ( it )n /([ , ( , , , I;+ J 
Kt, (t) - n~o ;[ 71: "'- ~_!!: .. :, .. :. (H, T;1 (R, 0)] ... ] 

n 

'\ I; )"' 1 ti (R, 0) /. (3.5) 

The coefficients in this expansion are closely re­
lated to the moments of the transferred energy 
tin ( (w~i)). To show this property we again go over 

from the variables Sf• Si to TJfi• Wfi, where Wfi is 
an independent variable, just as we did in deriving 
formula (2 .6). Then by definition 

00 

(Wtin) 11 = ("wt;0) 11- 1 ~ dwfi W (rJ!i' Wti) Wf,n, n =/= 0; 
-oo 

00 

(Wt;0) 11 = ~ dw,;W (rJii' WJ;). (3.6) 
-00 

The index TJ emphasizes that the moments are cal­
culated for fixed values of TJfi and not for a given 
initial state. For example, in the case of scatter­
ing (3.6) gives the moments of the energy transfer 
for fixed momentum transfer. 

If on changing to the new variables the operators 
i'jf(R) (and also F(TJfi• Wfi) actually do not depend 
on Wfi, then it is easily verified that 

(Wf;n)11 = [Kt;'l(0)]-1(--;-i)nonKtiTJ/otnJt=o, n=/=0; 
(3.7) 

(3.8) 

These formulas are also valid when the static ap­
proximation is applicable. In the latter case they 
actually determine the moments of the energy 
transfer for a given initial state. 

From formula (3. 7) it follows that in general the 
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function Kf. (t) must be asymmetric in t, since 
otherwise Jn the odd moments of the energy trans­
fer would be zero. 1' But according to (3.2), this 
in turn means that the TCF has a nonzero imag­
inary part. The classical analog of this function is 
symmetric in t, since the transition to classical 
mechanics implies that we neglect the non-commu­
tativity of the operators TK (R, t) at different times. 

6. The behavior of the TCF at large times is 
related to interaction processes accompanied by 
small energy changes. In particular it follows that 
with increasing t the domain of applicability of the 
static approximation increases. It is also obvious 
that, as t increases, in actual systems the time 
correlations for any physical quantity should wash 
out, so that the noncommutativity of the operators 
T fi(R, t) and T ~i (R, 0) disappears, i.e., the imagin­

ary part of the TCF should go to zero. 
The asymptotic behavior 2' of K~i with t corre­

sponds to "elastic" interaction, i.e., to interaction 
in which there is no exchange of energy between 
the systems. The asymptotic form of KK(t) is 

K,;"(oo) = ~ gtb(Et -E/) I (p1 1 T1;r..(R) IP;) 12 • (3.9) 
pli 

7. In the important special case where the sys­
tem is in thermal equilibrium at temperature T, so 
that it can be described by the Gibbs canonical en­
semble, according to (2 .5) the function Kfi (t) can be 
written in the form 

K,;r.(t) = {~ (P; I exp (-~H) I P;)f1 

X lj (P; I exp (- ~iJ + iHtj1i) 
pi 

X 1\,r..+ (R) exp (- iHtj1i) T1;r.. (R) I p;). (3.10) 

(where {3 = 1/kBT, and kB is the Boltzmann con­
stant). Using (3.2) and (3.4), we easily get the re­
lations 

(3.11) 

ImK1;c(t) = (K1;c(t) - K!i"(t- ilif})) / 2i, 

ReK1;c(t) = (K!i"'(t) +K1;c(t-ilifl)) /2. (3.11') 

We note that in the case of high temperatures 
({3- 0), we get from (3.11) Kfi(t) = K~i*(t), i.e., in 

l)In particular the average energy transfer would be zero, 
which corresponds to neglecting recoil effects. 

2)If the function Kn" (t) does not approach a limit as t _, ""• 
as occurs for example for a system of a finite number of un­
damped oscillators, by the asymptotic form of Kn' (t) we mean 
the average over t of the value of Kn \. (t) for t _, oo: 

t, 

KJ; (oo) =lim _!_ \ KJ;(t) dt. 
t0-oo to ) 

0 

the high temperature region, where the motion of 
the atoms of the system can be treated by the 
methods of classical physics, the TCF is real. 

The function K~i (t - i {3ti/2) is of interest. It is 

easily seen that it is real and symmetric under the 
replacement of t by -t. In the special case of the 
Born approximation this was pointed out by Scho­
field. [1oJ 

From (2.4), (2.5), and (3.11), we immediately 
get the principle of detailed balancing for the tran­
sition probability 

8. It was shown earlier in various papers [ 10- 12] 

that in the Born approximation the TC F satisfies 
certain integral relations connecting its real and 
imaginary parts ("dispersion relations"). When 
the operators TK do not depend on Wfi• certain 

analogous formulas can also be obtained for the 
function K~i (t) in more general cases. Thus, if the 

system is in thermal equilibrium one can find from 
formulas (2.4), (2.5), (3.11), and (3.12) that 

r.. 1 r r. 1 t--r) Im K,; (t) = -1i~ P .l d-r Re Kt; (-r) sh-1 \ n 1!.[3 , 
-00 

(3.13)* 

r.. r.. 1 r . r. Re K!i (t) = K1; (0) + 1i~ P .l d-r Im K 1; (-r) 
-00 

[ (. t- 't) rt'tJ 
x clh , n ~ +cth 1i~ . (3.14)t 

These formulas are equivalent to the operator 
relation 

I; ( ~1i 8 ) r. Im K 1; (t) = tg 2"' ot Re Kt; (t). (3.15)t 

Formulas (3.13) -(3.15) are an expression of the 
well known Nyquist theorem, relating the equili­
brium fluctuations of the system (Re Kfi(t)) to the 

reaction of the system to an external perturbation 
(Im Kfi(t)). 

In certain cases the function Kl;" (t) can be cal-
fi 

culated by the methods of classical physics: the 
quantity obtained then coincides with Re Kii (t) ex-

cept for terms N ti2• Therefore, using formulas 
(3.13) and (3.15), from the classical expression for 
the TCF one can calculate the first quantum correc­
tion (N ti ). 

*sh =sinh. 
tcth = coth. 
+tg =tan. 
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4. INCLUSION OF DAMPING EFFECTS IN THE 
INITIAL STATE 

The formalism developed in Sec. 2 is applicable 
to those cases where the interaction of the probe 
radiation with the system is characterized by a 
transition probability per unit time. But in certain 
cases, for example the decay of quasistationary 
systems, this interaction is characterized by the 
probability distribution of the various final states 
in the course of a long time interval: [i3] 

w (Pt~f; Pi~i) = I (Pt~f Is I ~iPi) 12, 

where the S matrix element is 

(4.1) 

' (PI~/ IT I ~;P;) 
(pi~/ Is I ~;P;) = E p + l; E p l; + "1if (E p + l;)/2 • f Bj - i - e; l 1 Bj 

(4.2) 

In cases of practical interest the level width r is 
real: 

2:n: ~ ' l; r (E) = Re r (E) = T .LJI (p/~/ I T I ~;P;) 12 {J (E - E/- Bj ) 

f (4.3) 

and is independent of the energy E. Following a 
procedure similar to that of Sec. 2, we then find 
for the probability of transition into unit interval 
of the quantum numbers of the probe system, aver­
aged over initial and summed over final states of 
the system under study, the following expression: 

W (~t• \;;) = 1i;r F (~1) Re ~ dt exp (- iffi1;- ftj2) K 1;t (t). 

0 (4.4) 
In many cases the energy spectrum of the sys­

tem consists of a set of bands well separated in 
energy; the transition from one band to another 
corresponds to excitation of stiff (ballistic) de­
grees of freedom, so that the changes of the coor­
dinates of the other degrees of freedom can be 
treated in the adiabatic approximation (for example, 
in treating the Mossbauer effect the motion of the 
centers of gravity of the nuclei is adiabatic rela­
tive to the internal nuclear motion). An interesting 
case occurs when the probe system interacts directly 
only with the ballistic degrees of freedom; the ex­
cited levels for these degrees of freedom can as a 
rule be distinguished uniquely, i.e., there is no 
need to average the probability (2.1) over the ini­
tial states and sum over the final states corre­
sponding to these degrees of freedom. Obviously 
one should still take account of the fact that the 
Hamiltonian describing the adiabatic motion may 
be different for the different states of excitation of 
the ballistic degrees of freedom. 

We shall denote by X· 71 (p =(X, 71)) the set of 
quantum numbers characterizing respectively the 

motion in the ballistic and adiabatic degrees of 
freedom, and by f?:_(r, Xf• Xi) the matrix element 

A?;fl 
of the operator Tfi (R) between states I X f) and l Xi) 

of rapid motion; r is the set of coordinates which 
change adiabatically (the wave functions l X) con­
tain the r as parameters). Then the matrix ele-Ar 
ments of the operator Tv (R, t) between the states 

fi 
I Xf) and I Xi) have the form 

(xt I exp (iHt I It) Tt/• (R, 0) exp ( -iHt I It) I X;) 

= exp {i(E1x- E;") t I It} T1;'x (r, t), (4.5) 

i'1;r.x (r, t) = exp {iHltf1i} T,;r. (r; 'Xf, 'Xi) exp {- ilt/tj1i} 

= exp (iHtj1i) l'tir., (r; 'XI• 'Xi) exp (- ifltj1i) 
t 

X T exp {- ! ~ exp (iHt' 11i) t.fl exp (- iHt' j1i) dt'}, 
0 

where the symb_?l T d;mot~s th~ chr_?nological 
product; ~H = HiX - HfX• H = Hfx; Hx is the 
Hamiltonian describing the adiabatic motion when 
the state for the fast motion is characterized by 
the quantum numbers x; EX is the position of the 
lowest level of the x-th band. Then according to 
(4.4) the transition probability (with a change of 
quantum numbers of the fast motion from Xi to Xf) 
is 

W (~t'Xt; ~;X;) = n,~r F (~t) Re ~ dt exp (- iQ1; t- r; ) Kt;r.x (t), 
0 

K l;x r' l;x+( )T' r.x( 0)) fi ( t) = < it r, t fi r, , 

Q;-; = ffiti + (E/- E/)j1i. (4.6) 

5. APPLICATION TO THE THEORY OF THE 
SHIFT AND DEFORMATION OF THE MOSS­
BAUER LINE 

The TCF technique formulated above allows one 
to describe for an arbitrary system the shift and 
deformation of the Mossbauer line caused by the 
difference between the Hamiltonians for the atomic 
motion in the ground and excited nuclear states. 
The Mossbauer effect is a typical case where one 
must include the damping of the initial state; the 
atomic motion can be regarded as adiabatic com­
pared to the nuclear motion. Thus the results of 
the preceding section are applicable. 

To be specific, let us consider the case of re­
coilless emission of a y quantum. Then I Xi) and 
I Xf) are the wave functions for the internal motion 
of the Mossbauer nucleus in the excited and ground 
states, respectively; E~ - Ei = E 0 is the position 
of the resonance level Jf the nucleus. The transi-
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tion operator corresponding to the emission of a 
y quantum with momentum p (so that the wave 
function I ~f) is a plane wave while l~i) corresponds 
to the absence of quanta) has the form 

Tt;~(r;xf,Xi) = Toexp (-iprlli), (5.1) 

where r is the center of mass coordinate of the 
radiating nucleus, while T 0 is the nuclear matrix 
element. As a result, from formula (4.6) we find 
for the probability of emission of a y quantum with 
momentum p (energy Ep) per unit solid angle and 
energy (F (~f) == E5/c 3) the following expression: 3) 

()() 

W (Q, e) = r Re ~ dt e-rt/2 e-itn 
0 

x < ( [ T exp {- ! \ !1H (t') dt'} r exp { ip~ <1} 
0 

(5.2) 

Q = (Ep- Eo) In, e =pIp, v = 1 I 4n21i. 

The probability for recoilless radiation of a y 
quantum corresponds to very small values of 
Q( ~ r), i.e., to very large t, much larger than the 
effective periods of the atomic motion. Thus the 
part of W(Q, e) that corresponds to recoilless 
emission is given by the expression 

Wn.r(Q, e)= r Re r dt Kas(t, ~) exp (- iQt- r; ) , (5 .3) 
0 

Kas(t, ~) = lim Sp {exp (~ (1¥ -H)) 
t-oo 

• t 

x [ T exp (- ~ ~ !1H (t') dt') r 
0 

( ipr(t)) (-ipr(O) )} X exp -li- exp 1i , (5 .4) 

where >Jt(/3) is the free energy of the system (the 
limit for t-oo imposes no restrictions on the 
order of magnitude of t.6fi(t)/n, which can be 
greater than, less than, or of the order of unity). 
In the limit of large t, the exponential under the 
T -product becomes a diagonal operator (in general 
a function of the Hamiltonian), since the nondiag­
onal terms correspond to very rapid oscillations 
of the integrand in (5.3) and give a negligible con-

3 )Strictly speaking, what is intended in (5.2) is an aver­
aging over states of the Hamiltonian H{. But practically the 
results of averaging over the states of the Hamiltonians Hf 
and H~ coincide to a high degree of accuracy; the error is 
of order {3 <(11H)>. We shall therefore neglect this effect. 

tribution, of order {3 ((il}).4l As a result we get 

Kas(t, ~)=lim Sp {exp (~ (1¥- H)) exp (icp (H) t) 
f-+00 

xexp (ipr (t)fli) exp [- ipr (O)fli]} 

= 2j g~ (t) I ('I'J I eipr;li I '11) 12, 
1l 

(5.5) 

where cp(H) == .6H(t)/11 is the time-averaged opera­
tor, and 

In completely analogous fashion one can get the 
expression for the probability of recoilless absorp­
tion of a y quantum, which can easily be shown to 
coincide in our approximation with (5.3) and (5.5). 
The quantity Kas (0, {3) = f is the "standard" 
probability for recoilless emission of a y quantum. 
Knowing Kas (0, {3) as a function of {3 from experi­
ment (and of course knowing cp(E)), one can in 
principle extend Kas analytically into the region of 
values oft, if different from zero. For example, 
if one finds an analytic continuation of Kas (0, {3) to 
complex values of {3, then Kas (t, {3) can be recon­
structed using the formula which gives the general 
connection between the Mossbauer probability f 
and the deformation of the Mossbauer line: 

1 a+ico co 

Kas(t, ~) = 2Jti ~ Kas(O, ~') d~' S dE exp [E (W- ~) 
a-ioo 0 

+ ~1¥ (~) - WW (W) + itcp (E) J. (5. 7) 

This formula follows directly from (5 .6). But in 
practice such a problem requires the measurement 
of Kas (0, {3) as a function of {3 to a sufficiently high 
degree of accuracy, and therefore in each specific 
case one must find some way to simplify it. Sl In 

particular in certain cases it may be extremely 
useful to compute the coefficients in the expansion 
of ln Kas (t, {3) in powers of it, since the linear term 
in such an expansion determines the shift (the first 
moment of the Moss bauer line), the quadratic term 

4 )For simplicity, we neglect effects related to degeneracy 
of the states of atomic motion. These effects may be sizable 
in the case of degeneracy of the isolated degrees of free­
dom.[14] We note that since the atomic systems considered 
here have a quasicontinuous spectrum, dropping nondiagonal 
matrix elements also means neglecting effects of second 
order in 11M/M, the ratio of the difference in mass of the 
nucleus in its excited and ground states to its total mass. 
These effects are important only in the case of anomalously 
narrow Moss bauer linesJ••] 

S)The situation is complicated even more by the fact that 
the function rp(E), being actually a function of the set of var­
iables TJ, can have a very complex dependence on E. 
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gives the broadening (the second moment), while 
the higher terms affect only the finer features of 
the line shape. 

Actually, as one sees from (5.3) and (3.7), the 
expansion of Kas (t, {3) in powers of it corresponds 
to the asymptotic expansion of Wnr(Q, e) for large 
Q: 

~ [( r 0 -n-1 an Kas(t, ~) I ] 
Wn.r.(Q, e) = r n~o Re . 2 + zQ) atn t=o . 

(5 .8) 

We also note that in certain cases it is convenient, 
in calculating Kas (t, {3), to write it as a product 

Kas(t, ~) = Kt(t, ~)K2(t, ~); (5.9) 

( 5.1 0) 

the function Kas (t, {3) can be written as a product 

Kas(t, ~) = Kl (t, ~)Kn(t, ~), 

where Kn (t, {3) denotes expressions of the kind 
treated above for nonlocal degrees of freedom, 
while K1 (t, {3) describes the effect of the local de­
grees of freedom alone. In general the problem of 
the line shape is very complicated. We shall there­
fore limit ourselves to the special assumption that 
cp depends linearly on the energy of the local degree 
of freedom, i.e., Gl cp(E) =A +BE. Then K1 (t, {3) is 
obtained from the Moss bauer probability K1 (0, {3) 
= Kas (0, {3) = f ( {3) by analytic continuation to com­
plex temperatures, K1 (t, {3) = Kas (0, {3- itf3), while 

K2(t, ~) = exp {~'¥(~)- (~- itBf'¥(~- itB) + iAt}. 

As a result we get (z ({3) = -ln f({3)) 
gf)"(t) = exp [-~ET) + itcp(ET))]/Sp{exp[-~H + itcp(H)]}; 

q(t, ~) = -lnKas(t, ~) =z(~-itB) + (~-itB) 
(5.11) 

X'¥(~- itB)- ~'¥(~)-itA. 

To study the shift and broadening of the line, we 
K2(t, M = Sp {exp [~('¥-H) + itcp (H)]} 

= < (exp [itcp (H)])). (5 .12) expand q(t, {3) in powers of it: 

The function K1 (t, {3) differs from (5.5) in that the 
quantity g;, unlike g~, is normalized to unity 
(~~ = 1). Thus the function K1 (t, {3) is a kind of 
"average over initial states" of the radiation 
probability. 

In the case of a large number N of degrees of 
freedom of the system, (and in the absence of local 
degrees of freedom [tsJ) the result of averaging in 
(5 .10) should usually be very little different from 
the result of the usual statistical averaging (with 

II 
weight g71 (0)). One may therefore hope that for a 
quite extensive class of physically interesting cases 
the function K1 (t, {3) varies slowly with t and has a 
small effect on the shape and position of the Moss­
bauer line, i.e., one can approximately set 
K1 (t, {3) = K1 (0, {3). Furthermore, as is easily 
verified, to terms of order N- 1, 

< (exp[icp(H)t])> = exp[it((cp(H) )> ]. 

Finally we get 

Wn.r.(Q, e) = vKas{O, ~) (r I 2) 

X[f214+ (Q-((cp(H))))2]-1, (5.13) 

i.e., in agreement with well known results, [3•4] in 
the case of large systems without local degrees of 
freedom the difference in the Hamiltonians for the 
atomic motion in the ground and excited states of 
the Mossbauer nucleus leads only to a shift of the 
line but does not change its shape. 

Now let us consider a radiating system with 
(for simplicity) one local degree of freedom. Then 

q(t, ~) = z(~) - it/1- t2fJ; .11 = B(U(~) + dz I d~) +A, 

(5.14) 

(U ( {3) = d ( {3'11) /d {3 is the internal energy of the 
system). Substituting (5.14) in (5.3), we get the 
final expression 

co { rt t 2B2 ( d2z dU) Wn.r.(Q, e) = ye-z (ill Re ~ dt exp - 2 + - 2- d~2 +(iff 
0 

+it [Ep- Eo+ B (U + dzjd~) +A]}. (5.15) 

Thus when there are isolated degrees of freedom, 
the Mossbauer line is both shifted and broadened, 
and the shift does not coincide with the value of 
cp(E) which is equal to A + BU. (We recall that the 
possibility of broadening of the line in this case 
was pointed out by Snyder and Wick[S] .) 

Our results, obtained from expansion of Kas (t, {3) 
in powers of it, are strictly speaking valid only 
when cp(E)/r ..::; 1. In this case the deformation of 
the line reduces essentially to a shift and a possi­
ble broadening. If, however, cp(E)/r ~ 1, the line 
may acquire a complex, irregular shape. This is 
easily seen from the simple example of a single 
harmonic oscillator of frequency w 0, if we assume 
for simplicity that the momentum of the quantum 
is zero, i.e., for K1 (t, {3) = 1 and cp(E) =BE. Then 

6 )This occurs, for example, for the isomer shift (f!J = const) 
and for the temperature shift in the case of the harmonic os­
cillator (11H = (11M/M)P2 /2M). 
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K2(t, f3) = [1-exp(-~ll(!)o)] 

X [ 1 - exp (- (31i(l)o + itBii(l)o)] - 1• 

We then have, from (5.3), 

~ r exp (- n~1i(l) ) 
Wn.r.(Q, e) = r [ 1 - exp (- ~1i(!)o) l LJ 2 ° 

n=O 

[ f2 J-1 X (Q + nB1i(l)0 ) 2 + 4 . (5.16) 

Thus in this case there is an infinite set of equi­
distant lines, starting from the undisplaced line. 
We note that the fraction in the shifted lines is the 
greater the higher the temperature, and that for 
infinite temperature ( (3- 0) the unshifted line is 
absent; conversely, in the case of zero tempera­
ture ( (3- 00 ) only the unshifted line remains. Such 
a situation can be interpreted as a sort of "micro­
scopic" Mossbauer effect within the Mossbauer 
line itself. The analogous effect is well known in 
optics. [HJ As already mentioned, when Bnw 0/r 
:51 the line will be deformed moderately. With 
increasing Bnw 0/r, marked irregularities of the 
line shape begin to appear and finally, for very 
large values of Bn w 0/r, the unshifted line again 
appears near. n = 0. 

The presence of the unshifted line means that 
as t-oo, the function Kas(t, (3) in (5.6) has anon­
zero component that is independent oft. In the 
opposite case, as occurs for large systems, the 
unshifted line should be absent. The most favor­
able conditions for the appearance of the unshifted 
line are low temperature and a large difference 
between the Hamiltonians for the atomic motion in 
the ground and excited states of the Mossbauer 
nucleus. 

6. CONCLUSION 

In the present paper a general formalism is 
developed which makes it possible in general to 
express the probability of interaction of probes 
with the system in terms of certain time correla­
tion functions (TC F). These are time correlations 
of definite physical quantities characterizing the 
system under investigation and depending on the 
type and the parameters of the probing radiation in 
the initial and final states. The interpretation from 
the single viewpoint of the TCF of data obtained 
from experiments with different types of probes 
considerably extends the possibilities for carrying 
out the complicated investigation of complex sys­
terns. Thus the analysis of experiments on scatter­
ing of neutrons in liquids by the correlation func­
tion method would enable one to understand many 
interesting regularities. 

The TCF method for describing the interaction 
of different kinds of radiation with complex sys­
tems is also convenient for another reason. As a 
quantum mechanical system becomes more com­
plex (more degrees of freedom), its description 
using wave functions becomes inordinately more 
complicated and is practically impossible. At the 
same time fewer and fewer details of the wave 
functions of the system really determine its action 
on the probe radiation. All the information about 
the system that is needed for predicting this result 
is contained precisely in the TCF, i.e., the TCF 
formalism is the best suited for this problem. 

In many cases the TCF of a complicated system 
can be calculated more or less accurately by the 
methods of quantum statistics, or at least one can 
find its most important properties. The recently 
developed Green's function technique may be useful 
for this analysis. A considerable simplification of 
the computation and interpretation of the TCF is 
possible if the system under study is quasiclassi­
cal, as is quite often the case for complex atomic 
systems. This is related to the fact that the TCF's 
are expressed in terms of Heisenberg operators, 
for which the transition to the classical limit is 
especially simple and clear. The "dispersion 
relations" (3.13)-(3.15) enable one to calculate 
the first quantum correction. Summarizing, we 
may conclude that to describe those properties of 
complex systems which can be observed by probing 
the system with radiations of different types (i.e., 
practically all the physically observable charac­
teristics of a complex system) one of the most 
convenient techniques is to use the TC F. 

1 L. Van Hove, Phys. Rev. 95, 249 (1954). 
2 M. V. Kazarnovskil and A. V. Stepanov, Acta. 

Phys. Hung. 14, 45 (1962); JETP 42, 489 (1962), 
Soviet Phys. JETP 15, 343 (1962). 

3 0. C. Kistner and A. W. Sunyar, Phys. Rev. 
Letters 4, 412 (1960). I. Solomon, Compt. rend. 
250, 3828 (1960). G. Breit, Revs. Modern. Phys. 
30, 507 (1958). 

4 R. V. Pound and G. A. Rebka, Phys. Rev. 
Letters 4, 274 (1960). B. D. Josephson, Phys. Rev. 
Letters 4, 341 (1960). I. L. Dzyub and A. F. 
Lyubchenko, Reports of the Conference on the 
Mossbauer Effect, JINR R-1231, Dubna, 1962, p. 99. 

5 H. S. Snyder and G. C. Wick, Phys. Rev. 120, 
128 (1960). 

6 R. H. Silsbee, Phys. Rev. 128, 1726 (1962). 
7 J. Schwinger and B. A. Lippman, Phys. Rev. 

79, 469 (1950). 
8 V. L. Bonch-Bruevich and S. V. Tyablikov, 

The Green's Function Method in Statistical Mech-



THE TIME CORRELATION FUNCTION TECHNIQUE 371 

anics, Fizmatgiz, 1961 (English translation, North 
Holland, Amsterdam, 1962). 

9 K. Gottfried, Ann. Phys. 21, 29 (1963). W. Czyz 
and K. Gottfried, Ann. Phys. 21, 47 (1963). 

10 P. Schofield, Phys. Rev. Letters 4, 239 (1960). 
11 K. S. Singwi and A. Sjolander, Phys. Rev. 120, 

1093 (1960). 
12 M. V. Kazarnovskil and A. V. Stepanov, Inelas­

tic Scattering of Neutrons in Solids and Liquids, 
IAEA, Vienna, 1961. 

13 W. Heitler, The Quantum Theory of Radiation, 
Oxford University Press, 1954. 

14 M. V. Kazarnovskil and A. V. Stepanov, JETP 
43, 2299 (1962), Soviet Phys. JETP 16, 1624 (1963). 

15 Yu. Kagan, JETP 47, 366 (1964), Soviet Phys. 
JETP 20, 243 (1965). 

16 M. V. Kazarnovskil and A. V. Stepanov, JETP 
47, 139 (1964), Soviet Phys. JETP 20, 94 (1965). 

17 A. S. Davydov, Naukovi zapiski, KGU (Scien­
tific Papers of Kiev State University) 14, 5 (1955). 
M. A. Krivoglaz, JETP 25, 191 (1953). 

Translated by M. Hamermesh 
80 


