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The Skornyakov-Ter-Martirosyan integral equation for the K-37r decay is solved by an itera
tion procedure for the case when a 0 is large and a 2 = 0 (aT is the scattering length for me
sons in a state with isotopic spin T ). The energy and angular distributions obtained in this 
way for the K±-- 2rr± + rr'~' reactions are compared with the experimental dataC6J for a 0 = 1, 
2, 3. It is found that the experimental data can be satisfactorily described by the theoretical 
curves only if a 0 = 1. This should indicate that a 0 is of the order of unity or smaller (it was 
shown in [5] that the experimental data on K-37r decay are compatible with the assumption 
that a 0 is small). 

INTRODUCTION 

AT present there are experimental data indicat
ing that at low energies the interaction between 
pions is resonant (ABC resonance [t J). This reso
nance, however, was not observed in many inves
tigations [2 J. A study of K -3rr reactions is of in
terest because of the possibility of explaining the 
character of interaction of pions at low energies. 

Gribov et al. [3,4] wrote down an expression 
for the decay amplitude under the assumption that 
the pion scattering lengths are small (the pion in
teraction is nonresonant at low energies ) . A com
parison of the obtained formulas with experiment 
does not make it possible, however, to determine 
the pion scattering lengths, owing to the large ex
perimental errors. All that follows from this com
parison is that I a 0a2 I :-::; 0.25 [5], (aT -pion scat
tering length in the state with isotopic spin T, in 
n/rrc units). It is therefore of interest to obtain 
an expression for the K-37r decay amplitude under 
the assumption that a 0 is large (ABC resonance) 
and to see whether these formulas contradict the 
experimental data. 

The author has obtained previously [5], from an 
examination of the diagrams, a dispersion relation 
for the K -37r decay. In the present paper we solve 
this dispersion relation with the aid of an iteration 
procedure. 

We recall first, however, the considerations on 
the basis of which we analyze reactions in which 
three particles are produced near threshold (or 
decays into three particles with low kinetic -energy 
release ) . The decay amplitude (or the amplitude 
for the production of several particles) is expanded 

in a series of the squares kiz of the momenta of the 
relative motion of the produced particles (the sub
scripts i and l denote the numbers of the pro
duced particles-see Fig. 1 ). Near the physical 
region of the decay, the amplitude has singulari
ties which must be separated in this expansion. 

FIG. 1 

Figure 2 shows the physical region of the decay 
(shaded ) and some of the singularities closest to 
it. For example, the amplitude has on the physical 
sheet a singularity with respect to k~3 at k~3 = 0 
and k~3 = 3 (or s 23 = 4 and s 23 = 16, where s 23 is 
the square of the total energy of particles 2 and 3, 

FIG. 2 
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and the pion mass is equal to unity). These sin
gularities are shown in Fig. 2 by solid lines. In 
addition, near the physical region the amplitude 
has singularities on the second sheet at k~3 == K2 

( K2 -total kinetic energy released in the decay ) 
and at k~3 == - 1 (the last singularity corresponds 
to s 23 == 0 ). The position of these singularities is 
shown by the dashed lines. Analogous singulari
ties exist, of course, also for the variables k~2 
and k~3 . 

In expanding the amplitude we wish to take into 
account the contribution from the nearest singu
larities of the amplitude-from the singularities 
at kiz == o and kfz == K2• The singularities at krz 
== 0 have diagrams of the type shown in Fig. 3a, 
the singularities at krz == o and at kfz == K2 -dia
grams of type 3b and 3c, or diagrams with even 
a larger number of scatterings of the produced 
particles by one another. The parts of the dia
grams which have singularities near the physical 
region of the decay are expressed in terms of the 
same decay amplitude and in terms of the scat
tering amplitudes of the produced particles. The 
parts of the amplitude which have far singularities 
(singularities at kfz == -1, kfz == 3, etc.) are ex
panded in a series in kfz: A. + Ctk~3 + C2k~3 + C3k~2 
+ .•. , where all the coefficients are unknown con
stants. All that we can say about the coefficients 
Ci (and also about the other coefficients of the 
higher powers of ktz) is that they should be, gen
erally speaking, of the order of A.. This follows 
from the fact that the distances from the far sin
gularities to the physical region are of the order 
of unity or more. Therefore this series converges 
rapidly if the kinetic energy of the produced par
ticles is small. 

The amplitude terms with singularities near 
threshold, as already mentioned, result from dia
grams of the type shown in Fig. 3. The singular 
terms that result from diagram 3a are of the order 
of A.KaT, those from 3b are of the order of A.( KaT )2, 
and those from 3c -of the order A.(KaT )3. If aT 
< 1, the contribution to the non-adiabatic parts of 
the amplitude from the diagrams with a large num
ber of scatterings of the produced particles is 
small. On the other hand, however, if for example 
a 0 is large (resonance interaction), then the dia
grams 3a, b, c, etc., give identical contributions 

a b c 

FIG. 3 

to the part of the amplitude which is non-analytic 
near threshold. Summation of all diagrams of this 
type leads to an integral equation for the decay am
plitude [5 J. 

Since there is experimental evidence in favor 
of assuming a2 to be small, we shall solve in this 
paper the dispersion relation for the decay ampli
tude with a2 == 0. In the first section we consider 
the dispersion relation for the decay amplitude in 
the case when the coefficients Ci (and also the 
coefficients of the higher powers of kfz ) vanish. 
In the second section we consider the equation in 
which the coefficients of the first powers of kfz 
( C1, C2, and C3) are different from zero, and the 
coefficients of the higher powers of kiz are equal 
to zero. 

1. SOLUTION OF THE EQUATION IN THE CASE 
WHEN Ci = 0 

If a2 = 0 and Ci == 0, then the amplitude A 
(k12k13k23 ) of the processes K_±- 21r± + rr± is de
termined by the following relations: 

(1a) 

d (k) = '), (1 - ika0t 1 

+ 23:2 (1- ikao)-1 r dk'2 k'ao <d (k")> (1b) 
.. ) k' 2 (k' 2 -k2 -ie)' 

0 

k+ 

<d (k")> = 2 \ k" d (k") dk" 
Jf3k' (x2 - k'2 )'1• ) ' k_ 

k± = + ~ k' + ~3 (x2 - k' 2)'1•. (1c) 

A derivation of these relations was presented ear
lier [5]. The dispersion relation (1b) can be reduced 
to an equation of the Skornyakov-Ter-Martirosyan 
type: 

-oo 

+ ~ a 0 (1 -ika0t 1 ~ dk' 2d (k') [L (k'k)- L (k'O)I, 
x' 

L (k'k) = rV3n (x2 - k2)'1T 1 

[ _1/2 (x2 _ k'2)'''+ (x2 _ !;;2)'/,12_ 3k' 2;4 

X ln [1/2 (x2- k'2)'1• + (x2- k2)'/•]2- 3k'2j4 . 
(2) 

To find the location of the singularities relative to 
the contour of integration it is necessary to assume 
that k2 has in the integrand of (2) a positive imagi
inary addition it. 

When K2 ~ 0, Eq. (2) can be solved by succes
sive iterations: in the zeroth approximation d ( k) 
is equal to A.( 1 - ika0 ) -t, the first correction is 
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determined by the second term in (2), in which the 
amplitude d ( k') under the integral sign is replaced 
by its zeroth approximation, etc. The possibility of 
such an iteration procedure follows from the fact 
that if a0 > 0 (we are interested in just positive 
a0 ), then the inequality ( 1 - ika0 ) - 1 :s 1 holds when 
k2 < 0, and the quantity L ( k'k) - L ( k' 0) does not 
reverse sign on the integration contour. In this 
case we can readily show that the ratio of the mod
ulus of any correction to that of the preceding one 
should be smaller than or of the order of %. Since 
in fact ( 1 - ika0 ) - 1 is appreciably smaller than 
unity over almost the entire integration contour, 
this is a slight overestimate. It can be thought 
that a similar iteration procedure can be used to 
find d(k) also when K2 > 0. If we make one itera
tion, we obtain 

d(k) = J,. (1 - ika0 ) -I [ 1 + 2/3}' (ka0)], (3a) 

-00 

F(ka0)=a0 ~ dk' 2 (1-ik'a0t 1 [L(k'k)-L(k'O)]. (3b) 
><' 

For the real case K2 = 0.56 (the pion mass is equal 
to unity) we can obtain F ( ka0 ) by numerical inte
gration. 

The values of F(ka0 ) for a 0 = 1, 2, and 3, and 
for k2 in the interval between zero and K2 are 
listed in the table. It is seen from the table that 
the ratio of the moduli of the correction terms to 
the modulus of the zeroth approximation is smaller 
than or of the order of 0.4. This fact serves as 
some confirmation of our hope that d ( k) can also 
be obtained with the aid of the iterations described 
above in the case K2 > 0. 

F (ka,) 

k'/><' 
a,=2 a.=3 a..= I 

0 0 0 0 
0.25 -0.15+ i 0,19 -0.29+ i 0.17 -0.35+ i 0.13 
o:5 -0,22+ i 0.26 -0.40+ i 0,24 -0.47+ i 0.19 
0,75 -0.28+ i 0,30 -0.47+ i 0,28 -0.54+ i 0.22 
1 -0.32+ i 0.34 -0.49+ i 0.29 -0.55+ i 0.24 

The meaning of these iterations consists in the 
following. The quantity A. ( 1 - ika0 ) - 1 is repre
sented by diagrams of the type 3a. If diagram 3a 
is integrated once, the result is represented by 
diagrams of type 3b. The smallness is the result 
of the fact that in the second term in the right side 
of (2) there is a factor %. and not some large quan
tity (for example, were we to consider the case 
a 0 = a2, we would have a factor 2 in the analogous 
equation for the decay amplitude. If the particles 
interact only in a state with isotopic spin T = 0, 
then it is necessary to project in the diagram of 

Fig. 3b the state in which particles 1 and 3 have 
T = 0 on the state in which particles 2 and 3 have 
T = 0. This leads to the appearance of the factor 

%-
If, using (3), we obtain the energy distributions 

of the mesons produced in the reactions 10- 21r± 
+ ~, then we see immediately that at large values 
of a 0 these energy distributions contradict the ex
perimental data. The amplitude (3) gives pion en
ergy-distribution curves with a slope opposite to 
that observed experimentally. 

In (2), and consequently also in (3), no account 
was taken of the fact that the decay amplitude has 
the large remote singularities referred to in the 
introduction. The presence of these singularities 
leads effectively to a dependence of A. on kfz. The 
decay amplitude satisfies (2) only if A.( kfz) varies 
little near the physical region of the decay. ln the 
opposite case we must write dispersion equations 
that take into account the dependence of A. on kfz. 
If A.(kiz) is expanded in powers of kfz near the 
physical region of the decay, then, as already men
tioned, the coefficients of this expansion should be 
of the order of unity. In the next section we shall 
consider the simplest case, when 

i;;Ql,_m 

(the constants Ci are unknown beforehand and 
must be determined from experiment). The am
plitudes of the decays ~ - 21r± + 1r 'f contain only 
one of the three Ci, since C1 = C2 and the term 
C3kf2 = C3(3K2/2 - k~3 - k~3 ) leads only to are
definition of A. and c1. 

2. DECAY AMPLITUDE IN THE CASE Ci ¢ 0 

The dispersion relation for the amplitude d(k), 
which has the properties described above, is ob
tained from (1b) by means of the substitution 
A.- A.+ Ck2: 

d (k) = A.+ .Ck2 
1-zka0 

2k2 (1 :1. )-1 ~·dk' k'ao (d (k")) (4) 
+ 3:n: - ... ao ~ k'2(k'2-k2-ie) 

0 

We have introduced here a cutoff in the dispersion 
integral, since the latter diverges at infinity when 
C ¢ 0. The divergence at the upper limits in the 
dispersion integrals can be eliminated by recog
nizing that the derivative of the function d ( k) 
-% ika0 ( d ( k") )k= 0 - ika0A. with respect to k2 

depends on the constant C. After redefining the 
unknown constant C, Eq. (4) can be written in a 
different form: 
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d (k) =(A.+ Ck2) (1- ika0t 1 + ;:2 (1- ika0t1 {~ dk' 2 

0 

co 
k' a0 (d (k")) - I dk'2aok'-a X k' 2---;( k-;--c'.ii-2 --;-.k2.--'--l:-. e:-) ~ 

0 

X [(d(k"))-(d(k"))k·~ol· (5) 

We assume that this equation can be solved with 
the aid of the iteration procedure described in the 
first section. It will be shown later that the modu
Ius ratio of the first correction term to the zeroth 
approximation d 0 ( k) = (A. + Ck2 ) (1 - ika0 ) - 1 is 
smaller than or of the order of 0.4 at the values 
of C of interest to us and for a 0 = 1, 2, 3. The 
smallness resulting from the iteration solution 
of (2) was of the same order of magnitude. 

If we confine ourselves in the solution of (5) to 
a single iteration, then the expression for d ( k) 
takes the form 

d(k),= (lc + Ck2 ) (1- ika0)-1 

+ 2/3 (1 - ikao)-1{ (1 - ao-2C) [ F (ka0 ) - f ( ao) k2] 

- a0- 1Cik + C[ -l'3n-1k(x2 - P)-''' 

X (x2 - 8jgk2) arc cos (k / x) - i3k2 / n]}. (6) 

where the constant f ( a 0 ) with a 0 = 1, 2, and 3 has 
a value 

!(1) = 0.36- i 0.05, !(2) = 0.71- i 0.43, 

!(3) = 1.1 - i 0.5. (7) 

So far we have disregarded the mass difference 
of the neutral and charged mesons. In some cases, 
however, this mass difference can be appreciable. 
For example, in the reaction K+- 21r+ + 1r- the 
pion mass difference influences the energy distri
bution of the positive pions at E+- K2, and hardly 
affects the energy distribution of the negative pions. 
In order to take into account the mass difference 
of the neutral and charged pions, it is necessary 
to replace in the right side of (4) the factor 
( 1 - ika0 ) - 1 in the first and second terms by 
[l-ia0(2k/3 + (k2 -.0.)112/3) 112 )]-1 (here b.

double the mass difference between the charged 
and neutral pions). We can estimate with suffi
cient accuracy the effect of the mass difference 
by replacing in the right side of (6) the factor 
(1-ika0 )-1 by [ 1-ia0(2k/3 + (k2 -.0.) 1/ 2;3 )]-1• 

The energy and angular distributions of the 
produced pions depend on the unknown parameter 
C/A.. Figures 4 and 5 show the distributions of the 
pions in the reactions K± - 21r± + 1r'~', obtained by 
starting from formulas (6) with a 0 = 1, C/A. = 1. 7; 
a 0 = 2, C/A. = 2.7; a 0 = 3, C/A. = 3.8. The dashed 
line in Fig. 5 shows the behavior of the energy 

distribution without account of the meson mass 
difference. 

The experimental data on the reactions K± 
-- 21r± + 1r '~' can be found in the paper by Ferro
Luzzi et al. [GJ: 

w(eu) = 1 + (eu- 1/2) (0.53 ± 0.07), 

w(e1) =1- (e1- 1/2) (0.26+0.09). 
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Here E z -energy of the identical mesons ( rr + in the 
reaction K+- 2rr+ + rr- ), divided by its maximum 
value, and Eu -energy of the oppositely charged 
meson. Figures 4 and 5 show the limiting values 
of the experimental straight lines (8): 

w(eu} = 1 + 0.6(eu- 1!2), w(eu) = 1 + 0.46(eu- 1/2}, 

w(ez) = 1- 0.35(e1 - 112}, w(ez} = 1-0.17(e1 - 1h). 

The energy distribution with respect to Ez 
shows for a 0 = 2 and a 0 = 3 a noticeable hump at 
EZ "' 0.9, which has not been observed experimen
tally, although the presently attainable experimen
tal accuracy should have made this possible. It is 
important to emphasize the following circumstance: 
This hump is only the result of the fact that the ex
pression for d ( k) contains the function ( 1 - ika0 ) -l 

as a common denominator (more accurately, the 
function [ 1-ia0(2k/3 + (k2 -.6.) 112/3r1 ). At large 
a 0 this function vanishes on the unphysical sheet 
near k = 0. In order for the energy distribution 
with respect to Ez not to have a hump it is neces
sary that the numerator of the expression for the 
amplitude also vanish at this point. If, for exam
ple, we consider for simplicity the amplitude in 
the zeroth approximation d0(k) =(A.+ Ck2 )x 

( 1 - ika0 ) - 1, then in order for no hump to appear 
it is necessary to have C/A. ~ a~. Such a large 
value of C/A. leads to pion energy distributions 
that differ from those observed in experiment. 

In the calculations presented above the ratio 
C/A. was assumed real. The imaginary parts of 
C and A. are due to diagrams of the type shown 
in Figs. 3b and c. A contribution to the imaginary 
part of A. is made by diagrams of the type shown 
in Figs. 3b and c with k = 0, while a contribution 
to the imaginary part of C is made by the second 
derivatives with respect to k of these diagrams 
at k = 0. These imaginary parts are utterly dif
ferent and the ratio C/A. should not be real at all. 
However, the humps in the energy distribution with 
respect to E[ remain even for complex C/A.. In 
fact, for example in the zeroth-approximation am
plitude, the zero of the numerator goes over into 
the complex plane and no cancellation of the zeroes 
of the numerator and denominator will take place. 
It is unlikely that a more accurate solution of (5) 
(inclusion of the next iterations ) would make it 
possible to cancel simultaneously the zeroes of 
the numerator and of the denominator of the am
plitude and to obtain pion energy distribution 
curves with relatively small slopes, as are ob
served in experiment. 

In the above calculations it was assumed that 

a 2 = 0. However, it is clear that if a 2 is small, 
then an account of the pion interaction with a 2 ;r 0 
will not change the energy distribution with respect 
to EZ appreciably. In order for (6) to give the cor
rect energy distribution with respect to Eu for a 0 

= 2.3, it would be necessary to assume an unnat
urally large C (on the order of A.). The humps 
in the energy distribution can apparently be elim
inated by assuming that the coefficients of the 
higher powers of kiz in the expansion of A. in 
powers of kiz are likewise anomalously large. 
Such an assumption, however, is quite unlikely. 

The foregoing analysis indicates that a 0 is of 
the order of unity or less (the author has shownC5J 
that the experimental data on K -3rr decay are in 
good agreement with the assumption that a 0 is 
small ) . More accurate information on the char
acter of the interaction of the pions at low ener
gies based on the formulas considered above (or 
on the formulas given in [s]) can be obtained only 
if the experimental accuracy is increased. 

The author is deeply grateful to A. A. Ansel'm 
and G. S. Danilov for useful discussions and to 
T. Yu. Andrievskaya and N. V. Koroleva for the 
numerical calculations. 
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