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The kinetic equations and the field equation are derived taking account of the interaction be
tween longitudinal and transverse electromagnetic waves. It is shown that nonlinear interac
tions can lead to an instability for the longitudinal and transverse waves. An isotropic plasma 
and a beam -plasma system are considered. 

1. INTRODUCTION 

IT is now evident that a characteristic feature of 
plasma, regarded as a state of matter, is the ca
pability of supporting various kinds of oscillations 
(noise modes) under the effect of relatively small 
external perturbations (as a consequence of so
called plasma instabilities). On the other hand, 
nonlinear effects tend to couple longitudinal and 
transverse waves and it is possible that this cou
pling could have a stabilizing effect at high oscil
lation levels. 1> In the present work we derive the 
particle-field equations for a plasma, taking ac
count of the interaction of longitudinal and trans
verse waves and the interaction of these waves 
with the plasma particles. This interaction is 
essentially scattering of particles accompanied by 
induced conversion of the plasma wave into a trans
verse wave (or vice versa), and the absorption 
(emission) of two waves. [3] We limit ourselves 
to frequencies and wave numbers that correspond 
to the region of transmission and which do not sat
isfy the "decay" conditions. We assume, further, 
that the noise intensity is so large that the spon
taneous processes can be neglected compared with 
the induced processes. 

2. PARTICLE-WAVE EQUATIONS 

The following equations describe. the distribu
tion functions for plasma particles of type a, fil'a• 

plasma waves, N kl , and transverse waves, N~ , 
1 2 

taking account of the induced scattering (in which 
a longitudinal wave is converted into a transverse 
wave and vice versa), induced radiation and ab-

1>The transformation of longitudinal waves into transverse 
waves in scattering on fluctuations has been treated inJ'• 2] 

sorption of longitudinal and transverse photons: 2> 

df " 
;; =- ~dkrNk/{wp""(kr)(/p"" -/Pa.-k,a.) 

+ Wp"+k,a. (kt) (/p/- /Pa.+k1a.)} 

- ~dkrdk2Nk/Nk,t{WPa."(k1 , k2)(/p"-"- /pa.-k,+k,)a. 

+ w:a.+k,-k, (k1, k2) (!pel a._ t:"-k,+k,) w Pa." (kt. k2) 

+ ~ Nk,1<Il (kr. k2) dk2, 

(})1 (kr, k2) = - (2n)3 L; ~ dpa. rw:a. (kl, k2)- w:a.-k,+k, (kt. k2) 

" 
- w:a. (kr. k2) + w;"+k,+k, (kl, k2ll t;"; (2.2) 

dN k,
1 

- IN t \ t l dk dt - Yk, k,, rk,1 = ~ (}) (k1.k2) Nk, r. 

(})1 (kr, k2) = (21t)3 L; ~ dp" rw:a. (kr, k2) - w:a.+k,-k, (kr, k2) 
" 

(2.3) 

Here, wP'a ( k1 ) is the probability of Cerenkov ra
diation from a particle of type a with momentum 
Pa yielding a plasma wave with momentum k1; 

WfS'a ( k1, k2 ) is the probability of scattering of a 
particle a with momentum Pa leading to the ab
sorption of a plasma wave k1 and emission of a 
transverse wave k2; Wfia (k1, k2 ) is the probabil
ity of radiation from a particle a with momentum 

2)We assume for simplicity that ii = c = 1. 
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Pa yielding a plasma wave k1 and a transverse 
wave k2. 

In the classical case, which is of greatest in
terest k1, k2 « p, expanding the right sides of 
Eq. (2.1)-(2.3) in powers of kto and k2 and keep
ing the first nonvanishing terms we find 

dj"' 
Pa a D " a !" 

dt = ap;" ii ap{ Pa' 

Dii" = ~ dk1k1;kliw~" (k1) Nk,1 + ~ dk1 dk2Nk/Nk,1 

x {(k2i- kli) (k2j- k1i) w~" (k1, k2) 

+ (k2i + kli) (k2i + kli) w~" (k1, k2)}; (2.4) 

The system (2.4) -(2.6) contains the classical prob
abilities where W8c., ( kto k2 ) and W:f?'a ( kto k2 ) are 
related by 3 > 

w~" (kl, k2) = w~" (k/' k2) lk,'=-k, . (2. 7) 
wt'=-(1), 

If the imaginary part of the frequency is much 
smaller than the real part, the phase velocity of 
the longitudinal waves is much greater than the 
mean thermal velocity (but much smaller than 
the velocity of light) and w1 ""w 0 while the fre
quency of the transverse waves w2 » w0 so that 
w2 = I k2 1; hence, the expressions for w~ ( k1 ) 

and W:S"a ( kto k2 ) assume the form [3] 

3 )The system of equations that has been obtained cannot 
be written in the form used in[•]. This follows because it is 
necessary to take account of processes that correspond, in 
the classical limit, to the transition radiation of a charge in
teracting with the inhomogeneities produced by the plasma 
wave. These processes make a contribution to the probability 
that is of the same order as that corresponding to radiation of 
a particle oscillating in the field of a longitudinal wave. The 
effect of such processes in the interaction of longitudinal 
waves is discussed, for example, inJ•J 

(2.8) 

The obtained system (2.4)- (2.6) obviously satisfies 
energy conservation 

:t {2J ~ V P"2 + m"2t:" dp" + wz + wt} = o, 
" 

W 1 :== ((E1) 2 ) I Sn: = (2nf3 ~ w0N k,1 dk1, 

W 1 :== < (E1 ) 2) I Sn = (2nf3 ~ I k21 N k,
1 dk2. (2.11) 

Thus, the interaction between the longitudinal and 
transverse waves results in a modification of both 
the diffusion tensor and the growth rates (damping 
rates) Yk1, Yk2 (cf. [S-7J). It follows from (2.8) 

and (2.9) that the essential role is played by par
ticles whose velocities exceed the phase velocity 
of the plasma waves. In other words, the effect 
being considered (the interaction between longi
tudinal and transverse waves) can be important 
if there is a relatively large number of superther
mal particles. Such cases are not unusual and are 
of definite interest. Indeed, superthermal particles 
are necessary for turbulent heating; high noise in
tensity of this kind also is produced in a plasma 
having superthermal particles. [B, 9] Hence we 
shall be concerned primarily with cases in which 
the plasma contains a relatively large number of 
superthermal particles. 

Without going through a detailed investigation 
of the equations that have been derived we proceed 
directly to a number of results that follow in cer
tain particular cases. 

3. EXCITATION AND DAMPING IN AN ISOTROPIC 
PLASMA 

If the particle velocity distribution is isotropic, 
i.e., f:8a = f&"(v ), in the nonrelativistic case 
(k2 /kt « 1) 
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[ sin2 6 . J X, cos4 6 + -~-2 -- sm2 6 cos2 6 

where e is the angle between the vectors ki and 
k2, me and mi are the masses of the electron and 
ion respectively, and cp(e) (v) = J f~e)dp 1 is the 
one -dimensional distribution function; p 1 is the 
component of p perpendicular to ki - k2• 

The ion contribution is unimportant in most 
cases· because the corresponding term contains 
the small factor me /mi. 4> For Eq. (3.1) to hold 
it is necessary that the distribution function be 
isotropic only in the vicinity of the point v = 

I (w2 ± wo)/(ki ± k2)1. In other regions, specifi
cally, at lower velocities, it need not be isotropic 
(for example, a plasma in the presence of a beam 
with velocity much smaller than I ( w2 ± w0 )/ 

( ki ± k2) I f'::i w2 I I ki 1. 
1. We now consider damping of transverse 

waves in an isotropic plasma. Since the expres
sion appearing in the curly brackets in Eq. (3.1) 
for q,t is essentially positive, it follows from 
Eq. (2.6) that transverse waves are always damped 
( Yk < 0 ) if the particle momentum distribution is 
isot2ropic. In general this damping is small; how
ever, if there is a relatively large number of 
superthermal particles and a high noise level 
Nk this damping can become appreciable, even 
exdeeding the damping caused by collisions (yc ). 

To estimate the mean -square noise amplitude 
( ( EZ) 2) at which the damping Yk2 becomes com
parable with Yc we assume that the noise is dis
tributed uniformly over the interval between some 
kmin and kmax » kmin and that the electron dis
tribution function in the region vi < v < v2 (where 
v2 » D.v = v2 -vi) is constant and equal to 
ntf4nv~D.vm~, where vi» VT = ,.j 2kT/m ; outside 
this region it is assumed that the electron distri-

4 >In certain cases, all of the ions can make a contribution 
of the same order as the electrons because in addition to the 
small factor me/mi the expression in question contains the 
large quantity "' 1/v~ » 1, where v0 is the mean character
istic velocity of the superthermal particles. 

bution is Maxwellian with temperature T. Assum
ing further that kmax = w0 /3vT and that the Cou
lomb logarithm in the expression for the collision 
frequency is of order 10, we find that the damping 
is nonvanishing for frequencies w2 < 3 x 104 

w0v2//T where 

r t 2 1 ·r2)% 
......'!2. =5·10-2~ o\ -2-(- ((Ez)2). 
Yc no ffio v2 !1v no 

(3.2) 

It then follows that the nonlinear effects being 
treated here are strongest in a high -temperature 
low-density plasma. For example, assuming that 
v 2 = 10-i, T = 106 oK, ni/n0 = 10-2, n0 =·1011 crn-3, 

D.v/v2 = 10-i, EZ = 1 (CGS) we find that yt = 5 x 102 

Yc. i.e., nonlinear effects lead to a very strong 
damping even at a relatively low noise level. 

2. We now consider longitudinal waves and ex
amine the conditions -under which the presence 
of "transverse" noise Nk2 can cause an instabil
ity of the longitudinal waves in an isotropic plasma. 
Neglecting terms proportional to f~i) and cp(e) in 
Eq. (3.1) and assuming that the noise is concen
trated in a narrow band around w2 = w~, we find 5> 

1 _ (2rt)6e4ro0 sin2 26 
rk, - (J)2ok13 

(3.3) 

The last term in Eq. (3.3) is obviously always 
negative but the first can be smaller or greater 
than zero. Thus, if there is a group of superther
mal particles for some v = v0 » vT, i.e., if f~e) 
exhibits a maximum at the point v 0, then at large 
value of ( ( Et )2) and appropriate values of w~ 
and v0 it turns out that yfkil can be positive, that 

is to say, the longitudinal waves can become un
stable. 

If the energy spread of the superthermal par
ticles D.v0 is narrow 6 > the instability condition 
can be written in the form 

/ (e) (ro o /[k [) (Et)2) 
2rt3 ~sin2 26 ° 2 1 _< __ >1. (3.4) 

(J)2o /~e) ( ffio / lkl [) nome 

To make an estimate we assume that f~e) is con
stant and equal to ni / 4nm~ v~D. v 0 in the range 
v0 ± D.v 0; outside this range we assume a Max-

5)It is valid to neglect these terms if the superthermal par
ticles are primarily electrons and if the velocity spread of 
these electrons is small enough, i.e., 11v/v « 1. This case is 
the one that is treated in this work. 

6 li1v0 «max lw 0/k,, w~k~/k~l. 
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wellian distribution with temperature T, w~ 
= 4w0, ntfn0 = 10-2, sin2 28 = 1/1r, v0 = 3 x 109 

em/sec, D.v 0/v0 = 10-1; for waves characterized 
by k1 = 10-9 w0 em -t the relation in (3 .4) assumes 
the form 

10-"no-Iy'J,eoo•;T ((Et)2) > 1. (3 .4') 

The growth rate then becomes 

(3.5) 

In Eq. (3.4') we take n0 = 1011 cm-3, T = 105 and 
find that waves characterized by k1 = 17 em -t are 
unstable even when v'({Et12) = 3 x 10-5 cgs esu. 
The growth rate in this case is ~ 103 ( (Et )2), 

i.e., for a mean field intensity Et = 10 cgs esu the 
growth time for the instability is very small, 
amounting to 10-5 sec. 

4. BEAM INSTABILITY FOR TRANSVERSE AND 
LONGITUDINAL WAVES 

We now consider further effects of the nonlinear 
interaction between longitudinal and transverse 
waves in the presence of beams in a plasma. 

1. We first treat the excitation of transverse 
waves by a nonrelativistic beam in the simplest 
case, in which the longitudinal noise is essentially 
along the beam. Assuming that the spread in 
transverse beam velocity is small compared with 
the characteristic range in longitudinal beam ve
loci ties and that for the transverse noise k1 • v 
~ k1v > 0, we find 

<p (v) = ~ t<•> (p) dp..L, N 1 (vph)= ~ Nk,1 dk,..L !k 11 =roJvph, (4.1) 

where cp ( v) is the one -dimensional particle dis
tribution function in the beam, NZ ( Vph) is the one
dimensional distribution function for the longitudi
nal noise, 8 is the angle between k2 and v while 
Pl and k1 are the components of the correspond
ing vectors perpendicular to the mean beam ve
locity. 

In the most interesting case, in which NZ(vph) 
decreases with increasing vph• it is found that the 
transverse waves are unstable. Suppose that NZ 
is a weak function of Vph and falls off rapidly for 
an amount b.Vph when 7> v ~ Vpht· If the velocity 

7)This case can be realized if the longitudinal noise is 
formed in the beam itself while it is accelerated in the elec
tric field if the longitudinal instability occurs when v < Vph 1 
where the limit on Vph is due either to the bounded system 
(cfJ'"]) or to nonlinear effects. 

spread in the beam is relatively small ( D.v « Vph 
w2 I w0 ), the following frequencies are excited: 

(4.2) 

(4.3) 

where wZ is the energy of the longitudinal waves 
per cm3• Assuming for example n0 = 1010 cm-3, 

w0 = 5 x 109 sec - 1, ntfn0 = 3 x 10-2; D.Vph1 /Vph1 
= v10• Vpht = 10-1, wZ = V1on1mevbh1; kz ~ 1 em - 1, 
we find Yfc2 ~ 106 sec - 1. 

We note that Eq. (4.1) applies even for mono
energetic beams if D.Vf is sufficiently large. This 
follows from 

rk/ ~max {k1v~vph / Vph; k1, ~v}. (4.4) 

2. Now, using the example of excitation of trans
verse waves by a nonrelativistic beam we analyze 
the change in beam parameters in the development 
of the instability. The mean value of the quantity 
L is denoted by the symbol (L) = jfp L dp/ jfp dp; 
from Eq. (2.4) we find the mean change in the en
ergy of the superthermal particles 

d 
dt (e)= (A); (4.5) 

where 

j = ~ {(ro2- ro0) (kz- k1) Wp (kt. kz) 
~ l t + (ro2 + ro0 ) (kz + k1) Wp (k1, k2)} Nk, Nk, dk1dk2• (4.6) 

The sign of d ( E )/dt is determined by the sign of 
Bj/Bp. F<?r a beam of nonrelativistic particles and 
the one-dimensional longitudinal noise considered 
above we find that j has a single component along 
v and that 

. - 4e4roo\dk2 t ,· 2 l (roo ) (4.7) J - vm 2 J k2 Nk, sm 202N k2 v • 

The function v - 1 Nl ( w0v /k2 ) is a diminishing func
tion in the regwn of interest and consequently 
dj/dv < 0. This means that the beam is retarded 
as a result of excitation of transverse waves. 

3. We now consider the case in which a beam of 
relativistic particles with mean momentum p =Po 
= mE: 0 (Eo » 1) and dispersion D.p0 propagates in 
a plasma. Assuming that the relativistic beam in
teracts most strongly with the transverse waves 
propagating along the beam we limit ourselves to 
waves characterized by k2 II Po and a well focused 
beam. 8> After some simple calculations we find 

8 )We assume that the angle e is not too close to rr/2 and 
also that 8 1 « 1/ E 0 for kn ~ Wo and 8 1 « E~ 3 for k11 « W 0, 

where e, is the angle between k2 and p; 

r ~(1)2 (1)2 ~eo} 
k ..L v ..L < max \ 282 , 81 e,;- . 
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~r l = r l- r !I 16n3e4ooo sin2 e ~ O<jl d 
k, k, k, Nt =o = )2 .,.--- e 

m82 (k 11 -- oo0 ue 

X {N 11
1 (2e2(k 11 -ooo))-Nu 1 (-2e2(k 11 -ooo))}, '(4.8) 

where 

t ~ t ~ ( ) d k Po (kpo) N 11 (k 11 )= N(k)dkj_, <p= t• pj_, kj_= ---, 
Po 

P = p _ Po (PPo) 
j_ Po2 ' 

Pll = (PPo), 
Po 

kn = (kpo)' 
Po 

e=E.!L. 
m 

It is then evident that the quantity t::,.yZ (depending 
on the form of the spectrum Nt) can be either 
larger or smaller than zero. In other words for 
a sufficiently large "transverse" noise the non
linear action can lead to additional excitation or 
damping of longitudinal waves with the appropri
ate values of k1. 

As an example let us consider the effect of a 
"monochromatic" beam of waves on the longitudi
nal waves. Using in (4.8) the following approxima
tion 

we find 

ku - ooo ( oo )4 ~yl = 2n3oo - 0 sin2 e 
lku -oool 0 002° 

((Et)2) s8<Jll 
X n 2 e iJe ' 

0 e =]I "'•'/2(/(11-w,) 

(4.9) 

i.e., t::.y > 0 for waves characterized by k 11 > w0 

+ w~ /2Eij and waves s> characterized by w0 - w~ /2E5 
< ktt < wo. 

It is interesting to note that waves propagating 
against the beam are also unstable when w~ > 2E5w0• 

To make an estimate we assume that 8cp I BE 
-men1 /(t::.p0 ) 2, a beam density n1 = 107 cm-3, a 
plasma n0 = 1015 cm-3, t::.p0 /p0 = 10-3, Eo= 102, 

Et = 105 cgs esu, w~ = 2 x 1015 sec - 1, and find that 
the growth rate for plasma waves characterized 
by k 1 = (w0 ± 1011 sec-1 )/3 x 1010 cm-1 is 107 -5 
x 10~ sec-1, which is very large. 

We note that the expression obtained for e:,.yZ, 
Eq. (4.8), is valid when t::.yZ is not too large, spe
cifically, when 

where t::.w2 is the characteristic spread and fre
quencies of the transverse waves. 

9 )We recall that the formulas obtained here apply only when 

l k 11 I ~ Wo! 2eo2, w0 « k1 « kil"2eo. 

An analysis similar to the one given above 
shows that the development of the instability is 
accompanied by spreading of the beam. In this 
case the energy going into excitation of waves 
characterized by ktt > w0 is taken from particles 
characterized by p < p 0• These same particles 
simultaneously excite transverse waves at fre
quencies close to w~. However, particles char
acterized by p > Po are accelerated by virtue of 
the transverse waves and frequently lose energy 
in the excitation of longitudinal waves character
ized by ktt < wo. 

4. We consider finally transverse waves in a 
plasma in the presence of a relativistic beam. 
Using the same assumptions as in the preceding 
section we find 

1 _ 32n3e4oo0 (' 2 a<p d 
Yk, - 2k 2 \ e "' e me 2 • ue 

X [ N 1i ( ~2 + OOo) + N 11 1 ( OOo - ;:2) ] , (4.10) 

where, as before, cp ( E ) is the one -dimensional 
beam distribution function while 

Nul (ku) = ~Nkl ku2k~2kj_2 dkj_. 

In the general case the value of yt depends on 
the form of the spectrum Nf1• However, if the 
function Nf1 ( w 0 ± k2 /2E 2 ) varies slowly in the 
range Eo ± t::.E 0 the expression for Yk2 assumes 
the simple form 

1 _ 32n3e4oo0 !_ 2 
Yk, - - mak22 nl oe e 

X [ N 111 
( OOo + ;~2 ) + N Ill ( OOo - z:~) J '·=•., (4.11) 

and the instability condition obviously leads to the 
requirement 

8~ e2 [Nii(ooo+ 2~2)+Nu 1 (ooo- 2~2 )JI.= .. <O. (4.12) 

If Nfr is large in the region ktt :S w 0 lvT and if 
(4.12) is satisfied then waves are excited with fre
quencies w2 "' w0Eij/vT (vT « 1 ), which can lie 
in the optical region even for plasmas of relatively 
low density. 

In principle, the transverse instability arising 
as a result of the nonlinear interaction of waves 
with a beam opens the possibility of using such 
systems for amplification and generation of mil
limeter waves. 

To make an estimate we assume that the "longi
tudinal" noise exists only in a range from k11 
= w0 /v0 to ktt + t::.k 11 where e:,.k 11 = k 11 t::.v 0 /v0 in 
which t:;.E 0 /E0 « t::.v0 /v0 « 1; from Eq. (4.10) we 
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find that waves are excited at frequencies w2 
= 2Eijw 0 /v0 with characteristic growth rate 

t - w :n;3voa (~ f !::.!_ ((£1)2> ' (4 .13) 
Yk, - o Eoa 11vo; no mno 

which for n0 = 1010 cm-3, n1 = 108 cm-3, !::.v/v 
= 10-1, v 0 = 0.5, El = 102 cgs esu, Eo= 10 yields 

w2 =2·1012 sec-1 , ~~. =2·107 1sec-~. 

This result applies when 

Yk/ < max { 11eo w2, k II 11vo } . 
Eo Vo 

The interaction of transverse and longitudinal 
plasma waves has been investigated above. As we 
have noted, the relative weakness of these effects 
is due to the fact that the longitudinal and trans
verse waves interact only via superthermal par
ticles, which are generally present in small num
bers. This is due to the fact that the phase veloc
ity of the longitudinal wave exceeds the thermal 
velocity. However,.other wave modes can propa
gate in a magnetized plasma; in particular, waves 
whose phase velocity is smaller than the thermal 
velocity (for example, waves propagating across 
the magnetic field with w1 = nwH). Such waves 
must interact with the transverse waves for which 
w2 » WH through particles with velocities less 
than or of the order of the thermal velocity, and 
the number of such particles is large. In turn 
this effect can lead to an appreciable intensifica
tion of the interaction of the transverse waves 
with the plasma. 

In conclusion we note that nonlinear effects 
analogous to those considered here can also occur 

in solid -state plasmas; these are of interest since 
the values of w0 (and consequently the values of 
w2 ) for which growing waves are possible are very 
large. 

The authors are indebted to M. S. Rabinovich 
for his continued interest. 
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