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It is shown that the phase transition in a superconductor takes place in the same way as in 
Bose liquids. Cooper pairs play the role of bosons. The specific heat has a logarithmic 
singularity in a very narrow temperature range. 

AccORDING to contemporary representations, 
the A. transition in He and the transition into the 
superconducting state in metals have a common 
nature and are connected with the Einstein conden­
sation of Bose particles. However, experiment 
shows that in the transition in He, the heat capac­
ity Cp has a logarithmic singularity, whereas in 
the superconducting transition Cp undergoes a 
finite jump. 

The theory of the phase transition in a super­
conductor [l] was developed on the basis of a model 
of a Hamiltonian [2] in which only the interaction of 
particles with opposite momenta and spins is taken 
into account. This model admits of an exact solu­
tion and gives a finite jump in the heat capacity. 
The theory of the phase transition in a Bose 
liquid [3] shows that the interaction of large di­
mension fluctuations plays the fundamental role 
in the origin of the logarithmic singularity in ther­
modynamic functions. In the Hamiltonian model 
of [2] such an interaction is excluded. Therefore, 
to develop a theory of transition to the supercon­
ducting state, it is necessary to consider a more 
realistic model. 

We shall consider a Fermi liquid, the transi­
tion temperature T0 of which is small in compari­
son with the degeneracy temperature 11 (or with 
the De bye temperature in the case of a metal ) . It 
will be shown that the picture of the phase transi­
tion is the same as for a Bose liquid, and that the 
Cooper pairs play the role of Bose particles. The 
region of the logarithmic phase transition to the 
superconducting state is shown to be very small 
(T- T0 )/T0 ~ (To/11 )4• This is connected with 
the weakness of the pair interaction because of 
their low density and the low effective mass. Un­
fortunately, such a small temperature range is 
not yet accessible to experiment. 

Only temperatures T ~ T 0 will be considered 
here. 

1. PROPERTIES OF THE VERTEX PART FOR 
SMALL TOTAL MOMENTUM 

When T :: T 0, Cooper pairs of electrons are 
formed with opposite momenta and spins C4J and 
with zero binding energy. Therefore, the scatter­
ing amplitude of two electrons for zero total 4-

momentum and spin has a pole at T = T0• 

We consider the properties of this vertex for 
small total momentum and for temperatures close 
to T 0• Strictly speaking, we consider the vertex 
part r a{3yo(P1P2;p3p4), which depends on discrete 
frequencies and from which one can obtain the 
scattering amplitude by analytic continuation. 

The graphic equation for the vertex part r a{3yo 
has the form 

~or:; E3 + s::D (1.1) 

~~ R,ll 

Here the crossed square denotes the set of graphs 
that are not cut for two electron lines with the 
same direction. We denote the contribution of 
these graphs by the expression r ~hyo ( P1P2; P3P4). 

By assumption, the paired electrons have oppo­
site spins. Therefore, the part r a{3yo. which has 
the singularity, is anti symmetric in the spins and. 
symmetric in the momenta, i.e., it has the form 

where r is symmetric relative to the substitution 
Pt - P2• P3 - P4· We also select the part of 
r ~~yo antisymmetric in the spins. 

It is convenient to transform to the variable: 
q "'p1 +p2 = p3 +p4, and, for example, Pt. p3 such 
that r(pt.p2; p3p4 ) = r(pt-p3; q). In this notation, 
Eq. (1.1) can be written in the following form: 

r (PI• p3; q) = r(I) (pi, p3; q) 

"(" d3k () - T 7 J (2n)3 r I (pik; q) G (k) G (q- k) r(kpa; q). (1.3) 
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Here G(k) is the Green's function of the electron. 
We shall investigate Eq. (1.3) in the region of 

small I q I for zero value of the fourth component 
of q. It is assumed that G ( k) has the usual 
form: [5] 

a 
G (k) =. k ) 

HOn- V ( -Po 
(ffin, VI k- Po 1~!1), (1.4) 

where v is the Fermi velocity, Po is the Fermi 
momentum, a is a constant, and Wn == ( 2n + 1 )7rT. 

As T- T 0 and q- 0, the function r<1>(ptp3;q) 
tends to the finite limit y<1>(PtP3 ). Here, y<1>(PtP3) 
is regarded as an analytic function of its frequency 
arguments, coinciding with r <1> ( p1p3; 0) for T = To· 
The limit of G (k) as T- T 0 is denoted by G0 (k ). 

We now introduce the auxiliary quantity y(ptp3 ), 
defined by the equation 

Substituting r (1)- y<tJ in the last term and using 
Eq. (1.10), we get the following expression for y 

v = yGoGo-v<1lGoGo-r + V [GG-- GoGd r, (1.12) 

whence Eq. (1.6) follows. 
It is shown in the Appendix that the solution of 

Eq. (1.5) has the form 

( ) 'X (pl) 'X (Pa) r PtP3 =- T _To , (1.13) 

where x ( p) satisfies the equation 

and the normalization condition 

Equation (1.14) is identical with the linearized 
equation for the gap at the transition point. 

(1.5) From Eqs. (1.7) and (1.13), we get the equation 

The quantities -y<1> == r m- y<o and GG-- G0G0 
(G-=G(q-k), G()=G0(-k)) aresmall. Equation 
(1.3) can be rewritten in the following fashion: 

~~ d3k 
r (PtPa; q) = r (PtPa)- T 7 J (2n)3 r (Ptk) [G (k) G (q- k) 

I aapaak 
-Go (k) Go (- k)] r (kpa; q) + T2 ~ J (2n)6 r (PtP) Go (p) 

X G0 (- p) y<tl (pk; q) G0 (k) G0 (- k) r (kpa; q). (1. 6) 

For proof of (1.6) we write down Eq. (1.3) in 
symbolic operator form: 

r = r<1J + r<1JGG-r. (1. 3 ') 

Substituting r OJ = y< 0 +:yo'· r = y + y, and 
r 0 'GG- = y<1>G0G0 + T, and using the equation for y 

v = y<1l + y<1lGoGo-v, 

we get an equation for y 

V = v<1l + y(1lGoGo-v + tT. 

(1.5') 

(1. 7) 

The first component in (1. 7) can be neglected since 
it does not have a singularity. For y, we find 

v = (1- v<1lGoGo-)-1Tr. (1. 8) 

It follows from (1.5) that 

(1- y<1lGoGo-)-1 = y(y<1l)-1. (1.9) 

We are considering the equations (1.3') and 
(1.5') near the poles of r and y. Therefore y<1l 

approximately satisfies the equation 

(v<Il)-1 =GoGo-. (1.10) 

Substituting (1.9) and (1.10) in (1.8), we get 

for 

r(pp·q)=- 'X(Pt)'X(Pa) (1.16) 
1 3 ' T- T 0 + <D (q) ' 

~~ d3p 
<D (q) =- T 7 J (2n)a y} (p) [G (p) G (q- p)- Go (p) Go(- p)] 

I aapaak 
+ T 2 ~ J (2:n:)6 'X (p) Go (p) Go(- p) 

X r(ll (pk; q) G0 (k) G0 (- k) 'X (k). (1.17) 

The quantity defined by Eq. (1.16) is essentially the 
amplitude of resonance scattering of the electron 
by an electron through a virtual pair. The virtual 
pair with momentum q can be set in correspond­
ence with the "Green's function" 

@J(q) = -(T- To+ <D(q))-1, (1.18) 

and the vertex corresponding to the decay (produc­
tion) of the pair corresponds to the function x ( p). 

The boson Green's function @J(q) can be rep­
resented in the same form as in the theory of a 
phase transition in a Bose liquid: [3] 

@J (q) = - ('YJ + <p(q) )-1; (1.19) 

'YJ = T- To+ <D(O) = T- To+ S(O)- So(O), (1.20) 

<p(q) = <D(q)- <D(O) = S(q)- S(O), (1. 21) 

where the quantity 

S (q) = - T ~ ~ (~~s "/..2 (p) G (p) G (q- p) (1.22) 

T2 ~I aapdak ( ) G G ) <t> + =J (2n)6 "/.. P o(P) o(-p r (pk;q) 

X G0 (k)G0 (-k)"f..(k) 

v = yG0G0-01>G0G0-r + yGoGo-r<1l [GG-- GoGo-]r. (1.11) plays the role of the self-energy part of the boson. 
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The quantity S0( 0) in Eq. (1.20) is obtained from 
S ( q) if we replace G by G0, r <1 > by y<t> and set 
q = 0 in (1.22). 

We shall associate the function @3 ( q) with the 
heavy line in the graphs. 

2. THE EQUATION FOR THE GREEN'S FUNCTION 
OF A BOSON 

The self-energy part of the boson S(q) can be 
represented graphically in the form 

0 + (8) (2.1) 

The first term in (2.1) makes a contribution 
~ v2q2/T0 to cp (q). The second term in (2.1) is 
represented in the form of a set of graphs consist­
ing of the Green's functions of the boson. 

The singularity in r [see (1.16)] is brought 
about by the set of graphs cut for two electron 
lines directed to one side. Thus the thick line es­
sentially describes the set of cut graphs. 

We separate from (2.1) the graphs which do not 
contain @3 lines. These graphs make the contri­
bution ~ v2q2/ J-1. to cp ( q), which can be neglected. 
The graphs in (2.1) which contain @3 lines can be 
constructed in the following fashion. We introduce 
the "bare" vertex V0, which describes the inter­
action of bosons as a set of graphs with four boson 
outputs which do not contain interior boson lines. 
In the case of a weak interaction of electrons, ver­
tex V0 corresponds to the graph 

'X(pj 'l(pj 

= )lo t-~/"' 
'0(- P, I_ 

(2.2) 

%(pj X(!! 

In this case V0 ~ 1/p0• Since this estimate does 
not contain the electron-electron interaction con­
stant g, it remains correct even for a non-weak 
interaction gp0 ~ 1. 

Let us construct all the possible graphs which 
contain only V0 and @3 lines and which are not cut 
for a single @3 line. The set of such graphs can 
be represented in the following fashion 

(2.3) 

where the square corresponds to the total 4 -pole 
constructed from v0 and @3 lines. The set of 
graphs (2.3) forms a part of (2.1). The other graphs 
in (2.1) can be constructed by introducing the 
"bare" 6-, 8-poles and so forth. As has already 
been shown in [3], these graphs give upon subtrac­
tion the higher powers of q in cp ( q); therefore, 

the contribution of these graphs is unimportant in 
the equation for cp(q). In contrast with the situa­
tion arising in the case of a Bose liquid, [3] these 
graphs do not lead to renormalization of V0 be­
cause of the smallness of T 0• 

One can show that the sign of the graph is de­
termined by the number ( - 1 )n, where n is the 
number of "bare" vertices just as in the Bose 
case. Thus the equation for cp ( q) has the same 
form as in the case of the Bose liquid [see [3], 

Eq. (2.9)]. Exactly the same equations for the 
Bose vertex parts reduce to the corresponding 
equations of theory of the phase transition in a 
Bose liquid [see [3J, Eqs. (2.10)-(2.12)]. In par­
ticular, cp ( q) has on the transition line the form 

T(q) = Aq'l', (2.4) 

where A2 ~ V0T 0 ~ T 0/p0, and the Bose vertex 
part is a homogeneous function of zero order in 
the momenta. 

For the calculation of the thermodynamic func­
tions, we need an expression for the vertex part of 
electrons r (p1p2; p3p4 ) with small momentum 
transfer p1 - p3 = k and zero frequency shift w 1 

- w3 = 0. For this purpose we introduce the 
notation 

For the construction of the vertex part 
K(p1p2; k), we introduce the "bare" vertex U for 
electron scattering by the pair, i.e., the vertex 
with two G and two ~ exterior lines, which does 
not contain @3 lines internally. 

In the case of a weak interaction of the elec­
trons, this vertex corresponds to the graph 

u 

X :c (2.5) 

One can draw the vertex K graphically in the 
form: 
p, 

0 
P,-K 

~ ~ C>+C)=C> 
(2.6) 

Here the shaded square represents graphs which 
do not contain @3 lines. The remaining graphs in 
(2. 6) make a small contribution ~ T0 I J-1.. The first 
graph in (2.6) contains no singularities. The other 
two graphs are identical for k = 0 with the graphs 
for 8NB/8JJ,B, accurate to within amultiplying fac­
tor (NB is the boson density, JJ.B is the chemical 
potential) for the case of a Bose liquid. As was 
shown in [3J, K ~ ln 71· For k ;e. 0, K ~ ln max 
{ 'f/, Ak3/2 }. 
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3. THE THERMODYNAMICS OF THE PHASE 
TRANSITION 

We investigate the thermodynamics of the phase 
transition in a fashion similar to the case of a 
Bose liquid. [3 J We compute the value of BN F I B!J. 
(NF is the electron density): 

aNF = 2Tl}\ d3p a·G(p). 
all n ~ (2n)3 all 

(3.1) 

We make use of the Ward identity [5] 

aG (p) =- G2 (p){1- 2T :2} \ aaq K (pq; 0) G2 (q) }· 
all n • (2n)3 (3.2) 

In Eq. (3.2) the term K(pq; 0) containing the 
vertex part with zero transfer yields a logarithmic 
singularity. The basic term in BN F I BJJ. can be 
represented by the graph 

C>Qo + oCJ::C)o (3.3) 

Here we shall make use of the graphic equation 
(2.6) for the vertex part K. It is evident from 
(3.3) that 

a is a quantity of the order of unity. Making use 
of the formulas [3] for BN B I B!J.B, 0 we get 

(3.6) 

where R is a universal, dimensionless constant, 
R1 ~ Po is finite on the transition curve, and ~ T 
is the interval of the logarithmic phase transition. 
In order of magnitude, ~T is equal to the poten­
tial energy Aq312, in which case it is equal to the 
"kinetic" energy v2q2 /T0, i.e., 

!1T /To~ (To/ f.1) 4• (3. 7) 

Simple calculations show that the heat capacity 
Cv does not contain a logarithmic singularity, 
while the singular part of Cp has the form 

Cp = a2 T~R (!.£_) 2 In t:,.T. (3.8) 
NFVo aT v Tj 

The quantity 1) is essentially linearly dependent 
on T - T 0 and iJ. - IJ.o· In order of magnitude, 
( Bp/BT )y ~ p~. 

The results are an additional argument for the 

l)ln this case no renonnalization due to nonzero frequen­
cies takes place, since m is defined only for w = 0. 

universal character of phase transitions of the 
second kind. 

In conclusion, we would like to touch upon cer­
tain problems arising in the comparison of the con­
sequences of the theory of superconductivity with 
experiment. 

The interval of the logarithmic phase transi­
tion, in accord with the estimate of (3. 7), is very 
small. We do not know the numerical factor in 
this estimate; however, it can scarcely change 
the order of the quantity ~ T enough to make this 
effect accessible to experiment. From the results 
of this work it follows that the thermodynamics of 
superconductivity in the model of Bardeen, Cooper 
and Schrieffer are valid to within the interval of 
the logarithmic phase transition, i.e., in practice, 
to within T 0• Moreover, the theory, which is 
based on the weak coupling approximation, should 
be the better satisfied the closer T is to T 0, in­
asmuch as in this theory the expansion is actually 
carried out over the small parameter 
(T- T 0 )/T0• [G] In this connection, it is com­
pletely beyond understanding why the inequality 
~C/C < 1.4, introduced within the framework 
of the theory of weak coupling, is not satisfied. 
Eliashberg [7] advanced the opinion that the limit 
of applicability of the BCS theory is determined 
by the range of temperatures in which the damp­
ing becomes of the order of the gap. However, 
calculations 2) do not bear out this assumption. 

APPENDIX 

In Sec. 1, we introduced an auxiliary function 
y(p1p3 ) defined by the equation 

r (PIPs) = r<tl (PtPs) 

~~ d3k 
- T ~ j (2n)3 y(tl (Ptk) Go (k) Go (- k)r (kpa). (A.1) 

We are interested in the behavior of y at tem­
peratures close to T 0• The dependence of y on T 
can be determined by making use of the fact that 
G0 and y<1) do not depend on T, by definition. The 
temperature enters into G0 and y< 0 only through 
the discrete frequencies. For real frequencies, G0 

and y< 0 do not in general contain the temperature. 
Therefore, it is convenient to carry out analytic 
continuation of (A.1) on the real axis. One then ob­
tains for y, as a function of the temperature, a 
differential equation which is easily solved. 

The transition from summation over discrete 
frequencies to integration over the re~l axis is 

2)T. K. Melik-Barkhudarov, private communication. 
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effected in the usual fashion with the help of the 
function tanh ( E: /2T), which has poles at the points 
e: = iwn. Here it is necessary to take into account 
the analytic properties of the integrands. As is 
well known, G0 has a cut along the real axis, while 
y<O ( PtPa) and y( p1p3 ) have the following cuts as 
analytic functions of the frequency variables e: 1 
and e:3 (see [B]): 

1) Im e, = Im ea = 0, 2) Im (e,- ea) = 0, 

3) Im (et + e3) = 0. (A.2) 

It is also necessary to take into account the sym­
metry properties of y< 0 and y relative to the 
change of sign of the frequency variables. 

We now denote by Yt ( e: 1 e:3 ) the value of the 
function y on the upper edges of all the cuts (A.2) 
and by y2( e: 1e:3 ) the value of y on the lower edge 
of the cut 2) and on the upper edges of the remain­
ing cuts. The corresponding values of the function 
y<O are denoted by yp~. 

' The equations for Yt and y2 are determined as 
the result of analytic continuation of (A.1) on the 
real values of the frequencies, and have the form 

( -1 r e 
1'1 elea)- Y1 11> (elea) ___,.. Zni .l de th 2T GR (e) GA (-e) 

1 r e . 
x r 1<1>(e1e)r2(eea)- Zni .l deeth ZT {GR(e + ea)GA 

-oo 

x (- e- ea) r1<1> (e1, e + ea)[r!(e + ea, ea) 

- r2(e + ea, ea)l+ GR (e + et) GA (- e- e1) Y1 (e + e1ea) 

X lr2<1> (e1, e + e1)- r1<1> (e1, e + e1)]}, (A.3) 

1 00 e 
xr1(l>(ele)r2(eea) - 2ni ~ decth2T{GR(e+ e.)GA 

X(- e- ea) r2<1> (e1, e + ea) lr1 (e + ea, ea) 

- r2 (e + ea, ea)] + GR (e + e1) GA (- e- e1) 

X Y2 (e + e1, ea) lr2(1) (e1, e + e1)- r<1> (e" e + e1)]}. 

(A.4)* 

Here GR and GA are respectively the retarded 
and advanced Green's functions of the electron at 
T = T 0• For brevity, the dependences on the mo­
menta and the integration over them are omitted 
in (A.3), (A.4). 

The functions GR,A and y<0 do not depend on 
T. Terms with coth ( e: /2T ) contain a factor of the 
form ( y1 - y2 ) which represents the difference of 
retarded and advanced functions of the Bose type, 

*th = tanh, cth = coth. 

i.e., it vanishes for e: = 0. For the same reason, 
at T « p, one can make the substitution: 

cth 2~-+ sign e. (A.5) 

The justification of such a substitution is the fact 
that after it the equation for the difference y1 - y2 

generally does not contain T, that is, y1 - y2 is 
not a singular function and therefore has the char­
acteristic dimension of ~ p. in frequency. 

After the substitution (A.5), the kernels of 
Eqs. (A.3) and (A.4) depend on T only through 
tanh ( e: /2T ) . This function differs from sign e: 
in the narrow region E: ~ T. Taking this into ac­
count, we differentiate (A.3) with respect to T: 

or 1 ( elea) 1 r e de G ( ) <1> ( ) ( ) 
oT ---;. 4niT2) ch2 (e I 2T) GR (e) A - e rl ele r2 eea 

1 r d h e G ( ) G ( ) <1> ( ) or1 (eea) 
- 2ni) et 2T ReA -erl ele oT 

-00 

(A.6) 

Here it is taken into account that By/BT = By2/aT. 
Integration in the first term on the right in 

(A. 6) is carried out in the narrow region E, vI p- Po I 
~ T. In this region y and y< 0 change slightly and 
one can take them out from under the integral sign. 
Then the integral is computed if one makes use of 
the expression for G (1.4). As a result, Eq. (A.6) 
takes the form 

or! (elea) (j, 
oT - T ril) (eiO) r2 (Oea) 

-1 co~ e 
-+ -. de lh -- GR (e) GA (-e) r(l) (e1e) 

2m . 2T 1 
-oo 

-co 

ao = al T~T,, Vo = v\ T~T,. 

The solution of Eq. (A. 7) has the form 

8y,(PIPJ) I oT = aT-'y,(p,O)y2(0pa), 

(A. 7) 

(A.8) 

which can be established by direct substitution. In 
(A.8) p1 and p3 are 4-momenta and 

Y1 (piO) = r1 (PIPa)l,~jp,t-p,=o' 

For y 1 ( 00) the equation has the form 
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The solution of this equation, which goes to in­
finity for T = T0, has the form -y11(00) 
= aln (T/T0 ). For T -T0 « T 0, we get 

Y1 (00) =- To_i_. 
r:t T- T 0 

For y(p1p3 ), we get the expression 

Y(PIPa) = -x(pi)x(Pa) I (T- To), 

where the function x(p) obeys the equation 

and is normalized by the condition 

'X(P)!•=IPI-Po=O = (Tofay'l•. 

(A.9) 

(A.10) 

(A.12) 

Equation (A.ll) is obtained if one substitutes (A.10) 
and (A.1) and takes the limit Tk----. T 0• The equa­
tion (A.10) is valid if the electrons are combined 
with zero total momentum. 
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