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The high-frequency conductivity of a metal in a quantized magnetic field is studied theor
etically. It is shown that quantization of the electron states results in giant quantum oscilla
tions of the dissipative part, due to Landau damping, of the conductivity tensor. The effect of 
these oscillations on the spectrum, damping, and polarization of a helicoidal electromagnetic 
wave in a metal with an arbitrary carrier dispersion law is considered. It is found that the 
damping and polarization of the helicoidal wave undergoes strong quantum oscillations upon 
variation of the magnetic field. The effect of electron scattering on the amplitude and wave
form of the oscillations is investigated. 

ELECTROMAGNETIC excitations of various types 
can exist in metals in the presence of a strong 
magnetic field. We have developed a theory for the 
propagation of electromagnetic waves under con
ditions of strong spatial dispersion, when the wave
length is much smaller than the mean free path of 
the conduction electrons[ 1• 2]. 

In metals with unequal concentrations of the 
electrons and "holes" (n1 "'- n 2), helicoidal elec
tromagnetic fields exist with quadratic spectrum 
and elliptical polarization. The frequency w of 
these excitations does not exceed the cyclotron 
frequency n of the conduction electron, and their 
wavelength is large compared with the dimensions 
of the electron orbits in the magnetic field. At 
sufficiently large carrier mean free path and not 
too small frequencies w, the damping of the exci
tation is due to the spatial dispersion (Landau 
damping). 

We have already considered [t, 2] the classical 
limit n:n « T (T-temperature in energy units). 
In the present paper we investigate the quantum 
case n:n » T. As is well known, the Landau damp
ing is due to the electrons which move in phase 
with the wave. The quantization of the electron 
states causes such electrons to be located near 
the Fermi surface only for definite values of the 
magnetic field H. The Landau damping turns out 
to be in this case a periodic function of H. When 
ultrasound propagates through the metal, this leads 
to giant oscillations of the absorption coefficient 
as a function of the magnetic field [3•4J. Oscilla
tions of a similar type should be observed also in 

the damping of the electromagnetic waves. 
1. We consider a plane monochromatic elec

tromagnetic wave with frequency w and wave vec
tor k propagating in an infinite metal at an angle cp 
to the direction of the constant magnetic field H. 
We choose a coordinate system such that the z axis 
is directed along H and the x axis is transverse to 
k and H. 

The dispersion equation which determines the 
spectrum and the damping of the electromagnetic 
wave was obtained in [i, 2] independently of the re
lation between nn and T. Therefore in the quan
tum case n n » T we can use the dispersion equa
tion from[t, 2] in which, however, the expression for 
the conductivity tensor u af3 (k, w, H) must take 
into account the quantization of the energy of the 
electrons in the magnetic field. The kinetic equa
tion can in general not be used to calculate the 
tensor u a{3 in the limiting quantum case, and we 
must use the quantum equation for the electron 
density matrix. However, before we proceed to ob
tain a quantum formula for uaf3• we note the follow
ing. The spectru!Jl of the electromagnetic wave is 
determined by the antihermitian part of the conduc
tivity tensor. In the limiting cases when kR « 1 
(R-characteristic Larmor radius of the electrons) 
all the electrons make the same contribution to this 
part of the tensor, the magnitude of which is not 
affected by the quantization. Therefore, if the 
hermitian part of the conductivity tensor u ~J is 
small also in the quantum limit compared with the 
antihermitian part u ~J, then the spectrum of the 
electromagnetic excitations remains unchanged. 
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On the other hand, the damping of the wave, which 
as before is determined by the hermitian part 
a ~hJ, is essentially quantum. 

In [2] we obtain a classical equation for the cur
rent density j (k, w, H) in the case of a strong 
magnetic field and a strong spatial dispersion: 

l* = v!(v - iw), (1.1) 

where v-characteristic Fermi velocity and 
v-frequency of collisions between the electrons 
and the scatterers. 

In the case of a closed Fermi surface, the 
asymptotic expression for j is 

j (k, w, H)~=~~~ [kEl + s0h (hE)+~ Cw (w*E); (1.2)* 

here E-electric field vector of the wave; N = n 1 

- n2; h = H/H. 
The first term in (1.2) is the non-dissipative 

current, analogous to the Hall current in the static 
case. The quantity 

s0 = 2:: ~ (v- iw) I :~ I (1. 3) 
z 

characterizes the conductivity which is longitudinal 
relative to H; here t -chemical potential, and the 
symbol ~ denotes summation of analogous expres
sions for different groups of carriers. 

The value of s 0 is determined by the contribu
tion of all the electrons on the Fermi surface. 
Therefore in the quasi classical approximation 

T ~ nQ ~I~ (1.4) 

the quantization of the electron states leads only to 
the appearance in the collision frequency v of 
small terms which oscillate with variation of the 
magnetic field (the Shubnikov-deHaas effect). In 
the present paper we are not interested in this ef
fect. 

The situation is different with the last term in 
(1.2), the magnitude of which is due to the electrons 
moving in phase with the wave (the Landau damp
ing). The complex vector w characterizing the 
average velocity of the.se electrons can be repre
sented in the form [2] 

. rk r 
U'x = l ell <,x, 

. rk 
U'y = - l e 11 ~Y' u· -- _w_ (1.5) 

z- kz' 

where tx and ty are quantities of the order of the 
Fermi energy t, which depend on the form of the 
Fermi surface and on the orientation of the vectors 
k and H relative to the crystal axes. In the par
ticular case when the vector H is parallel to a 
symmetry axis of high order, or when the spectrum 
of the carriers is isotropic, we have 

~x =sin cp (S/2nm) e-=::: , ~Y = 0; 
Pz=Pzn (1.6) 

*[kE] = k X E, (hE) = h 0 E. 

here S (E, Pz) -area of the intersection between the 
surface E(p) = E and the plane pz = const; p
quasi-momentum; m = (21rr1 88/BE -electron 
effective mass; Pzo is a solution of the equation 

v (~ p) == -- (2mnpoS(~,p~ ~~ ~ =:=wz, (1.7) 
z ' z a Pz k z 

where v = 8E/Bp-electron velocity, and the bar 
denotes averaging over the positions of the elec
tron on the orbit with specified values of E and Pz· 
In the case of a convex singly-connected Fermi 
surface, Eq. (1. 7) has only one solution. 

In accord with the previously obtained data [2] 

C is given by 

Ccr= 2~~3 ~de ~f ~dpzlmll\(w-kzvz). (1.8) 

Quantization causes the electrons with Vz = Wz to 
be on the Fermi surface only for different values 
of the magnetic field. For other values of H, such 
electrons are far from the Fermi surface. Conse
quently the quantity C, together with the Landau 
damping, decreases abruptly. 

We note that in the calculation of the Landau 
damping in the classical limit n Q « T we can 
neglect the collisions between the electrons and the 
scatterers (v - 0). In the quantum case (1.4) the 
scattering of the electrons leads to the smearing 
and smoothing of the quantum oscillations, and its 
role is appreciable [ 5]. 

2. We now proceed to calculate the conductivity 
tensor when conditions (1.1) and (1.4) are satisfied. 
According to [sJ, in the absence of electron scatter
ing aa{3 takes the form 

Ga.~ (k, w, H)~~ ~a,- fa,~ d3r exp (- ikr) 
aa' Waa' • 

<a 1 ia. (r) I a'> <a' I i~ (0) I a> 
X L'l+i(wa'a-w) 

(2.1) 

Here (a lja (r) I a') is the matrix element of the 
operator of the a -component of the current den
sity; a-complete set of quantum numbers charac
terizing the state of the electron in the magnetic 
field (magnetic quantum number n, quasi-momen
tum projection pz and spin projection Sz on the 
direction of the magnetic field, and the coordinate 
X of the center of rotation); nwa'a = Ea' - Ea
energy difference; fa-Fermi function of argument 
ka - t)/T; the adiabatic parameter ~- 0. 

The energy eigenvalues Ea depend on the quan
tum numbers n, Pz• and Sz, and are degenerate in 
X: 

(2.2) 

where Sz = ± 1; J-1. = en/2moc-Bohr magneton; 
m 0-mass of free electron; Enpz is determined in 
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the quasi classical approximation by the equation [ 7] 

(2.3) 

It is easy to show that the expression in the 
numerator of (2.1) is hermitian. Therefore the 
hermitian part of the conductivity tensor, which is 
of interest to us, can be represented in the form 

a~~)=~[/ (ea)- 1 (ea + nw)l (1iwt1 nb (wa•a- w) 
aa' (2. 4) 

X <all<X(k)la')(a'lifl(O)Ia), 
where 

(a I J <X (k) I a') = ~ d3 r (a 1 j <X (r) 1 a') e-ikr. (2 .5) 

To account for the scattering of the electrons in 
the relaxation time approximation, the 6-function 
with the energy conservation law in (2.4) should 
be "smeared out" by replacing the adiabatic 
parameter ~ with the collision frequency v. Then 1l 

a(h)= ~ f (ea)- f (ea + nw) v 
<Xfl aa' nw v•+(w-wa•a)• (2.6) 

X (a IJ<X (k) 1 a') (a' IJJl (0) I a). 

In the case of isotropic electron scattering, and 
when conditions (1.1) and (1.4) are satisfied, 
formula (2.6) can be proved rigorously with the aid 
of a method developed previously [ 5]. 

Let us investigate formula (2.6). The different 
terms in the sums over n and n' have different 
orders of magntiude. In the terms with n' "" n the 
energy difference w aa' is much larger than in the 
diagonal terms with n' = n. In fact, the matrix ele
ment (a I J (k) I a') contains a factor Opz, pz + nkz, 
which expresses the conservation of the 
z-component of the momentum when the electron 
absorbs a quantum fiw of the electromagnetic 
field. Therefore 
1iWa•a = e , , - e = (n'- n) 1iQ, 

n. p ztBz n, Pz• Sz (2.7) 

Vzn (pz) = 8enpzs/8Pz• (2.8) 
It follows hence that the terms with n "" n' for 
different n and n' are quantities of the same order 
of magnitude. In other words, the sum of the terms 
with n "" n' is due to the contribution of all the 
electrons on the Fermi surface, and the corres
ponding part u ~hJ does not contain any quantum 
effects (if we disregard the Shubnikov-deHaas 
oscillations). This part of u ~h~ is small compared 
with the Landau damping and does not interest us 
here. 

On the .other hand, the magnitude of the sum of 

l)We note that (2.6) differs from the formula for the high 
frequency conductivity of the metal in a quantizing magnetic 
field, obtained by Azbed•] with the aid of the quantum kinetic 
equation. 

the terms with n' = n is determined by those elec
trons for which Vzn R;; Wz « v (in particular, this 
can be only one term with a minimu(h) value 
I v zn - w z I ) . This is the part of u ahJ which yields 
the Landau damping in the quantum case. 

It is possible to show with the aid of rather 
laborious transformations that 

M"-il (np,, n'p~) = ~ (npzX I J<X (k), n'p~X') 
X' 

x(n'p~X' I / 13 (0) I npzX> = + ~ (npzX I J,. (k) I n'p~X') 
X' 

(2.9) 

where V -volume of the crystal (we did not write 
out the spin quantum number Sz, since the opera
tor j is diagonal in the electron spin). 

In the quasi-classical case (1.4) the quantities 
Maf3 (2.9) are smooth functions of n and Pz· On 
the other hand, the difference in the Fermi func
tions in (2.6) differs from zero only when 
I Ea - tl « fin. The function [v 2 + (w - wa'a) 2]-1, 

however, has a sharp maximum at Vzn ~"::< Wz· 
Therefore in the case (1.4) the quantities Maf3 in 
formula (2.6) can be replaced by their limiting 
classical values [sJ, i.e., 

(2.10) 

Thus, the conductivity current density j (k, w, H) 
can in this case be represented in the form (1.2), 
where 

C = z~;;a +~fie: ~~dpz[f(enpzsJ-/(enpzsz+Tiw)] 
8 z n 

(2.11) 1 v 
X nnw v• + [w- kzvzn (Pz)J2 . 

In the case when fi Q « T, the summation over 
n can be replaced by integration, and (2. 11) coin
cides with its classical limit (1.8). 

3. Let us consider first the idealized case of 
absolute zero temperature and no electron scatter
ing (v - 0). Integration with respect to Pz in (2.11) 
using the 6-function yields 

where 8 (x) = 1 for X > 0 and 8 (x) = 0 for 
X < 0. 

(3.1) 

Formula (3.1) shows that the function C (k, w, H) 
differs from zero if the magnetic field is such that 
for one of the n' s the following inequalities are 
satisfied: 

(3.2) 
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The conditions (3.2) signify that in the interval 
[?;" - nw, ?;"] there are near the Fermi surface 
electrons that move in phase with the wave. If one 
of the inequalities of (3.2) is not satisfied, then 
there are no electrons with Vzn = Wz in this inter
val, and C vanishes. 

Thus, in the case in question C, viewed as a 
function of H, is an aggregate of narrow and high 
rectangular maxima, which are periodic in the 
reciprocal of the magnetic field. The distance be
tween maxima t.H ~ Hn fl/t, and their width is 
oH ~ Hn wIt. These quantum oscillations of the 
hermitian part of the high-frequency conductivity 
are analogous to the giant oscillations for the ab
sorption of ultrasound by metals in the magnetic 
field [3]. 

Outside the maxima, there is no Landau damping 
in this case (C = 0). fu a metal with N or- 0 there 
can propagate in this case an undamped helicoidal 
wave. Its spectrum and polarization remain the 
same as in the classical limit n fl. « T [ i]: 

w (k) == ck [ kH [j4:n: I Ne I, (3.3) 

Ey = iEx sec cp, Ez = 0. 
(3.4) 

The electric field vector E in the helicoidal wave 
is elliptically polarized in the plane perpendicular 
to the constant magnetic field. The field component 
transverse to k revolves in a circle. 

Comparison of (3 .1) and (1. 8) shows that the 
value of C at the maxima is fl/2w » 1 times larger 
than the limiting classical value Ccl· Therefore, if 
conditions (3.2) are satisfied, the hermitian part of 
the conductivity tensor becomes larger than the 
antihermitian part: I a ihJ I » I a ~aJ 1. Maxwell's 
equations for the spectrum, damping, and polariza
tion of the wave take the form 

E-n (nE) = 4~:; 

X{:~ [nE] + s0h (hE)+ Cw (w*E)}; 
k 

n=T· (3.5) 

fu the right balf of (3.5) we have left out the 
summation sign in the last term, since in the gen
eral case the po'sitions of the maxima do not coin
cide for different groups of carriers (and for 
different Pzo· 

To obtain the dispersion equation it is conven
ient to eliminate first the longitudinal component of 
the electric field E 11 n = E - El from the system 
(3.5). Taking the scalar product of (3.5) and n, we 
get 

C (nw) (w*E _1_) +so (nh) (hE _1_) 
E11 =- 2 2 • 

C I nw I + so (nh) 
(3.6) 

After eliminating E11 , the equation for E1 assumes 
the form 

E . 4nwNe [ E ] _ . 4nws0 C ( *E ) [C I 12 + 2 ]-1. 
_1_ - l kc (kH) n _1_ - l ~ u u _1_ nw s 0nz , 

u = [n [wh]]. (3.7) 

Equating to zero the determinant of the system 
(3. 7) we get the dispersion equation 

(02 = ( kckH )2 { 1- 4niws0 C (n; I wx 12+ I wy I")} (3 . 8 ) 
4nNe k'c2 C 1 nw j2 + s0 n~ ' 

It is easy to see that 

I So I cw; I~ kR ~ 1. (3.9) 

Therefore the relative damping of the wave is 
small. Neglecting s 0m~ in the denominator of the 
second term in (3.8), we get 

2 _ ( ck.kH )2 { ( wxD.)2 I wx l 2n~ +I wy 12} . 
(0 ~-- 1- -- , 

- 1 4nNe kckz 1 nw j2 

xt = 4ne2~ I dn / di;, I (3.10) 

which is the reciprocal of the square of the Debye
Hiickel screening radius. 

Let us investigate the influence of quantization 
on the propagation of the helicoidal wave in the 
general case of an anisotropic Fermi surface and 
arbitrary direction of the magnetic field, when 
I Wx I ~ I wy I ~ kRv. 

In the region of not too strong magnetic fields, 
satisfying the condition 

H ~ 106 Oe, (3.11) 

w~ « I Wy 1 2, and the spectrum of the wave is of 
the form 

ck I kH I { f/2 ( ~; ) [ dn I} 
W=4n Ne i-8nN2sin2qJ 1 + ~~ ~ 1 -;Jr ' (3.12) 

Thus, in spite of the large value of the Landau 
damping at the maxima of the giant oscillations of 
conductivity, there exists in the metal a weakly 
damped helicoidal electromagnetic wave. This 
wave can propagate because the dissipative current 
Cw (w · E) connected with the Landau damping is 
missing if the vector of the electric field of the 
wave E is orthogonal to w. Therefore in the case 
(3 .11) the helicoidal wave is elliptically polarized 
in the plane perpendicular to the vector with com
ponents ( Wx, Wy, 0). The transverse part of E1 
again revolves in a circle. Consequently, giant 
quantum oscillations of the hermitian part of the 
conductivity lead to sharp periodic changes in the 
longitudinal component of the field E11 (i.e., polar
ization of the wave), and also to relatively small 
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(4.2)* changes in the spectrum [second term in the right 
half of (3.12)). 

We note that if the positions of the maxima of 
the giant oscillations a ~hJ for different groups of 
carriers coincide, then the energy dissipation of 
the helicoidal wave 

jE* = ~ C I wE 1
2 

vanishes only when Ex = Ey = 0, and consequently 
there is no weakly damped helicoidal wave. 

In the region of strong magnetic fields 

H > 106 Oe, (3.13) 

the quantity I w~ I can be neglected compared with 
w~ and 

2 _ (kckH)2 {i 4:n: (rz + tz)"';ll'!!':_l} 
(J) - 4:n:N e J , - J12 ~x -y LJ d~ ' (3.14) 

In this case the electric field E is polarized in the 
same way as outside the maxima of the function C 
(3 .4). 

Let us discuss also the special case when 
nywy = 0. This can occur if the spectrum of the 
electrons is isotropic or if the vector H is direc
ted along a symmetry axis of order higher than 
2 (wy = 0), and also for k II H (ny = 0). The spec
trum of the electromagnetic wave is determined in 
this case by formula (3.14), independently of the 
value of the second term in (3.14). An undamped 
helicoidal wave exists in this case in the region of 
strong fields (3.13). In the region of weaker fields 
(3.11) this wave should have at the maxima of C an 
imaginary wave vector and will attenuate within a 
wavelength. The quantum effect consists in the 
latter case in the vanishing of the undamped wave 
(3.3) at the maxima of giant oscillations of the con
ductivity. 

We note that if both vectors k and H are paral
lel to a high-order symmetry axis, then tx = ty = 0 
and there is no Landau damping. 

4. We consider further the case of finite tem
peratures T and assume that 

Tiw<T<TiQ. (4.1) 

Then 

and for v- 0 formula (2.11) leads to the following 
expression for C: 

e2 heH f.Lo _2 ( ~ - 8n,Pzo•z ) . 
C = 2:n:h3 2} SeT W ch 2T ' 

•z 
Here 

n 0-magnetic quantum number n for which 
It - Enpzoszl is minimal. 

Using (1.11) for Ccl• we can readily represent 
(4.2) in the form 

C C M M = ~ ~ h-2 { en,Pzo•z - ~ } 
= cl ' ST LJ c 2T ' (4.3) 

•z 

When H varies, the argument of the hyperbolic 
cosine in (4.3) Is - Enopz szi/2T oscillates from 
zero to a value nQ/4T. In°this case the hermitian 
part of the conductivity tensor 

a~~)= ~ Cwa.w~ 

experiences giant quantum oscillations, which are 
fully analogous to the oscillations of ultrasound ab
sorption [ 3]. 

If the conductivity Cwaw$ connected with the 
Landau damping is the largest at the maxima of the 
giant oscillations, then the qualitative character of 
the results of the preceding section remains the 
same. We shall stop to discuss the case when this 
quantum part of the conductivity is much smaller 
than the classical part and can exert an influence 
only on the damping and polarization of a wave 
whose spectrum is determined by (3.3). 

In the case of relatively strong magnetic fields, 
satisfying the condition 

~· ( c:~Sy) 2 1 kzl'l M < 1, (4.4) 

the quantity I s 0 I is large compared with the term 
~C In· wl 2, which can be neglected in (3.8). The 
damping of the helicoidal wave w" obtained directly 
from (3.8) is of the form 

w" k f.L ~ w = 4nn• N ~ i- (6~ + 6~) M (H) ~ £.J kRM (H), (4.5) 

and the polarization of the electric field E coin
cides with (3.4). Consequently, in the case of (4.4) 
the quantization of the electrons does not influence 
the spectrum or the polarization of the wave, and 
its damping. is experienced by the quantum oscilla
tions described by the function M (H) (4.3). 

We note that in the special cases when mywy 
= 0 (the vector H is directed along a high-order 
symmetry axis or along the vector k), there is no 
need to satisfy the condition (4.4) in order for 
formula (4.5) to be valid. 

*ch =cosh. 
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In the case when 

(4.6) 

which is the inverse of (4.4), it is necessary to 
neglect in Maxwell's equations (3.5) the term with 
s 0, and to sum in the last term the analogous ex
pressions for the different groups of carriers. The 
spectrum of the helicoidal wave does not change in 
this case, and the damping is determined by the 
formula 

w" - _k_ {"' J1'll__ 1"2 M - ("' flo 1" 1" M)2 ("' flo 1"2 I11)-l} . 
w - 4.Jtll'N L; Q "x L; Q \ox\oy L; Q \oy 

(4. 7) 

The expression (4. 7) differs from (4 .5) in that a 
second term appears in the right side. This differ
ence is quite important. Analysis shows that the 
relative damping of the wave is always of the order 
of kRMmin' i.e., the relative amplitude of the 
damping oscillations is of the order of unity, where
as the quantity M (H) itself experiences giant os-
c illations. Here 

J!Q ( F!Q) il1min ~ 2T exp - 2T . (4.8) 

This decrease in the amplitude of the quantum 
oscillations w 11 compared with (4.5) is due to the 
fact that in the maxima of the giant oscillations the 
main terms of (4.7), which contain Mmax• cancel 
out. It must be emphasized that in these cases, 
when nywy = 0, the damping of the wave w 11 is de
termined by formula (4.5) independently of the re
lation between I s 0 I and C In · w 12 • Therefore the 
anisotropy of the Fermi surface exerts an essen
tial influence on the maximum value of the damping 
and the amplitude of its oscillations. 

The transverse part of the field E1 >is circularly 
polarized, while the longitudinal component E11 is 
determined from the condition of the orthogonality 
of E to the dissipative Landau current 

~ C (Ew) (w*n) = 0. (4.9) 

The quantity E11 experiences giant oscillations. 
Thus, in the case of (4.6), the quantization of 

the electrons leads to an appreciable change not 
only in the damping but also in the polarization of 
the helicoidal wave. 

5. Let us investigate the influence of scattering 
of electrons on the quantum oscillations of the 
helicoidal wave in the case (4.1). In the limit when 
v « w « I kz v I , the main contribution to the 
Landau damping is made by electrons with 
Pz ~ Pzo· Therefore in formula (2. 11) the energy 
Enpz and the velocity Vzn (pz) can be expanded in 

powers of pz - pz 0 and only the linear terms of 
the expansion retained. As a result we can repre
sent the expression for C in the form 

+oo 

M (n, Sz) = 8~~ ~ 1 ~ x" ch-2 [ ~ (n, Sz) - ~ J , 
-00 

X 

'2Tk; 
a·--

-- floWV ' 

(5.1) 

(5.2) 

(5.3) 

We consider first the term with n = n 0, for 
which 1.6. I is minimal. When H varies, the quan
tity .6. (n0sz) oscillates within the limits from 
- n!J/4T to n!J/4T. If the amplitude of the os
cillations .6. is much larger than 1/a, then 
M (n0, Sz) experiences giant oscillations. The 
maximum of M (n0, Sz) is reached when .6. = 0. In 
the case when a » 1 

Mmax = 'hQ I 8T. (5.4) 

The minimum value of the function M (n0, Sz) is 
realized when 1.6.! = .6.max = n !J/4T: 

JVlmin = 'hQ I 4:n:Ta~~nax = 2WV[t0 I :n:n Qk~. (5.5) 

If the condition 

(5.6) 

is satisfied, it is sufficient to retain in the sum of 
(5.1) only the one term with n = n 0, and C oscil
lates together with M (n0, sz). 

At low frequencies (w « v) we can set Pzo 
equal to zero; the expansion of Enpz contains then 
only the even powers of pz and the expression for 
M (n, Sz) differs from (5.2) in the fact that in the 
argument of the hyperbolic cosine x/a must be 
replaced by (x/b)2, where b2 = 4T k~/Jl 0 v 2 • It can 
be shown that the inequality (5.6) leads to giant os
cillations of the quantity C in this case, too. 

Using the spectrum of the helicoidal wave (3.3) 
and expressing k in terms of w and H, we can 
represent the condition (5.6) and the inequality 
kR « 1 in the form 

(5. 7) 

where w 0 = (47rNe 2/m) 112 coincides in order of 
magnitude with the plasma frequency of the metal. 

The inequalities (5. 7) together with n !J » T 
determine the region of applicability of the obtained 
results. We note that for pure metals the first of 
the inequalities (5. 7) is well satisfied when 
w > 0.01 v. 
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In the case of low frequencies, when the condi
tion (5.6) is replaced by its inverse, many n's are 
significant in the sum of (5.1). Simple calculations 
using the Poisson summation formula and the sad
dle point method lead to a result analogous to that 
obtained previously [ 5]: 

2 I kz I liQ '/, '; As ocS :rt · C=Ccl{i+---nvCJ ~ Vscos(eliH-ns- 4 )}. 
.'l=l 

A = ( 2:rt2sT ) h-l ( 2:rr2sT ) 
s liQ s liQ . (5 .8) 

In this case the relative amplitude of the quantum 
oscillations of the damping of the helicoidal wave 
is of the order of ( w 0/v) ( fiw /mc 2 ) t/ 2 « 1. 
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