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Scattering and bremsstrahlung of a fast charged particle in a medium are considered. The 
probability of scattering accompanied by a given"'radiation energy loss is calculated with 
double logarithmic accuracy. 

SUMMATIONS of radiation corrections to the 
scattering processes of high energy electrons 
have been carried out in a number of papers. [1, 2] 

It has been shown that the scattering cross sec
tion for processes accompanied by energy losses 
in the form of radiated photons which do not ex
ceed a certain threshold value falls off in a char
acteristic manner as the electron energy in
creases. The derivation of this result is based on 
taking into account soft virtual and real photons. 
However, it is well known that in a medium the 
emission of such photons at high energies of the 
scattered particle is suppressed [3]. It is, there
fore, of interest to determine to what extent the 
conclusion of references [1•2] is preserved in the 
presence of a medium. As we shall see, the effect 
remains, although it can be significantly weakened. 
In our calculations instead of summing diagrams 
we shall utilize a simpler method. 

Since the basic effect results from the interac
tion of the particle with the field of the fast pho
tons the motion of the particle is regarded as 
being given in the first approximation .• Moreover, 
the interaction of soft photons with the medium 
may be described macroscopically by introducing 
the dielectric permittivity E, which in future we 
shall treat as a real positive quantity that does 
not explicitly depend on the temperature. We ex
pand the potential of the photon field Af.J- ( x) in 
terms of the creation and annihilation operators 
ck, , ck,w It can easily be shown that if one uses 
thef.J-gauge in which the Green's function of the 
electromagnetic field is diagonal one obtains 

i=1,2,3, 

Here ck,f.J- and ck,f.J- obey the usual commutation 

relations for the electromagnetic field, while 
Wk = k/..fE. 

Now utilizing the general formula relating the 
chronological and the normal products the expres
sion for the scattering matrix 

can be written in the form [4J 

S = exp {-+ ~ ~ d4 x d4yjp. (x) D~. (x - y) j. (y)} 

x N exp { i ~ d4 xjp. (x)Ap. (x)} (2) 

or in the momentum representation 

X ct, i- ; e (j~ (k, Wk) Ck,o + io (k, wk) ct, 0) ]} • ( 3) 

Here D~ v ( x - y) is defined as the difference of 
the chronological and the normal products of the 
pair of operators A11 (x) and Av (y). The normal 
product can be most conveniently chosen in such 
a way that its average over the ground state of the 
system is equal to zero. Then nz /) (X - y) is the 
usual causal Green's function for soft photons in 
a medium at zero temperature [5]. In the momen-
tum representation we have 

DC . 6ik. . k 1 2 3 
ik = l ek~ - kz + i{i ' l' = ' ' ; 

DC - ..!:.._ 1 
oo - e k2 k' , .{j ' eo- ... -rl 

D~0 = 0. (4) 
(4) 

Taking (4) into account the first exponential factor 
in (3) can finally be brought to the following form 

(1) omitting an inessential numerical phase 
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(5) 

By utilizing the scattering matrix so obtained 
we can now calculate in the usual manner the 
probability of scattering of a charged particle ac
companied by the emission of a definite number 
of photons. Since Ck, and ck+ commute when ,,.. ,f..L 
either k or f..L are different, we can treat each 
momentum and polarization separately. After a 
fairly cumbersome, but in principle straightfor
ward calculation we obtain that the probability of 
scattering without emission of photons of momen
tum k and polarization i averaged over the 
statistical Gibbs ensemble at a temperature T is 
equal to 

exp (- p cth ;; ) I 0 ( pjsh ;; ) . 

Here I0 is the zero order Bessel function of 
imaginary argument 

P = I j; (k, wk) I2/2V wke. 

(6)* 

In order to obtain the probability of the process 
of scattering in the course of which no photons 
from a given set of momenta and polarizations are 
emitted it is sufficient to multiply together ex
pressions which relate to each momentum and 
polarization from this set separately. 

We must now determine under what conditions 
it is justified to utilize expression (3) for the 
scattering matrix. In order to do this we note that 
it is a limiting case of the general functional solu
tion [S] for the scattering of a particle with a suf
ficiently large momentum transfer if in the latter 
we neglect the polarization term and take into 
account only the contribution of the soft virtual 
and real photons whose momentum is considerably 
smaller than the momentum of the scattered par
ticle. In this calculation the total contribution of 
virtual photons corresponds to the first exponen
tial factor in (3), and the total contribution of real 
photons naturally corresponds to the second ex
ponential factor. The polarization of the medium 
was taken into account above by the introduction 
of E. As Ter-Mikaelyan [3•7] has shown such a 
description is effective for the process under con
sideration up to the highest frequencies if the en
ergy of the scattered particle is sufficiently high. 
The polarization of the vacuum gives only singly 
logarithmic terms and is therefore not taken into 
account. As regards the softness of the photons, 
as will be seen from the final result the upper 
limit for the momentum of the soft photons in the 
doubly logarithmic approximation can be taken 

*cth = coth; sh = sinh. 

right up to the particle energy E. The contribu
tion of virtual photons of momentum of the order 
of or greater than E does not contain double 
logarithms in the case under consideration and is 
also not taken into account in our approximation. 
Thus, in calculations with doubly logarithmic ac
curacy utilization of ( 3) turns out to be justified 
for the description of the whole scattering proc
ess. 

In accordance with (6) we can now write for the 
probability of scattering with a sufficiently high 
momentum transfer in the course of which pho
tons are radiated only up to the frequency w0, 

with w0 » T, 

E 

w = exp {- (2~)3 ~ k 2 dk ~ dQ V2
1
0k8 [i; (k, wk) j; (k, wk) 

-+ f~ (k, ffik~0/o (k, wk) ]} . (7) 

The absence in this expression of a contribution 
from frequencies w < w0 follows directly from 
the unitarity of the S-matrix, if we remember 
that the motion of the particle is regarded as 
being given. 

To continue with the calculation we must now 
assume an expression for E ( w) and jf..L ( k ). We 
shall assume that w0 » wat• where wat is the 
characteristic frequency of the atomic electrons, 
and we shall take for E( w) its limiting value 
E ( w) = 1 - 47TNe 2/mw2• In finding the current 

jf..L ( k) we shall take the deflection of the particle 
as a result of scattering to be instantaneous. 
Then the integral over the angles in (7) can be 
easily evaluated by using Feynman's parametri
zation and with doubly logarithmic accuracy we 
obtain for (7): 

E 

W= exp{~\' dw 1 (m2 +4rr.Ne•)} 
2n2 ~ w n H2 mw• · 

w, 

From the last expression it can be seen that the 
effect of the medium is significant for [7] 

When condition (9) is satisfied we obtain 
finally with doubly logarithmic accuracy: 

(8) 

(9) 

w = exp {- .!:____ ln!!._ln!!._} exp {.!:.__ In2 Y4nNeE} (10) 
n• m ffio 2n• m'f, ffio • 

The first factor in (10) provides a cutoff of the 
cross section in the case of scattering in vacuo Lt,2]. 

The second factor describes the reduction of this 
effect due to the influence of the medium. The 
first term in its expansion was obtained by the 
perturbation theory method in [7]. (The expansion 
of (10) contains in comparison with reference [7] 

an additional factor Y2.) For reasonable values of 
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the quantities appearing in (10) the polarization of 
the medium does not compensate for the falling 
off of the cross section with energy. 

We also note the following circumstance. De
pending on the conditions of the experiment it 
might turn out more convenient to deal not with 
the limiting frequency w0, but with the maximum 
allowable radiation energy loss .6.E. In this case 
one must simply replace w0 by .6.E in ( 10). This 
substitution in (10) introduces an error which lies 
outside the limit of accuracy of the doubly logarith
mic approximation. 

The author is very grateful foE. L. Fe1nberg 
and E. S. Fradkin for numerous useful discussions. 
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