
SOVIET PHYSICS JETP VOLUME 19, NUMBER 5 NOVEMBER, 1964 

POLARIZATION OF ELECTRONS IN AN INHOMOGENEOUS MAGNETIC FIELD 

S. S. SANNIKOV 

Submitted to JETP editor November 1, 1963 

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1761-1763 (Mary, 1963) 

The possibility of obtaining spiral (polarized parallel or antiparallel to their momentum) 
electrons by means of an inhomogeneous magnetic field is investigated theoretically. The 
correlation between the spin and the momentum is calculated in the nonrelativistic limit. 
It is shown that electrons in passing through an inhomogeneous magnetic field with a gradi
ent along the lines of force acquire a certain longitudinal polarization. 

SEVERAL methods of obtaining polarized elec- taken at any given instant of time are not corre-
trons [t] and several methods for measuring their lated. 
polarization [2J are known. We shall discuss here Having in mind the definition ( 3) and the equa-
the possibility of obtaining spiral electrons (i.e., tions (2) we can easily obtain the equation 1 l for 
electrons polarized parallel or anti parallel to the ~n = ( <Tn): 
direction of their motion) by means of an inhomo
geneous magnetic field. The method under con
sideration may turn out to be effective at low 
electron velocities v « c ( c is the velocity of 
light). Therefore we shall consider the problem 
of the correlation of the mpmentum and the spin 
of the electron in an homogeneous magnetic field 
in the nonrelativistic limit. For this purpose we 
write the Hamiltonian for the problem under con
sideration in the following form 

n 2 eli 
.'JC =2m -g 2mc aH (x), 

li e 
Jt= TV- c-A(x), 

(a is the fine structure constant), where 
div H = 0 and we are considering the region in 
which curl H = 0. Heisenberg's equations for the 
momentum and for the spin give us 

' i M e en 
n= --,;-[n,.1t'J=;:nc[nHJ+g 2mc (aV)H, 

(1) 

· i e 
a=- T [a, .1£] = g me [aH]. (2)* 

In future we. shall be interested in the correla
tion between the spin and the momentum u0 

= <T. n, where the operator n is defined in the 
following manner: 

~ 'V I l: (p, s I n I p, s> l: I 
n = LJ p, ,) <P· sIn I p, s> (p, " ' 

P.a 
(3) 

where I p, ~ ) is the quantum mechanical state of 
the electron of momentum p and spin ~ : 
p = ( 1r), ~ = (a), while the operator 1r = !1f2. 
The expression (3) for n is written taking into 
account the fact that the spin and the momentum 

*[11H] = " x H, (a\7) = a· \!. 

~n = (g- 1) _e [Hn] ~ + g 2eli p-1 {(~V) - (n;) (nV)} (H;) 
rnc ntc 

( n is the unit vector in the direction of the mo
mentum p ). We note that Eq. (4) is nonlinear 
with respect to ~. 

(4) 

We now estimate the order of magnitude of the 
quantities appearing in (4). The characteristic 
frequencies w1 = aeH/2rrmc and w2 

=en I Y'H l/2m2c 2{:l ({:l = v/c) under the condition 
that H ~ 105 oe, I Y'H I ~ 105 oe/cm, and 
{:l ~ 10- 3 (at the same time RL I Y'H 1/H « 1, RL 
is the Larmor radius of the electron) are of the 
order of magnitude w1 ~ 109 sec-t and w2 ~ 10 5 

sec- 1, i.e., Wt >> w2. 

We can average (5) over the time interval 
t » w:t 1, utilizing for this the method of averaging 
over the rapidly rotating phase [3]. As in [3], the 
quantities with the indices II and l are the com
ponents of the corresponding quantities along the 
direction of the field H ( x) and perpendicular to 
the field. We have then 

; = £n-to + £.1. (-t1 cos~+ -t2 sin~), 

p = Pn'to +Pl. (-t1 cos Cl. + -t2 sin Cl.), 

where To = H/H = T1 X T2, Tt = T2 X T0, T2 = To 

X r 1, {:l- gwHt, and a ~ WHt ( WH = eH/mc ). 
From (2) we can obtain equations for ~II· ~ l and 

Pll• Pl: 

l)This equation can be obtained also by a classical anal
ysis of the motion of a particle with an intrinsic angular mo
mentum in an inhomogeneous magnetic field. 
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~11= -SJ.{'t0 COS~[pum-1V,,'t 1 

+ pl. m-1 (V ,, 't1 cos ex+ V ,,'t1 sin ex) I + T0 sin ~ 

X [p 11 m-1V,,'t2 + PJ.m-1 (V,,'t2 cos ex+V,,'t2 sin ex)l}, 

~l. =- sn {'t1 cos ~[p 11 m-1V,,'t0 

+ p 1. m-1 (V ,,'to ex cos+ V ,,'to sin ex) I + 't2 sin ~ 

X [p 11 m-1V,,T0 + Pl.m-1 [V,,'t0 cos ex+V,,'t0 sin ex)]}, 
(5) 

[ \7 T = ( T · \7)] while the equations for PII and p 1 
can be left in the form [3] 

2 

Pi! = ~~~ div't0 + Pl~l. {'tt (V,,'to) cos a+ 't2 (V,,'to)sin ex} 

p2 
+ 2~ {'tt (V,,'to)- 't2 (V,,'t0)} cos 2a 

2 

+ ~~ {'tt (V,,'to) + 't2 (V,,'to)} sin 2ex, 

p = - p II pl. di v 't 
l. I 2m o 

p~l p~l . - ---;n- 'tt (V ,,'to) cos ex- ---;n- 't2 (V ,,'to) sm ex 

PuPJ. - --z,n {'t1 (V,,'to)- 't2 (V,,'t0 )} cos 2ex 

PuPJ. . - --z,n { 'tt(V ,,'to) + 't2 (V ,,'t0)} sm2ex (6) 

(here the equations for PII and p 1 are given with 
an accuracy up to terms of zero order in ti 2l ). 

First of all, as a result of averaging over 
t » w1 1 Eqs. (5) yield 

~II= 0, ~j_ = 0. 

On averaging (4) [in doing this it is necessary to 
utilize relations (5), (6) and (7)] we obtain 

-'- eli -z - -sn = g Zmc su (pi/p3) V,,H, 

where the bar over a letter indicates quantities 
averaged over the period w1 1 

Integration of (8) yields 
t 

~n = 11~11 ~ dt' (iJ}_iii) ('to V) H + £~O) 
0 

2lThe neglected terms lead to a small correction -v11 2 to 
the correlation between spin and momentum. 

(7) 

(8) 

(9) 

( f.l is the magnetic moment of the electron). 
Averaging (9) over the beam under the condition 
that initially the beam of electrons was unpolar
ized, and all the electrons of the beam had the 
same momentum, leads to the expression 

t 

(~n) = {- fl ~ (pl(p3) ('to V) H dt'; (10) 

here <1"n) is the longitudinal polarization of the 
electron beam. 

Thus, we see that an electron beam in passing 
through an inhomogeneous magnetic field with a 
gradient along the lines of force acquires a cer
tain longitudinal polarization. The time during 
which the quantity (10) becomes of the order of 
magnitude of unity is itself of the order of magni
tude of the quantity T = 3po/pl I \i'H I ~ 10- 5 sec, 
and during this time the electrons must traverse 
a distance L = c{3T ~ 102 em. 

We also note that the polarization properties 
of the beam are not altered when the electrons 
are accelerated in systems without a magnetic 
field. In our case, in virtue of the well-known 
relation cr = y5n [4] which is valid at high energies, 
electrons accelerated to high energies remain 
spiral. 
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