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It is shown that the emission of transverse waves by epithermal electrons takes place in the 
field of a plasma wave (in the classical limit) as the result of dipole radiation due to the os
cillations of the electron in the wave (Compton effect on plasma waves), as well as a result of 
passage of the electron through density inhomogeneities created by the plasma wave. The 
emission of transverse waves by electrons is forbidden in the nonrelativistic case v = 0 
(n = c = 1) by interference of these two effects. The forbiddenness does not hold for parti
cles whose masses differ from that of the electron. The radiation spectrum of electrons and 
ions is calculated in the broad energy range from nonrelativistic to relativistic energies. 
The graph technique is used to calculate quantum effects that become significant for secon
dary quantum energies close to the energy of the charged particles. Possible astrophysical 
applications are discussed, as well as the possibility of determining particle energy and mean 
energy density of the plasma waves on the basis of the radiation intensity. It is also shown 
that the frequencies of transverse waves produced in the scattering of cosmic ray electrons 
by plasma waves may considerably exceed the frequency of waves generated by the synchro
tron mechanism. 

INTRODUCTION 

1. The problem of the conversion of longitudinal 
waves of a plasma into transverse waves is of inter
est from the viewpoint of the study of nonlinear ef
fects in plasma, [t] and also for possible astro
physical applications (see [ 2•3]). 

In the present work we consider the conversion 
of a plasma wave into a transverse wave by scatter
ing from an isolated, epithermal charged particle. 
It is necessary to keep in mind that any plasma 
particle can be regarded as a test particle. If the 
analysis is generalized by taking into account spa
tial dispersion, then the resultant probabilities will 
enter directly into the "kinetic equation" that des
cribes the nonlinear effects of wave conversion in 
the plasma. Here we are interested in elementary 
processes and carry out a detailed study, including 
the ultrarelativistic limit. The study of an isolated 
fast charged particle in a medium is essential also 
for questions of the passage through matter of fast 
particles whose temperature differs from zero. 
Under these conditions, there are excitations in the 
medium (longitudinal waves in the plasma), scatter
ing from which produces additional radiation which 
is superimposed on the other radiation. In Sec. 4, 
some possibilities are discussed for the observa
tion of such radiation. The problem here is of in-
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terest as to the presence of transverse waves in a 
beam of fast particles as the result of scattering of 
the plasma waves by the beam particles. For a 
low-density beam, the result can be obtained by 
means of the scattering probabilities from single 
particles as found below. 

2. We shall consider a set of weakly interacting 
charged particles, i.e., the so-called collision-free 
plasma. The effects of interaction of waves in such 
a system with charged particles can be considered 
by perturbation theory. If the nonlinear effects in 
a vacuum correspond to closed electron loops, [4] 

then in a plasma, in the presence of real particles, 
the conversion of waves comes about in the first 
approximation of perturbation theory as the result 
of scattering from real particles. ° For a fast 

l)ln what follows, in the graphical representations of the 
process, the plasma longitudinal wave is pictured as a wavy 
line and the transverse wave by a dotted line, while the vir
tual quantum is represented by the dashed line. 
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FIG. 2. Interaction between waves by means of plasma electrons. Summation is carried out over all electrons of the plasma. 
Pz is the momentum of the test electron which does not change as the result of the interaction. 

epithermal plasma particle, the processes of con
version of longitudinal waves into transverse are 
represented by Fig. 1. 

Processes a and b are similar to the Compton 
effect for a fast particle, while process c des
cribes the nonlinearity of the plasma, the circle 
corresponding to the nonlinear interaction between 
the incident plasma wave, which is scattered by 
the transverse wave, and the field of the electron. 
In the final analysis, the indicated nonlinearity is 
connected with scattering processes on the plasma 
electrons and is determined by the set of graphs 
shown in Fig. 2. 2l Account of the graph c is very 
important, since in the nonrelativistic limit it 
completely compensates the effects arising from 
a and b. 

3. The conservation laws for graphs a, b, and c 
of Fig. 1 are: 

(1.1) 

These connect the frequency w 2 = wt (k2) and the 
direction of the scattered photon with the initial 
momenta of the electron p1 and the momentum of 
the plasma quantum k1 of frequency w~ = wl (k1) 

(the angles are defined in Fig. 3). For frequencies 
w 2 that are much larger than the plasma frequency 
w 0, we have 

(1.2) 

( E"p 1 , Vt = Pt/E"p1 and, mare the energy, velocity, 
and mass, respectively, of the electron before 
scattering). For not very energetic electrons, 

Bp,/m ~min {mlffi 1, m!f k1 [}, (1.3) 

(1.2) becomes simplified: 

I Wt- k,v, cos l'h I 
(1) 2 = 1 - v, cos tt. (1.4) 

The maximum frequency for v - 1 corresponds to 
.J 2 = 0 and .J 1 - 1r (Fig. 3) and is equal to 

2)The electron line pz represents any of the electrons of 
the plasma (l = 1, 2, ... , n). To obtain the vertices c, the 
graphs on the right side of Fig. 2 are summed over all the elec
trons of the plasma (denoted by a summation sign). As a re
sult of summation of a large number of diagrams of very high 
order, the graph c becomes of the same order as a and b. 

ffi:,ax;::::; 2e~,m-2 (ffi 1 (k1) + k1). (1.5) 

Upon satisfaction of the inequality (1.3), the 
quantum effects become negligibly small. The 
intensity of scattering, with (1.3) satisfied, is 
calculated in the next section. The opposite limit
ing case is considered in Sec. 4. 

FIG. 3. Scattering kinematics. l't 1(1't 2) - angle between the 
longitudinal (transverse) quantum and the total momentum. 

2. CLASSICAL LIMIT 

It follows from what has been said above that 
the quantum effects do not play an important role 
when (1.3) is satisfied. Therefore, in the present 
section we carry out a purely classical calculation 
of the radiation of transverse waves by an electron 
scattered from a plasma wave. 

Let the electric field of the plasma wave have 
the form 

(2.1) 

The method of successive approximations is used 
to find the interaction between the wave (2.1) and 
the electron. In the zeroth approximation, we shall 
consider the electron to be moving uniformly and 
rectilinearly with velocity v. A force acts on it 
from the wave (2.1) of the form eE 0 cos (k1 • v- w 1)t. 

In the first approximation to uniform motion, the 
small oscillations shown below are added 3l 

r = vt + R cos Qt, 

R =-~ __§___ (k1 - v (k1v)), Bp1 Q 2kt 

(2.2) 

(2.3) 

If the electron moved in a vacuum according to 
the law (2.2), then for calculation of the resultant 
radiation it would be sufficient to find the oscilla-

3 )Equations (2.2)- (2.6) were obtained as the result of 

solution of the equation dd ~ = eE1 under the assump
t yfl-u2 

tion that E 0 is small so that [u -vi « v. 
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tory part of the dipole moment cR with the aid of 
(2.3) and to calculate of the intensity of the dipole 
radiation; in the language of graphs, this would 
mean a restriction to diagrams a and b (Fig. 1). 
However, the electron under consideration moves 
in an essentially inhomogeneous plasma. Its in
homogeneity is brought about by oscillations of the 
electron density n in the wave (2.1), connected with 
the field of the wave by the equation 

div E = 4:rre (n - n) (2.5) 

(n is the mean value of the electron density). The 
dielectric constant, which depends on n, changes 
simultaneously with the change in density: 

(2.6) 

In addition to the electron in the plasma, the polar
ization produced by it also moves. Because of the 
inhomogeneity of E, a dipole moment is generated 
which partially (for a nonrelativistic electron, com
pletely) cancels the dipole moment of the oscilla
tions of the electron. 

A charge moving in a medium with E that is 
variable in time and space radiates transverse 
waves. The graph c of Fig. 1 corresponds to such 
a mechanism of radiation. We note that the mech
anism of radiation corresponding to graph c in 
Fig. 1 has a well-known analog in the radiation of 
a charge in a layered medium (see [5- 8J). We limit 
ourselves to the case in which the frequencies of 
the radiated transverse waves appreciably exceed 
the frequencies of the longitudinal waves that create 
the density inhomogeneities. This case is the sim
plest. Of course, the graph c also describes the 
case of comparable frequencies. 

Of considerable significance is the fact that the 
phases of the oscillations of the electron and of the 
change in E are not independent. The total scat
tered radiation is not the sum of the radiation 
produced by the oscillations of the electron (graphs 
a, b) and the radiation due to the inhomogeneities 
of the medium (graph c). Interference of these 
radiations is appreciable. A charge moving ac
cording to (2.2) radiates (at an angle J.2 to the ve
locity v) a wave of frequency 

<02 = Qj(i -Vet (w2) v cos 'l't2). (2. 7) 

For simplicity, we restrict ourselves to plasma 
waves whose phase velocity is much less than the 
velocity of light (k1 » w 1), and also to the condi
tion (see above) 

(2.8) 

or 

(2.9) 

The last condition is satisfied if the velocity of the 
charge is appreciably larger than the phase velocity 
of the plasma wave and also the mean thermal 
velocity of the electrons of the plasma, and if the 
angle J.1 is not close to rr/2. The condition (2.9) 
is necessary so that Eq. (2.6) can be used; this 
equation does not take spatial dispersion into ac
count. 4 l 

In accord with (2.5), (2.6), and (2.9), E changes 
in the plasma wave according to the law 

(2.10) 

Let us find the power which an electron moving 
according to (2.2) radiates in a medium with E of 
the form (2 .1 0). This power Q is equal to the mean 
work per unit time performed by the electron in 
motion in the electric field E created by it: 

T/2 

Q =-lim~ ~ dt~d3rE(r, t) j(r, t) 
T~oo -T/2 

= -lim <2~· \ d3k dw j (- k, - u') E (k, w), (2.11) 
T-+co It" 

j (r, t) = e (v - QR sin Qt) 6 (r - vt - R cos Qt), 

(2.12) 

and E ( k, w) and j ( k, w) are the Fourier components 
of the electric field and current density, respec
tively. 

To find the field E ( k, w), we use the Maxwell 
equation 

~E +grad div (e- 1) E- fJ2eE/fJt2 

= 4:rt (fJj/fJt- grad p). 

By substitution of (2 .10), we go over to the Fourier 
representation 

. kiki - w2&ii { Eokt 
zEi (k, w) = (w + i·0)2 _ k2 2mw2 [E; (k- kr, w- w1 ) 

- E; (k + k 1 • w + w1)l - 4: jj(k, w)} (2.13) 

and then solve by the method of successive approxi
mations. 

To find j ( k, w), we use (2.2) and (2.12). After 
substituting the solution (2.13) in (2.11) and keeping 
only terms proportional to E5, we find 

(2.14) 

4)This is not fundamental, and·the results are easily gen
eralized to the case where one must take into account spatial 
dispersion. 
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where 

(2.15) 

The integrand function (2.15) is the power radiated 
in the frequency range dw 2 and with wave vectors 
d 3k2. Account of the change in the plasma density 
would give second terms in the square brackets of 
Eq. (2.15). They are appreciable in the scattering 
of a plasma wave by a nonrelativistic electron 
(v « 1). As is seen from Eq. (2.15), the first term 
in it approaches zero simultaneously with v. 
Therefore, for v « 1, we have {3 ~ v/w 2 and 
Q ~ v 2. The two mechanisms of radiation cancel 
one another. It must be noted that this refers only 
to electrons. For ions, because of their large mass 
M, the conversion of the longitudinal wave to the 
transverse takes place only as the result of the 
inhomogeneous density in the plasma wave and is 
determined by Eq. (2.14) with the replacement of 
{3 by 

(2 .16) 

Therefore, a nonrelativistic ion in a plasma wave 
produces transverse waves that are much larger 
than those produced by the nonrelativistic electron. 
Only for the limit of ultrarelativistic ions, for 
which -J 1 - v2 ~ m/M, is there a dependence of 
the oscillations of the ion itself, and (2.16) is 
violated. 

In the limit v « 1, we obtain the following ex
pressions for the intensity of radiation of electrons 
and ions, respectively: 5' 

(2 .1 7) 

(2.18) 

both ions and electrons radiate at the frequency 
w 2 = k 1v Ieos J.l when v « 1. 

3. SCATTERING OF CHARGED PARTICLES BY 
ISOTROPIC ALLY DISTRIBUTED PLASMA 
WAVES 

We assume that the directions of motion of the 
plasma waves are distributed isotropic ally. In 
astrophysical applications, the latter is not ob
vious, inasmuch as the magnetic field and the 
directional character of the discontinuities can 
have an effect on the distribution of the plasma 
waves. We note that the inhomogeneous distribu
tion of plasma waves can lead to polarization of 
the scattered radiation. We now limit ourselves to 
consideration of the isotropic distribution. 

To find the frequency spectrum of the transverse 
radiation Q ( w2), we average Q over all angles J- 1: 

+1 oo 

Q =-} ~ d cos 'l't1 Q = ~ Q (w 2) dw2, (3.1) 
-1 0 

e4E 2k2 ro2 (' 
Q (w 2) = 16~;:rc 2 ~ d cos '1't1 d cos '1't2 dcp W - (k2~)2/k~} 

x [o (w 2 (1 - v cos '1't2) + k1v cos '1't1) 

+ 0 (w 2 (1 - v cos '1't2) - k1v cos 'l't1)] (3.2) 

( cp is the angle between the planes in which the 
vectors k 1 , u and k2 , u lie). 

Calculation of the integral (3.2) leads to the 
expression 

e 
r = _R;_ 

m' 
ffi2 (1- v) 

q = k 1v ' 

cD (r, q) = 0 for q > 1, 

(3.3) 

(3.4) 

where q is the ratio of the frequency of the radiated 
waves to the maximum possible frequency for given 
k 1 and v. 

The function <P(y, q) is given by a cumbersome 
expression given in the appendix. Here we limit 
ourselves to graphs of <l>(y, q) for a number of 
values of y, obtained with the help of (3.3). The 
presence of two maxima in the curves of Fig. 4 is 
brought about by the presence of the two mechan
isms of scattering considered. At ultrarelativistic 
energies ( y » 1), the principal role is played by 
radiation from the oscillations of the electron. 
This radiation results in a broad smooth maximum. 
The narrow maximum at small q is brought about 
by the mechanism that is similar to the mechanism 

If a continuous spectrum of plasma waves is of transition radiation (radiation from inhomogen-
incident .on the electr.on, rat~er than the ~lane mono- eities of the density produced by the plasma wave). 
chromatic wave considered m the precedmg sec- Inasmuch as in the limit y - oo the latter radia-
tion,. the scattered radiation can be found by inte- tion has a constant intensity which does not increase 
gratmg (2.14) over all the scattered waves. with y, and a mean frequency, while in radiation 

S)For small v ;S m/M, the effect of ions which disturb the from the electronic oscillations, these quantities 
compensation is important. Compensation is also destroyed increase with increase in Y, in proportion to y 2, 
for failure of the relation (2.9). the left maximum decreases as y - 00 and shifts 
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to the left, and <l>(y, q) approaches the limiting ex
pression, given analytically by the formula 

<I> (oo, q) = fq [(1 - q)3 - 3q2 (1- q + ln q)]. (3.5) 

In the nonrelativistic limit ( y - 1), the two 
maxima merge and both radiation mechanisms 
suppress each other. For comparison, the curves 
for <l>(y, q) are plotted in Fig. 5 without account of 
the density inhomogeneities in the plasma wave. 
These curves have the same limiting curve (3.5} 
as y - 00 , but behave quite differently as y - 1. 

In scattering of plasma waves by ions, Eq. (3.3) 
holds for the resulting transverse radiation; 
therein, <1> 2 ( y, q) has the form shown in Fig. 6. 
These curves were computed with the help of Eq. 
(2.16). 

We find the total power radiated by the electron 
by integrating (3.3) numerically: 

§L-------L-------~-------L----~ 
tU5 IJ5 17.75 

FIG. 5 

- 2e•s~ 12 
Q = ---g;noii (v). (3.6) 

A plot of II (v) is shown in Fig. 7. The coefficient 
for IT(v) in Eq. (3.6) is determined by the condition 
II(v)- 1 as v- 1. 

4. QUANTUM EFFECTS 

In the process under study, the quantum effects 
begin to play a role when the energy of the secon
dary quantum becomes of the order of the initial 
energy of the electron: w 2 ~ Ep 1• For this case, 
the latter must be sufficiently large [see (1.3)] : 

(4.1) 

(for example, for a plasma wavelength ~ 1 em, 
Equ ~ 1015 eV). Because of what was pointed out 
above (Sec. 2), only the graphs a and b (Fig. 1) are 
of importance in scattering of such energetic elec-
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trons. Because of the large energy of the secondary 
quanta, their dispersion can be. neglected, if we 
consider w 2 ~ I k2 1; therefore, these graphs differ 
from the graphs of the Compton effect in vacuum 
only by the replacement of the initial transverse 
quantum by the longitudinal plasma quantum, which 
has a momentum k1 = (k1, iw 1). One can show that 
replacement of the vacuum photon in the external 
photon line by the plasma photon leads to the result 
that in the matrix element (computed in accord 
with the rules set forth in [4]) it is formally neces
sary to replace the unit polarization vector of the 
vacuum photon by the non-unit vector Sl 

V2wl(wlkl, iki) 
e1 = (4.2) 

(k;- w;) I k1l (oe1 (w1, k1)/iiwl)'!. · 

We carry out the indicated substitution in the 
matrix elements represented by the graphs a and 
b. Calculation by standard methods (see L4J) of the 
scattering probability dw, averaged over the initial 
spins of the electron and summed over the finite 
spins of the electron and the polarizations of the 
secondary photon, leads to the result 

dw - e•w~ dQk, {2 (~ + :x2 ) - 2k~ (~ + __!_) 
- 2e~,k1 1 :x1l ae1;aw1 :x2 :x1 :x1 :x2 

+m2ki ( : 1 + :2 r- :x:!. ((ep, + Bp,)2 + ffi~- kiJ 

(4.3) 

Here d nk2 is the element of solid angle in the di
rection of flight bf the secondary quantum, 

(4.4) 

As in the classical calculation, we have limited 
ourselves in the derivation of (4.3) to the consid
eration of plasma waves having a phase velocity 

6 )Equation (4.2) is obtained from the requirement e,ll k,, 
e,k, = 0 (if a Lorentz gauge is chosen). The normalizing fac
tor in the quantization assures the equality of the energy of 
the plasma quantum with its frequency. 

appreciably less than the velocity of light 
< I k1 I » w 1 l . 

Multiplying (4.3) by the energy of the secondary 
quantum w 2 and by the number of plasma quanta 

(4.5) 

we obtain the intensity of the radiation in an ele
ment of solid angle: 

w2E~ oel 
dQ = 16:n: awl dw. (4.6) 

The integration of (4.6) over the directions of 
flight of the secondary quantum of frequency w 2 
and averaging over the angle of collision between 
k1 and P1 gives us the spectral distribution of the 
radiation in the scattering of the electron by the 
isotropically distributed plasma waves: 

Ul2 1 
q = '1 (ep,- w,) = (1 + :::;) wmax!Wo-:::;' (4. 7) 

<Dk (q, a) = f q { (1 - q) [a (1 + q) ( 1 + (1 +1 q:::;) 2 ) 

2 4 2 J" 12q2 } . - -1 t- (1 + q + q) - -1 -,~ ln q , - q:::; -;- q:::; (4.8) 

here Wmax = Ep/(1 + 1/u) is the maximum radia
ted frequency. 

In obtaining (4.8) from (4.3), it was taken into 
account that the energy of the electrons was ultra
relativistic ( Ep1 » m) while the plasma wave
length was large in comparison with the Compton 
wavelength ( k1 « m). In the non-quantum region 
( u « 1), (4.8) undergoes a transition to (3.5). By 
integration of (4.7) and (4.8), we find the total 
radiation in the ultraquantum case ( u » 1): 

w,max 

- \ e4R~ep, 2ep,kl 
Q = • Q (ffi) dffi = 4m2kl In m2 

0 

(4.9) 

By comparison of (4.9) with the non-quantum 
formula (3.6), we establish the fact that the quantum 
effects impede the growth of radiation with in
crease_Jn energy (Q ~ Eb in the non-quantum 
case, Q ~ Ep 1 ln Ep 1 in the ultraquantum case). 

The quantum effects are most important in a 
relatively dense plasma, for example, the electron 
plasma in,metals, where they play a role at low 
energies. We have to deal here with the additional 
"bremsstrahlung" generated in the medium, which 
is superimposed on the long-wavelength part of the 
ordinary bremsstrahlung. We estimate the relative 
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role of both radiations in the region of application 
of (4.9). 

In the continuous spectrum of plasma waves, 
(4.9) transforms to 

(4.10) 

For estimation purposes, we assume that the 
plasma waves possess an effective temperature 
Teff in the region of weak damping (k1 < 1/Rn 
= v 47re2n/T); this temperature generally differs 
from the electron temperature T. In accord with 
(4.10), 

(4.11) 

By comparing (4.11) with the bremsstrahlung of 
the electron 

(4 .12) 

we find 

(4.13) 

Z is the nuclear charge of the material, n/ni is 
the number of free electrons in the nucleus. We 
note that Q/Qb is smaller in the non-quantum 
region by a factor m 2/k1 Ep1 than in (4.12). For 
Teff/T » Z2ni/n in the quantum region, Q » Qb· 
In the non-quantum region, Q is smaller than Qb 
for energies of the electron 7l 

(4.14) 

5. SOME APPLICATIONS TO THE DIAGNOSTICS 
OF PLASMA TURBULENCE 

All the methods of plasma diagnostics (see 
Artsimovich [s]) are in some degree associated 
with the obtaining of definite information on the 
plasma parameters, either with the aid of different 
radiations (in the broad sense of the word) arising 
in a gas-discharge plasma, or with the aid of 
changes in radiation from the outside. Here and 
in most cases, an important loss of information 
takes place on the boundary of the plasma, which 
has a complicated structure. The diagnostics of 
beams of charged particles has an important ad
vantage in the sense that the generated transverse 

7)Jn a medium at thermodynamic equilibrium, even under 
the most favorable conditions (tiw 0 « T, where Ted= T) the 
radiation studied by us does not exceed the bremsstrahlung 
in intensity, in accord with (4.13). In a recently published 
paper,[ 171 a contradictory conclusion is reached, which ap
pears to be the result of an error made in the derivation of 
Eq. (2.4) of Ryazanov's paperJ 17] 

radiation considered in the present work can have 
a sufficiently high frequency, such that the plasma 
boundary and the plasma itself are in practice no 
different than the vacuum for these frequencies. 
Thus this radiation, which is generated in the 
plasma, and which carries information on the 
plasma parameters, in practice loses no informa
tion on the boundary of the plasma. The problem 
touched upon here is also of interest for the so
called "turbulent" plasma (see [ 10- 12]), which is 
characterized by the high intensity of the plasma 
waves in it (epithermal noise). 

The intensity and the distribution of plasma 
waves can be determined in principle from the 
intensity and the spectrum of the transverse radia
tion which arises in the passage of a beam of 
charged particles through the plasma. B\ We write 
down the formula which connects N ( w, k) with 
Q (w, k) for each individual charged particle 
[compare (2.14), (2.15)1: 

4e4k2 w N (w k) · 
Q (w, k) = -:- 1 

1' 1 6 (k2 - w2 ) 6 (krv cos -frr (5.1) 
m & B ( Ulr, kr)f&wr 

+ ro (1- v cos-fr2)) W- (k~) 2jk2}. 

Attention should also be paid to the fact that if 
Q(w, k) and N(w, k) are known, then measure
ment of the energy of ultrarelativistic particles, 
Ep/m » 1, is possible in principle. 

6. RADIATION PRODUCED BY THE ELECTRONS 
OF COSMIC RAYS IN COSMIC PLASMA 

At the present time, it is generally accepted 
that cosmic plasma is in a state of turbulent mo
tion (it is not quiescent). One of the manifestations 
of turbulence is the presence of plasma waves 
capable of accelerating the cosmic rays by the 
mechanism considered by one of the authors in [ 13 • 14]. 

Information on the presence of cosmic rays, for 
example, in the Galaxy, [tsJ is given us by radio 
emission [ 16] and by the optical radiation of cosmic 
objects. The cyclotron-radiation nature of the 
cosmic radiation, i.e., the radiation of the elec
trons in the cosmic rays in cosmic magnetic fields, 
is also generally accepted. Yet the nature of the 
cosmic radiation at very high frequencies is still 
not clear. We would like to direct attention here 
to the fact that a definite contribution to cosmic 
radiation can be brought about by the transforma
tion of longitudinal plasma waves which exist in a 
turbulent plasma, into transverse waves as the re
sult of scattering by the cosmic rays. 

8 )The beam should be so weak that no instabilities de
velop during the time of observation. 
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Although the fluctuating electric fields of the 
plasma waves are presumed to be weak in com
parison with the magnetic field, and consequently 
only a small fraction of all the cosmic electromag
netic radiation ( ~ E 2 /H2 ) is associated with the 
presence of the plasma waves; the frequency of 
the radiation arising from the mechanism under 
consideration is much larger than the frequency of 
the cyclotron radiation (by ~ 1/v~, where vT is 
the velocity of the turbulent motion in the plasma). 
Therefore, the ~ppearance of transverse electro
magnetic waves ·in the scattering of electrons by 
plasma waves can create new bands of non-thermal 
radiation of cosmic objects. For example, sources 
having a maximum of radio emission in the region 
of centimeter waves and v~ ~ 10-5 - 10-6 must 
also emit in the optical region as the result of the 
scattering of the electrons by plasma waves. 

Actually, let us compare the mechanism con
sidered here, radiation of transverse electromag
netic waves, with cyclotron radiation. Losses of 
energy by the electron as the result of the cyclotron 
radiation are equal to 

(6.1) 

The loss ratio in the ultrarelativistic limit tends 
to 

(6.2) 

Here -f\E2} is the mean fluctuating electric field 
of the plasma waves. 

In accord with (3.3) [see also (1.5)] , the radia
tion in scattering by plasma waves is concentrated 
in the region of frequencies of the order 

(6.3) 

The cyclotron radiation is chiefly coocentrated 
in the region 

Then the frequency ratio has the order 

w~lwcr- k1m/eH = k1Rnm!eHRn. 

(6.4) 

(6.5) 

Taking it into account that the Debye radius Rn. 
k 1, and the spontaneous magnetic field are connec
ted with the plasma temperature T by the relations 

H- VsnTn, Rn = VT!4nne2 , (6.6) 

we find that the scattering by the plasma waves 
produces radiation that is 

(6. 7) 

greater in frequency than the cyclotron radiation 
mechanism. 

In a number of cases, the ultrarelativistic elec-

trons have a power-law spectrum 

(6.8) 

We now find the frequency spectrum of the radia
tion of the electrons with the distribution (6.8). In 
accord with (3.3) and (3.5), 

I (w) = ~ dy n (y) Qy (ro) 

e''E2K ( 1 (3-a)/2 
= b (a)--'.'- -. -) ro(l-al/2, 

m 2 '2k1 (6.9) 

The radiation also possesses a power spectrum, 
with the same spectral index 1;2 (a - 1) as the 
cyclotron radiation. A different dependence on a 
of the coefficient b (a) and the corresponding co
efficient in the formulas of the cyclotron radiation[ 15] 

leads to the result that when the spectrum of the 
electrons deviates from the power-law, the spectra 
of the cyclotron radiation and the mechanism 
studied by us do not appear entirely similar. 

APPENDIX 

FORMULAS FOR THE FUNCTIONS <I>(y, q) 

By integration of (3.2), we get the following ex
pressions for the functions <I>(y, q) that enter into 
Eq. (3.3): 

CD (y, q) = <D1 (y, q) + <Dz (y, q) + CD3 (y, q); (A.1) 

CD1 (y, q) = '¢1 (y, q, Xmax) - '¢1 (y, q, Xmtn), 

<Dz (y, q) = '¢z (y, q, Xmax) - '¢z ('y, q, Xmin), 

<Da (y, q) ='¢a (y, q, Xmax) -'¢a (y, q, Xmin); 

1 { z2 1 
'¢1 = j 6v3 (1 + v) z4q -X- X - 2v4j 2 

X X _)_ - Z"V - --[3 1 ( ~ 2 3 - 2v2 ) 
1 X j2 

- v222 (1 - -1 ) - 2 (3 - 2v2 ) In x]} · 
x2 3xj<l ' 

1 { x v2 

'¢z = v3 (1 + v) r•q - 4 + 32 (2x + 3z2 - 12) cp(x) 

+ ;~ [(5 - 3v2) z4 - (16- 8v2 ) z2 

+ 24 - 8v4]ln I vcp(x) + 2.:x - z2 J 

- (z2--:- 2)2 [(2x - z2) (z~v2 + 2 - v2) 
b(4-z 2)<:p(x) 2 

- (1 - z2)f v3z2 + _±_- 2x)J} · •. \ r' ' 

1 {x - In x ( z2 1 ) 1 
'¢a = - z"v" (1 + v) qrs ~ - 2 + Y" x 

- v2<p (x)[__!__ - _z2_/_2_-J-'------'-r--"-J 
'2 [v2z2 + 4; r2Jx 

(A.2) 

(A.3) 

(A.4) 
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+ 2v [__!___ _ ~ z2 (z2/ 2 + ~-2)] 
z V v2z2 + 4 I 12 12 2 + v2z2 + 4 I 12 

X In I+ ( v2z2 + ~~ - 2x + vcp z(x) Y v2z2 + 4jy2) j}. 
(A.5) 

In the formulas given above, the following notation 
is used: 

V = Y y2 - 1/y, z = (1 - v)/vq, Xmin = 1- v, 

Xmax = min (vz, 1 +v) 

<p (x) = [z4 + 4z2 - 4z2 4x2J'/, 
v212 v2 x + v" . 

(A.6) 

The graphs of the functions <l>(y, q) computed 
by these formulas, are shown in Fig. 4. <1> 1 (y, q) 
corresponds to a neglect of the oscillations of the 
density in the plasma wave, and its graphs are 
given in Fig. 5. The function <1> 2 (y, q) character
izes the radiation by ions and is shown in Fig. 6. 
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