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The steady-state equations for one-dimensional motion of a plasma perpendicular to a mag
netic field are derived with dissipation taken into account. The shock-wave structure is anal
yzed for collisional dissipation and for the case of an electron two-stream instability. In the 
first case the wave is of the usual kind and the conditions for field freezing and continuity of 
material flux, momentum, and energy are satisfied on both sides of the front. In the second 
case there is a narrow front at which dissipation occurs. In a hot plasma a periodic (but not 
perfectly sinusoidal) magnetoacoustic wave, which is stable against the two-stream instability, 
propagates behind the front. 

THE subject of collisionless shock waves in plas
mas is of great interest in a number of fields, es
pecially cosmic physics. The equations describing 
steady-state nonlinear motion of aflasma neglect
ing dissipation (cf. the review in [1_) naturally do 
not exhibit shock-wave solutions since the latter 
describe essentially irreversible processes. 

At sufficiently large amplitudes, however, this 
motion becomes unstable. [1•2] In the final analysis 
the instability must lead to dissipation of the energy 
of the directed motion of the particles so that one 
expects shock waves to appear. The role of the in
stability as the basic mechanism for the formation 
of shock waves in a low-density plasma was first 
considered by Sagdeev. [2] In this same work a 
number of possible instabilities were investigated. 
A qualitative analysis (cf. [2]) based on the intro
duction of an effective frictional force in the elec
tron equations of motion was carried out under the 
assumption that the plasma pressure is small com
pared to the magnetic pressure. 

In the present work we investigate plasma shock 
waves that propagate perpendicularly to the mag
netic field. The basic purpose of the work is the 
analysis of the fastest dissipative processes. In a 
low -temperature dense plasma these are collisions: 
in a low-density plasma the chief dissipative proc
ess is the two-stream instability. If the shock waves 
are not too strong these processes are not disper
sive in either time or space, that is to say, the ef
fective frictional force and the heat generated at a 
given point in space and time are determined by 
the state of the plasma at the same space-time 
point. For this reason it is possible to describe 
the steady-state motion of the plasma by a system 

of macroscopic equations that take account of dis
sipation. 

Depending on the actual dissipative mechanism 
that obtains, the requirement that the frictional 
force and the heat generation be nondispersive im
poses a corresponding limitation on the maximum 
Mach number for which the present analysis is 
valid (cf. pages 1121 and 1123). Since dissipation 
leads to plasma heating the equation of motion must 
contain the frictional force and the pressure gradi
ent and the heat-balance equation must be used. 

The equations that are obtained have been in
vestigated for the case of collisional dissipation 
and for the electron two-stream instability. The 
principle difference in the two cases is the fact 
that collisions are always present whereas the 
two-stream instability can not occur if the beam 
velocity is smaller than the mean thermal velocity 
of the electrons. 

1. BASIC EQUATIONS 

The z -axis is taken along the magnetic field and 
the x-axis in the direction of propagation of the 
plane wave in the plasma. The steady-state solu
tions are described by the single variable 
~ = x- ut, where u is the wave velocity. It is as
sumed that the plasma density satisfies 

H'f/8n ~ nom.c2 , 

where H0 and n 0 are the unperturbed field and 
density (for ~ - oo), me is the electron mass and 
c is the velocity of light. This condition guarantees 
that the plasma remains neutral [1] so that ni = ne 
= n. It then follows that the x component of the ion 
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velocity Vx is equal to the x component of the elec
tron velocity Vx : Vx = Vx = V. We denote the y 
component of the electron velocity by v and the 
electric field by E. In the absence of dissipation 
the wave equation for a low-pressure plasma re
duces to the system:[l] 

mi (V- u) dV/d£ = eEx + eV11H/c; (1) 

mi (V - u) dV11/d£ = eE11 - eVH/c; (2) 

me (V- u) dV/d£ = - eEx - eVH/c; (3) 

m, (V - u) dv!d£ = - eE11 + eVH!c; (4) 

ni = ne = n 0u/(u - V); (5) 

E11 = uc-1 (H - H0); (6) 

dH'/d£ = - 4nenc-1 (V 11 - v). (7) 

These equations give bounded solutions of two 
kinds-a solitary wave and a periodic wave. The 
solutions only exist for Mach numbers M = u/ua 
= u vl4rrmino /H0 < 2. When M > 2 the flow veloc
ity becomes multiple-valued and the flow becomes 
unstable. However, solutions do not necessarily 
exist even when M < 2. Collisions and various in
stabilities cause the motion to decay; in a low
density plasma the basic dissipative mechanism 
is the instability. 

It is difficult to take account of all possible 
kinds of unstable perturbations simultaneously. 
Hence, to simplify the problem we shall consider 
only the most rapidly growing instability. It can 
be shown that the solution thus obtained is stable 
against the other kinds of perturbations. 

The instabilities characterized by the highest 
growth rates are associated with various kinds of 
electron oscillations and do not have an important 
effect on the ion motion. Similarly, the electron
electron collision time for electrons with the same 
energy is v'mi/me times smaller than for the ions. 
Hence, it may be assumed that the most rapid 
dissipative processes lead to the conversion of 
energy of the directed motion of the electron com
ponent into internal energy without involving the 
ions. 

If the dissipation is nondispersive in space or 
time and if the ion velocity is much smaller than 
the electron velocity (conditions that are assumed 
everywhere in what follows) the dissipation rate 
per electron can be written in the following way 
with no loss of generality: 

(8) 

where the quantity T is a function of the other 
variables and does not depend explicitly on ~. 

The dissipation is due to the effect of a frictional 
force 

f =- m.vj1:, (9) 

which must be included in the electron equations of 
motion: 

m. (V- u) v' = - eE11 + eV Hjc- m.vj't (10) 

(the x-component of the frictional force is negligibly 
small since vx « v). 

The pressure gradient must also be included in 
the electron equation of motion: 

me (V- u) V' =- p'jn- eEx- evHjc. (11) 

In general the introduction of a gradient for a 
scalar pressure is valid .only when the angular dis
tribution of the electron thermal velocities is ap
proximately isotropic. In the region of the shock 
front the effective scattering time T must then 
satisfy the inequality WHT « 1 (wH = eH/mec is 
the electron cyclotron frequency). Behind the front 
the isotropy condition is well satisfied because the 
mean velocity is much smaller than the thermal 
velocity and the spatial gradients are small (quan
tities do not vary greatly over distances of the 
order of the Larmor radius). 

Finally, it is necessary to introduce the heat 
balance equation. Neglecting thermal conductivity 
and using the quantity E to denote the density of 
heat sources, from the general heat transfer equa
tions [a] we find TedSe/dt = - E, where Se is the 
entropy per electron and Te is the temperature of 
the electron gas. Expressing d/dt in terms of 
d/d~ (d/dt = (V - u) d/dn and Te and Se in 
terms of p and n we have 

(V- u) (p' - ypn'/n) = (r- 1) m.nv2/-r. (12) 

In the absence of dissipation (T- 00 ) Eq. (12) im
plies adiabatic motion (dpn-Y /dt = 0). Here y is 
the adiabaticity index. 

The Maxwell equations and the equations of con
tinuity and ion motion are the same as before. 
From Eqs. (1), (5), (7), and (11) it is easy to ob
tain an integral expressing the continuity of the 
xx component of the momentum flux: 

H 2/8n + p - min0uV = const. (13) 

An estimate shows that Vy ~ mev/mi so that Vy 
can be omitted in Eq. (7). Expressing Ey in terms 
of H and n in terms of V, we finally obtain the 
following system of equations: 

, e eu mev 
m. (V- u) v =- (V- u) H +- H 0 -- • c c 't' 

2 ( I rpV' ) m.uv2no.. 
(V- u) p - u _ V = (y - 1) ~ • 

H' = 4:rtenouv 
c (u- V) ' 

H 2/8l't + p - min0uV = const. (14) 
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In the case of a shock wave in an initially cold 
plasma the constant in Eq. (13) is H~/87T. 

It is convenient to introduce the following dimen
sionless variables: 

s = ~ £. W = ___!::'_ • w = v ' f 4nnome . 
c' u' V H~' 

(15) 

The system now assumes the form 

(1 - W) w' = (1- W) h + acpw- 1, (16) 

(1 - WJ2 [ljJ' - yl)JW'/(1 - W)l = - 2 (y - 1) acpw2 , (17) 

(1 - W) h' = w, (18) 

h2 + ljJ = 1 + 2M2W, (19) 

where M = (47rmin0u2/H02 ) 112 is the Mach number, 
a = c/w 0uT0 , w 0 is the plasma frequency for 
n = n 0, To is a scale factor for the constant that 
appears in the dissipation rate T and the dimen
sionless function q; gives the dependence of this 
constant on 1/J , W, w, and h. The constant a gives 
the order of magnitude of the ratio of the time re
quired for a particle to move through the wave 
front to the dissipation time. The fluxes of matter, 
momentum, and energy are continuous across the 
shock front in ordinary gas dynamics. In magneto
hydrodynamics these conditions are supplemented 
by the field-freezing requirement. In the present 
problem the general integrals of the system are 
the fluxes of matter and momentum. In generaL 
the freezing condition is violated. However, if a 
shockwave solution exists (h' = 1/J' = w' = W' = 0 
when ~ - ±oo but 

h =I= 1, w =I= 1), 
E,--+-00 ;,-?-00 

then the freezing is recovered asymptotically. This 
is evident from Eq. (16): h = (1 - W)-1 when w' = 0 
and h' = 0, or, in terms of the dimensional vari
ables, 

H (- oo) I H 0 = n (- oo) I n 0 • (20) 

The energy flux is also discontinuous in the general 
case. This is due to the fact that there are electric 
fields associated with the shock front and it is 
possible to have periodic hydromagnetic waves 
behind the front. Hence, in the case of shock waves 
in a plasma it is not clear that one should use the 
usual jump conditions, which express the state of 
the plasma behind the front in terms of the param
eters of the unperturbed state and Mach number. 
To answer this question it is necessary to make a 
detailed investigation of the equations of the prob
lem. 

2. MAGNETOHYDRODYNAMIC SHOCK WAVES 

We first consider shock waves in a very cold 
dense plasma assuming that collisions represent 
the primary dissipation mechanism. To use Eqs. 
(16) -(19) we must assume that either the electron 
Larmor radius or the electron mean free path is 
much smaller than the width of the transition layer. 
In this case the energy dissipated in a small region 
is not transported into another region of space. If 
the Larmor radii and mean free path become com
parable with the width of the layer a peculiar ther
mal conductivity associated with the Larmor gyra
tion of the electrons appears. 

The width of the transition layer is ck/w 0 where 
the dimensionless factor k can be large in the 
present problem. As we shall see later, at small 
values of the Mach number k- oo while the 
Larmor radii approach zero so that the equations 
are known before hand to have a region of applica
bility for the present problem. Quantitative criteria 
are given in the final section. 

We eliminate w and ljJ from the equations and 
differentiate with respect to h (ds = dh/q, where 
q = h' ). Then 

~ d (q8)2/dh = h8 + acp8q - 1, (21) 

d8 2 h8 - (I - 1) a!p8q 
dh = r 2M2 + 1- h2 - 2M2 (I+ 1) 8/1 

(22) 

The boundary conditions reduce to ® = 1 - W = 1 
and q = 0 when h = 1. 

The thermal energy of the unperturbed plasma 
is denoted by E 0H2 I 47Tn 0 ( E 0 « 1 ) . The function q; 
can be written in the form q; = ®- 1 [ E 0 + (q ®) 2 

+ ljJ er312 since the electron collision time in the 
nonrelativistic case is proportional to the three
halves power of the energy and is inversely pro
portional to the density. In this case the constant 
a is given by 

where A is the Coulomb logarithm. In what follows 
we assume that a » 1. Conditions of this kind ob
tain in astrophysics (for example in the sun). Thus, 
when n0 = 10 14 cm-3, H 0 = 50 G, u ~ ua and 
T 0 = 5000° we find a:::::< 102 while H2/87rp :::::< 10. 
It is also assumed that the heating is not so strong 
that aC,Omin » 1, where C,Omin is the value of q; 
corresponding to the most energetic electrons. 
Under these conditions dissipation is strong every
where. 

We now seek a solution of Eqs. (21) and (22) in 
a series in inverse powers of a. The expansion of 
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® starts with a zero-order term while the expan
sion for q starts with the ~ 1/a term. The deriva
tive in Eq. (21) is a quadratic term and can be 
neglected in the zeroth approximation. The validity 
of omitting the term with the higher derivative is 
evident from physical considerations: as a conse
quence of the strong dissipation the flow densities 
are small and hence (for the given field jump) the 
transition region is expanded considerably. 

Below we limit ourselves to the zeroth approxi
mation and omit the subscripts on ® and q. From 
Eq. (21) we have 

a<pElq = 1 - hEl. (24) 

Substituting Eq. (24) in Eq. (22) we have 

de _ 2 rhe- r + 1 (25) -({(,-- r 2M2 +1-h2 -2M2 (r+t)8/r . 

From a formal point of view Eq. (25) can be 
regarded as the equation for the lines of force of 
some field U in the ( h, ®) plane: 

uh = r (2M2 + 1 - h2 - 2M2 (r + 1) El/r); 

Ue = 2 (yhEl - r + 1). 

Since div U = BUh/Bh + BUe/B® = 0, the quantity 
U has a one-component vector potential A: 
Uh = BA/8®, U® = - BA/Bh while the integral 
of Eq. (25) is A (h, ®) = const. Calculation of A 
yields 

A = y [(2M2 + 1 - h2) El- M 2 (y + 1) 8 2/y] 

+ 2 (r- 1) h. 

Determining A from the condition ®h =t = 1 we 
have 

re [2M2 + 1 - h2 - M 2 (r + 1) El/rl 

+ 2 (1 - 1) h = (M2 + 2) (r - 1). (26) 

The existence of a shock wave requires that all 
the space derivatives vanish for some h 0 > 1. The 
corresponding value ® = ®0 must be 1/h0 from 
Eq. (24). Writing ®0 = 1/h0 in Eq. (26) we obtain 
an equation for the jump h that coincides with the 
usual magnetohydrodynamic equation. It then 
follows, in particular, that the energy flux is con
tinuous in the present case. 

The calculation is simplified considerably if 
y = 2. The jump H is given by the relation 

H(-oo) n(-oo) u 
-------u;- = -no- = u - v (- 00) 

3M2 

M2 +2' (27) 

the jump in the sum of the magnetic and gas pres
sures is given by 

Snp (- oo) --i- H' (·- oo) 

H~ 

4M2 -1 
:-l 

(28) 

The dissipated energy is transferred completely to 
the electrons. 

However, these waves can only exist for values 
of M that are not too large. At some critical value 
of M the relation between h and ® is no longer 
unique. Since the derivative q is always negative 
(as can be shown by calculation) h changes mono
tonically. Consequently the ambiguity in ® can 
only mean that the velocity has two values simul
taneously at certain points. Thus, breaking of the 
shock front occurs even in the presence of strong 
collisional dissipation. The limiting value M* at 
which breaking starts is easily found directly from 
Eq. (25) by equating to zero the denominator of the 
right side when h = h 0, ® = ® 0• If y = 2 then 
M* ~ 2.5. 

The breaking of the front and the formation of a 
region of multivelocity flow has been obtained by 
a number of authors in investigations of nonlinear 
plasma motion that neglect dissipation (cf. review 
in [tJ). The result obtained above indicates that 
dissipation delays the onset of breaking to some 
extent (without dissipation M* = 2). It is evident 
that breaking of the wave does not mean that shock 
waves cannot be formed when M > M*. However, 
when M > M* the structure of the wave is consid
erably different from that considered above: When 
M < M* the main part of the dissipated energy 
goes to the electrons; when M > M*, however, a 
region of two-velocity ion flow arises in the front 
and part of the energy dissipated by virtue of the 
two-stream instability goes into heating the ions. 
In principle the structure of this wave can be anal
yzed similarly, using the equations of multivelocity 
hydrodynamics. 

Returning to the investigation of shock waves 
characterized by M < M* we now consider the 
structure in somewhat greater detail. From Eqs. 
(24) and (26) we determine q = dh/ds: 

dh 1 - h8 (h) (eo+ 1jJ8)-'1' 
ds a 8 

(29) 

For a low intensity wave (M - 1 « 1) we can ex
pand ® in powers of 1-L = M - 1 and 7J = h - 1 
with accuracy to terms of second order: 

8 =o 1- fj + 2f-1Yj _lj2 fj2 . 

Substituting in Eq. (29) we have 

TJ(Tj-2fl-) 0 3/ 

q =::: a c:-0 2 ' 

[ 
E

3/'(M' -1) J 
h = 1 + (M2 - 1) 1 - tanh s 0 a . 

(30) 

(31) 

(32) 

When M - 1 ~ 1 the profile of the shock wave 
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becomes steeper and the width is reduced to 
l ~ ac/w 0• The electron velocity becomes 
~ v H~/ 47Tn0me (i.e., ljJ ~ 1). It is evident that in 
this case the electron Larmor radius is small com
pared with the width of the front if a » 1. 

Thus, using Eq. (16) -(19) we can analyze the 
structure of magnetohydrodynamic shock waves if 
the amplitude is not too large. The calculations 
lead to the same relations for the jump and struc
ture in the front as for the macroscopic theory that 
neglects viscosity and thermal conductivity. The 
dissipated energy is transferred to the electron 
component of the plasma and only after this, by 
virtue of collisions, is it uniformly distributed be
tween the electrons and ions. Since the total pres
sure of the plasma is not changed during the tem
perature equalization process, the spatial distribu
tion of H is, as before, determined by the relations 
that have been given. When M > M* ~ 2.5, a two
velocity ion flow arises at the front and heating of 
the ions occurs simultaneously with heating of the 
electrons. 

3. SHOCK WAVES IN' A LOW DENSITY PLASMA 

In a low-density plasma collisions no longer 
play an important role and dissipation is due to 
instabilities. The most rapidly growing instability 
is the electron two-stream instability. If the ion 
plasma frequency [2 0 = v 47Te2n0/mi is much grea
ter than the electron cyclotron frequency 
WH = eH0/mec the maximum growth rate is assoc
iated with perturbations with wavelengths 
A. 0 = 27Tv /w 0 « c/w 0• The maximum growth rate 
is very sharp and hence it may be assumed that the 
alternating fields in the beam have a spatial scale 
of ~ A. 0• 

The growth rate of the instability for A. ~ A. 0 

can be expressed by means of the interpolation 
formula, 

where f2 0 is the ion plasma frequency, 
0! = (me/mi) 11 a' s = vyp/nme is the velocity of 
the electron beam. When v2 < S2 the instability 
vanishes. If the tliss ipation is to be spatially dis
persionless we must impose in addition to the con
dition indicated (A. 0 « c/w 0) the requirement that 
the Larmor radius of the scattered electrons rL 
be small compared with the width of the front l. 
When w ~ 1 and l ~ c/w 0 this condition is viola
ted (rL ~ l) and it cannot be assumed that the 
energy dissipated at some point by virtue of the 
instability appears as heat at the same point. It 
will be shown below that rL « l for shock waves 

that are not too small (M2 ::::=: 2). If the condition 
for the absence of spatial dispersion is satisfied 
the time dispersion must also vanish since the 
displacement of electrons along the x axis during 
the dissipation time T ~ 1/f2 0 is small (the in
equality u/f2 0 « c/w 0 is an automatic consequence 
of the quasi-neutrality condition H2 « 87Tmen0c 2). 

Since the electron two-stream instability does 
not operate when v2 < s2 , the solution can consist 
of two parts-an inherent shock wave for which 
v2 < S2 and dissipation occurs, and a stable 
periodic magnetic-sound wave propagating in the 
heated plasma. The field, pressure and velocity 
must be continuous at the boundary C. Further
more, if the magnetic-sound wave is to be stable 
at the boundary the difference v2 - s2 must vanish 
or, in dimensionless form, 

a = (q8)2 - -+ y8'1jl. (34) 

To the left of the boundary the quantity a is nega
tive. 

At C the following condition must be satisfied 
in addition to Eq. (34): 

dcr d [ 2 1 J dii = dii (q8) - 28'\jl = 0, (35) 

where the derivative is computed using the equa
tion for the stable wave. In order to show this we 
first note that since the pressure of the unper
turbed plasma is small then in some region of 
space a > 0. We denote by h 0 the value of h at 
the boundary of this region. The condition q = 0 
at infinity together with Eq. (34) with h = h 0 de
termines uniquely the solution in the region of the 
shock wave and makes it possible to compute the 
boundary values of ¢ 0 and ®0• In turn, h 0, ®0, ¢ 0 

and Eq. (34) make it possible to determine uniquely 
the pressure in the magnetoacoustic wave. The 
choice of the parameter h0 is as yet arbitrary. 
If h0 is sufficiently close to unity, then for the 
magnetic-sound wave near the point h 0 the quan
tity a is again positive so that the instability ap
pears. As h0 is increased the absolute value of 
da/dh at this point will fall off and finally vanish. 
As h0 is increased further the derivative changes 
sign. Thus, the relation in (35) determines the 
minimum value of h0 for which the stable mag
netic-sound wave can break away. It is clear that 
an actual break occurs at precisely this point. 

Considering the solution in the region of the 
magnetic sound wave we see that the limiting value 
a = 0 is a maximum (since da/dhih=ho = 0 while 
a is negative near h 0 ). Hence, a ::::=: 0 everywhere 
in the region of the magnetic sound wave and the 
wave is stable. 
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In the region of the shock wave the equations 
have the form given in (21) and (22). The constant 
a = cS'2 0/uw 0 when u ~ ua is of order 
v 8rrmen 0c2/H~ and by virtue of the neutrality con
dition is a large quantity. However, since the func
tion q; ~ -f(j the expansion in 1/a will be consid
erably different from that given in Sec. 2. Specif
ically, we must now require that the expansion of 
the quantity u (and not q) start with terms ~ 1/a2• 

In the zeroth approximation in 1/a this gives 

(q8)2 =+r'¢8. (36) 

The physical meaning of this result is clear: since 
the instability develops very rapidly the difference 
v2 - s2 is always close to the stability boundary. 

We now determine aq;q® from Eq. (36): 

aqJq8 = 1- h8 

+ ~ y [(2M2 + 1- h2 - 4M2®) d8/dh- 2hfJ]. (37) 

Substituting Eq. (37) in Eq. (22) we have 

de 2h8-4(r-1)/r('r+1) (38) 
!ih = 2M2 + 1- h2 - 4M2 (12 + 1) 8/r (I+ 1) 

The integration of Eq. (38) is carried out in the 
same way as in Sec. 2 and yields ( y = 2) 

(2M2 + 1) 8- h28--}M2®2 +fh =-i-M2 +f· (39) 

Since we are considering shock waves that are not 
too strong h and ® are approximately unity. We 
expand ® in powers of h - 1 keeping third-order 
terms: 

e = 1 _ \--;. 1 _ 31~~;- 1 (h _ 1)2 + 4~6 (h - 1)3• (4o) 

The dimensionless pressure 1/J is a third-order 
quantity in h - 1 and M2 - 1: 

_ M 2 - 1 (h 1)2 1 (h 1)3 'ljJ - 2M2 - - 2M4 - • 

In particular, Eqs. (40) and (41) determine the 
boundary values of ® = ®0 and 1/J = l/! 0 when 
h = h 0• 

(41) 

In the region of the magnetic sound wave the 
dissipation is no longer effective and 1/J satisfies 
the adiabaticity condition: 1/J = 1/! 0 (®0/®) 2. The 
motion is described by the equations 

-} d (q8) 21dh = h8 - 1, (42) 

h2 = h~ + 'ljl0 (1 - 8V82) - 2M2 (fJ - 8 0) (43) 

(Equation (43) follows from the integral of momen
tum flux). Using Eqs. (42) and (43) we can reduce 
Eq. (35) to the form 

(44) 

Now, substituting ®0 and 1/! 0 from Eqs. (40) and 
(41) we have 

4M2 (M2 -1) 
ho = 1 + 7M2- 1 + . . . • (45) 

Thus, the pressure jump at the shock front is 

8M2 (3M2 -1) (M2 -1)" (46) 
'IJlo = (7M2 - 1 )3 • 

It is evident from (45) that the convergence is 
good when M :::::: 1.5 (the third-order term :::::: 0.004). 
Hence, the results that have been obtained need not 
be restricted to very weak waves (M - 1 « 1). 
We note that the irreversible heating of the plasma 
in the present case is somewhat weaker than follows 
from the macroscopic conditions at the jump. This 
verifies the remark made above concerning the 
violation of field freezing. 

We now consider the spatial distribution of the 
field. In the shock region the derivative q is de
termined from Eq. (36): 

q=-(h-1)[M;;21 - 2~. (h -1)r. (47) 

whence 

It is then obvious that the width of the front l is of 
order c /8/w 0 v M2 - 1. Even when M = 1.5 the 
Larmor radius is 

Y H~'¢of8nm.no mec / eHo = Y 'IJlo/2 c/ffio 

and is approximately 20 times smaller than l . 
Hence, the absence of spatial and temporal dis
persion in the friction forces and the heat sources 
follows automatically from the limitations that 
have been imposed on the Mach number. 

In analyzing the structure of the magnetic-sound 
wave it is necessary, first of all, to express ® as 
a function of h from Eq. (43). The term containing 
1/Jo is fourth order in M2 - 1 and can be neglected. 
The result is now substituted in Eq. (42) and third
order terms and higher are neglected; then, inte
grating, taking account of the boundary conditions 
( q® )h=ho = l/! 0®0, we find 

d(h- h0) = dTJ = [8M2(3M2-1)(M2-1)3 

ds - ds ± (7M2 - 1 )" 

(M4 -1) (5M2 + 1) 1']2 _ __]_." ]'/, 

M2 (7M2 - 1) 2M2 ' 
(49) 

or writing TJ = h - h 0 = (M2 - 1)y 

*ch =cosh. 



1124 B. A. TVERSKOI 

'!:!!_ = ± JfM2 -i [8M2 (3M•-1) 
ds 7 (M•- 1)3 

(M2 + 1) (5M~ + 1) 2 y3 Th 
- M 2 (7M2 -1) y - 2M2 j• (50) 

It is evident that the wave is not harmonic even 
when M2 - 1. As M2 - 1 the period of the wave 
approaches infinity. The function y ( s) is expressed 
in terms of elliptic functions. 

Thus, we have shown, that the steady-state equa
tions for one-dimensional motion of a low-density 
plasma perpendicular to a magnetic field with 
dissipation taken into account yield shock solu
tions. These results verify and extend the consid
erations given in [2]. The shock waves are actually 
magnetic sound waves; however, dissipation occurs 
only at the narrow leading edge. Even when 
M- 1 the magnetic sound wave is not strictly 
sinusoidal. 

It is possible that dissipation occurs in two 
stages. The first stage is treated above and is re
lated to the electron two-stream instability. fu this 
case the main part of the dissipated energy goes 
into heating of the electron component of the plasma. 
The second stage might be associated with the de
cay of the magnetic sound wave (as is well known, 
many kinds of nonlinear periodic oscillations of a 
plasma are unstable with respect to decay into 

waves at multiple frequencies [sJ). 

Since the method given here imposes substantial 
limitations on the value of the Mach number, it as 
yet cannot be used to analyze stronger shock waves, 
even qualitatively. fu particular, it is not clear 
whether pileup occurs at large M or whether the 
two-stream instability inhibits this process. 

In conclusion I wish to express my gratitude to 
Adademician M. A. Leontovich for discussion of 
this work. 

1 Vedenov, Velikhov and Sagdeev, Nuclear Fusion 
1, 83 (1961). 

2 R. Z. Sagdeev, Proceedings of the Symposium 
on Electromagnetics and Fluid Dynamics of Gaseous 
Plasma, Interscience, New York 1961, p. 443. 

3 Landau and Lifshits, Mekhanika sploshykh sred, 
Fluid Mechanics, Gostekhizdat, 1954. 

4 L. Spitzer, Physics of Fully Ionized Gases, 
futerscience, New York, 1957. 

5 V. N. Oraevskil and R. Z. Sagdeev, ZhTF 32, 
1291 (1962), Soviet Phys. Technical Phys. 7, 955 
(1963). 

Translated by H. Lashinsky 
247 


