SOVIET PHYSICS

JETP

A translation of the Zhurnal Éksperimental'not i Teoreticheskot Fiziki.

Editor in Chief – P. L. Kapitza; Associate Editors – M. A. Leontovich, E. M. Lifshitz, S. Yu. Luk'yanov; Editorial Board – É. L. Andronikashvili, K. P. Belov, V. P. Dzhelepov, E. L. Feinberg, V. A. Fock, I. K. Kikoin, L. D. Landau, B. M. Pontecorvo, D. V. Shirkov, K. A. Ter-Martirosyan, G. V. Zhdanov (Secretary).

Vol. 19, No. 5, pp. 1027-1298 (Russ. orig. Vol. 46, No. 5, pp. 1517-1927, May 1964) November 1964

ALPHA DECAYOF Pu²⁴¹

B. S. DZHELEPOV, R. B. IVANOV, and V. G. NEDOVESOV

Submitted to JETP editor June 22, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1517-1524 (May, 1964)

The α spectrum of Pu²⁴¹ was studied with a magnetic $\pi\sqrt{2}$ α spectrometer. The following α transitions were observed (in keV): 5042 (1.5%), 4973 (1.4%), 4899 (83%), 4862 (13%), and 4805 (1.1%). The decay scheme of Pu²⁴¹ is discussed.

THE investigation of the α decay of Pu²⁴¹ (T = 13 years)^[1] is very complicated because: 1) Only 2.3 × 10⁻³% of the decays are α de-

cays, ^[2] corresponding to an α half-life of 5.7 $\times 10^5$ years.

2) The intensity of all $Pu^{241} \alpha$ transitions in the investigated samples was, as a rule, hundreds of times smaller than the α -transition intensities of Pu^{238} and Pu^{240} at higher energies E_{α} . This means that the Pu^{241} lines are located in the tails of the Pu^{238} and Pu^{240} lines.

3) The energies of the main $Pu^{241} \alpha$ transitions are very close to the energies of $Pu^{242} \alpha$ transitions (Table I). It follows that the possibility of studying the $Pu^{241} \alpha$ spectrum also depends on the α -activity ratio of Pu^{241} and Pu^{242} in a given sample.

The foregoing circumstances appear to account for the fact that very little information regarding Pu²⁴¹ α decay is found in the literature. Strominger, Hollander, and Seaborg^[3] give data for two α groups at 4893 and 4848 keV with 75% and 25% intensities, respectively. On the basis of data in ^[4] indicating the existence of a 145-keV γ line in the Pu²⁴¹ γ spectrum it was suggested in ^[3] that this γ line represents a transition from the 145-keV level of U²³⁷, reached by a 4893-keV α transition, to the ground state. The intensity of this transition is the fraction 2×10^{-6} of Pu²⁴¹ decays; this corresponds to $2 \times 10^{-6}/2.3 \times 10^{-5}$ = 9% of the number of α decays. The γ spectrum also reveals a line at about 100 keV, which appears to be a K x-ray line of U²³⁷ with the intensity 1×10^{-5} , i.e., $1 \times 10^{-5}/2.3 \times 10^{-5} = 45\%$ of the number of α decays.

Information regarding the U^{237} level scheme can also be obtained by studying the β decay of Pa^{237} . The first data regarding the β decay of this isotope, to which the half-life 11 min was assigned, appeared in ^[5]. Subsequently 39 ± 3 min was obtained for the half-life by Takahashi and Morinaga,^[6] who observed three endpoints at 2.30, 1.35, and 0.8 MeV in the β spectrum of Pa^{237} , as well as 17 γ lines from 90 to 1420 keV. These included the aforementioned 145-keV transition. One possible Pa^{237} decay scheme, based on these data, was discussed.

EXPERIMENT

We studied the Pu²⁴¹ α spectrum using the magnetic $\pi\sqrt{2}$ α spectrometer of the Radium Institute of the Academy of Sciences.^[7] The measurements were obtained under the same conditions as in our

FIG. 1. Portion of $Pu^{241} \alpha$ spectrum. $E_{\alpha} - \alpha$ -particle energy, $N_{\alpha} -$ number of α tracks in a band 300μ wide.

investigation of the α spectra of curium isotopes.^[8] The 1 × 10-mm source was prepared by vacuum deposition on glass. The surface density of about 20 μ g/cm² resulted in a broadening of the α lines (10-11-keV half-width) and some lengthening of their tails. This source thickness was required in order to obtain information about the relatively weak Pu²⁴¹ lines.

Each of the four exposures lasted 90 hours. Figure 1 shows a portion of the α spectrum of plutonium isotopes in the energy range 4.75-5.10 MeV, obtained in one of the exposures. The spectrum was recorded when 5.05-MeV α particles moved in a circular orbit. During the other exposures the magnetic fields were somewhat differerent, and the α particles moved in circular orbits at the energies 5.15, 4.95, and 4.88 MeV. Table I gives our results together with some previously tabulated data. The α spectra of the isotopes Pu^{238,240,242} have been studied very thoroughly, so that any observed α line not belonging to any one of these isotopes can be assigned to Pu²⁴¹. In each instance the α energies were also compared with data for all possible α -active impurities. The table gives the α -transition energies. The reference line is Pu²⁴⁰ α_2 at 5020 keV (line No. 2), whose energy is known very accurately ($\pm 2 \text{ keV}$).^[3,9]

There is a notable disagreement with the values that we obtained in earlier work for the $Pu^{242} \alpha$ transitions and the most intense Pu^{241} transition. The discrepancy of about 6 keV can be attributed to a shift of the energy scale toward higher values. This shift has recently been observed in the entire

Fable I	
----------------	--

No. of line	Plutonium	Tabulated data ^[3,9]		Our data			
	isotope to which the α transition is assigned	E_{α} , keV	Relative in- tensity in the isotope, %	E_{lpha} , keV	Relative in tensity in the isotope		
1 2 3 4 5 6 7 8	Pu ²⁴¹ Pu ²⁴⁰ Pu ²⁴¹ Pu ²⁴¹ Pu ²⁴¹ Pu ²⁴¹ Pu ²⁴² Pu ²⁴²	5020 4898 4893 4848 4853	0,1 76 75 25 24	$5042 \pm 4 \\ 5020 \\ 4973 \pm 4 \\ 4904 \pm 3 \\ 4899 \pm 4 \\ 4862 \pm 4 \\ 4859 \pm 3 \\ 4805 \pm 4 \end{cases}$	$\begin{array}{c} 1.5 \pm 0.5 \\ 0.1 \\ 1.4 \pm 0.3 \\ 75 \pm 2 \\ 83 \pm 8 \\ 13 \pm 3 \\ 25 \pm 2 \\ 1.1 \pm 0.3 \end{array}$		

range of α energies. Our reference line in these measurements was the 5020-keV Pu²⁴⁰ line; this value corresponds to the energy of the 5169-keV Pu²⁴⁰ main transition given in [9]. In earlier work the assigned energies of the Pu²⁴⁰ α_0 and α_2 groups were 5162 keV and 5014 keV, respectively.^[3] This can possibly account for the too low energies of the main Pu^{242} and Pu^{241} transitions given in ^[3].

The experimental curve (Fig. 1) reveals, in addition to the single lines Nos. 1, 3, and 8, two composite lines 4-5 and 6-7, whose half-widths show that they are at least double lines. From earlier work it is known that these lines should include doublets of the main Pu^{241} and Pu^{242} lines. We were unable to resolve these lines experimentally because of low resolving power. The resolution shown in Fig. 2 is based on the following considerations.

FIG. 2. Resolution of lines 4-5 and 6-7 (Pu²⁴¹ and Pu²⁴²) (on photographic plate).

First, the line shape in this region was determined from the line α_2 Pu²⁴⁰ (line No. 2). However, a resolution based only on knowledge of the line shape could result in a large error (greater than 20%) in both the intensities and energies of the transitions.

Secondly, lines 4 and 7 belong to the $Pu^{242} \alpha$ spectrum, representing transitions to the 0^+ and 2^+ levels of U^{238} . According to the literature these lines differ by 45 keV (from α spectra^[3] and Coulomb excitation^[10]) and their intensity ratio is 76/24.^[3] Also, the intensity ratio of α transitions to the 0^+ and 2^+ levels of all neighboring even-even nuclei does not vary much; the average ratio is $(75 \pm 2)/(25 \pm 2)$. Lines 4–7 can therefore be resolved quite accurately $(\pm 10\%)$, because, in addition to the line shape, we know the energy difference of lines 4 and 7, and their intensity ratio.

As a result of the foregoing line resolution it was found that

1) the energy difference of Pu^{242} line No. 4 and Pu²⁴¹ line No. 5 agrees with the literature; 2) the energy of Pu²⁴¹ α transition No. 6 is

higher than the energy of Pu^{242} transition No. 7, thus conflicting with the results of Asaro et al.;^[3]

3) the intensity ratio of Pu^{241} lines 5 and 6 is $(83 \pm 8)/(13 \pm 3)$, which also disagrees with the results of Asaro et al., ^[3] who obtained 75/25.

At energies below 4.8 MeV we observed no Pu²⁴¹ α -decay lines with intensities above 0.2%.

Table I shows our data for the relative intensities of α transitions in each plutonium isotope. Table II gives the excitation energies of U²³⁷ levels and the hindrance factors F for the α transitions, calculated from the data of Bohr et al.^[11]

DISCUSSION OF Pu²⁴¹ DECAY SCHEME

The Pu²⁴¹ ground-state spin was found by means of magnetic resonance to be $\frac{5}{2}$. [12] This agrees well with the Nilsson scheme for single-particle states of deformed nuclei. The ground state of a nucleus containing 147 neutrons is a $\frac{5}{2}$ [622] level.

A. Transitions with small F

The hindrance factor for the 4899-keV α transition is 1.5, which indicates that the transition is favored and goes to a $\frac{5}{2}^+$ state. The 4862- and 4805-keV transitions are also characterized by small values of F (5.2 and 25.0); this is characteristic of transitions to levels of a single rotational band, which in the present case has the quantum number $K = \frac{5}{2}$. The probability ratios of α transitions to rotational band levels as calculated from the formula in [11] for Pu^{241} are

$$J(5/_2 \rightarrow 5/_2): J(5/_2 \rightarrow 7/_2): J(5/_2 \rightarrow 9/_2) = 100: 13: 2.2.$$

This result agrees satisfactorily with our ratio 100:16:1.3, thus confirming the hypothesis that the three U²³⁷ levels reached by favored decays are members of the $K = \frac{5}{2}$ rotational band which have spins and parities $\frac{5}{2}^{+}$, $\frac{7}{2}^{+}$, and $\frac{9}{2}^{+}$. The transition intensity ratio $J(\frac{5}{2} \rightarrow \frac{5}{2}): J(\frac{5}{2} \rightarrow \frac{7}{2}) = 100:33$ given in ^[3] is evidently incorrect. However, the energy differences between these three levels are not in accord with the interval ratio derived from the formula for excited levels of the $K = \frac{5}{2}$ rota-

Table II

a transi-	E_{α} , keV	Energy level,*	Relative	Hindrance
tion		keV	intensity, %	factor, F
$\begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{array}$	5042 ± 4 4973 ± 4 4899 ± 4 4862 ± 4 4805 ± 4	$\begin{array}{c} 0 \\ 70 \pm 2 \\ 145 \pm 2 \\ 183 \pm 3 \\ 241 \pm 3 \end{array}$	$1,5\pm 0,5 \\1.4\pm 0,3 \\83\pm 8 \\13\pm 3 \\1.1\pm 0.3$	700 250 1.5 5.2 25

*Assuming that α_0 is a ground-state transition of U²³⁷.

tional band. Indeed, $E_{rot}(\frac{9}{2}^{+}) = 96 \text{ keV}$ and $E_{rot}(\frac{7}{2}^{+}) = 38 \text{ keV}$, giving the ratio 2.53 instead of the computed ratio 16/7 = 2.29. The moments of inertia based on these levels are $A = \frac{\hbar^2}{2I}$ = 5.42 keV from the $\frac{7}{2}^{+}$ level and 6.00 keV from the $\frac{9}{2}^{+}$ level.

It is extremely likely that the foregoing energy levels can be accounted for by the interaction between the nuclear rotational motion and the motion of the odd nucleon. Kerman^[13] has considered the interaction of levels belonging to different rotational bands of identical parity but with K differing by unity. He showed that this interaction can make the energy levels in rotational bands differ from the calculated values. In the case of U^{237} we consider the interaction of the levels $\frac{7}{2}$ $(K = \frac{5}{2} [622])$ and $\frac{7}{2} + [624]$, which causes a relative shift between them. The $\frac{7}{2}$ [624] state is one of the closest to [622] in the Nilsson scheme. We did not observe this level experimentally, although it appears among the excited states of Pu²³⁹, which resembles U²³⁷, having an equal number of neutrons (N = 145).

B. Relation between the transitions α_2 and α_0

The rotational band mentioned in paragraph A is clearly not a ground state band, because the transitions α_0 and α_1 occur at higher energies than α_2 . The α_2 transition is very intense (83% of the α decays) and goes to a level which should be deexcited through intense γ radiation. The only known γ line of Pu²⁴¹ is $h\nu = 145$ keV. This γ line probably follows the α_2 group immediately; this would mean that there is a level lying 145 keV below the rotational band, and the decay energy of group α_0 actually is 145 keV above that of group α_2 . Thus the groups α_2 and α_0 are consistent with the 145-keV γ rays with regard to energy.

FIG. 3. a and b – two different Pu²⁴¹ α -decay schemes; c – Cm²⁴³ α -decay scheme.

C. Decay to the ground state of U^{237}

It is not clear from the foregoing whether the α_0 group represents decay to the ground state or to some low-lying state of U^{237} . In the latter case intense γ rays and conversion transitions should occur, but at a low transition energy they could remain unobserved in scintillation measurements. The fact that this level can have only a low excitation energy follows from consideration of a closed decay cycle. The pertinent cycle (of a 4n+1 nucleus) is

$$Np^{237} \leftarrow \frac{Q_{\alpha} = 5.64 \text{ MeV}}{\alpha} \text{ Am}^{241}$$

$$0.52 \text{ MeV} \uparrow \beta \qquad \beta \uparrow 0.02 \text{ MeV}$$

$$U^{237} \leftarrow \frac{\alpha}{Q_{\alpha} = ?} \qquad Pu^{241}$$

which gives 5.14 MeV as the total decay energy of Pu^{241} , with $E_{\alpha_0} = 5.05$ MeV. This is very close to the α_0 transition energy (5042 keV), and it can therefore be assumed that this transition goes either to the ground state or to a close-lying state of U^{237} .

D. Ground state of U^{237}

From a rigorous point of view nothing is known about the ground state of U^{237} . The Nilsson scheme predicts the state $\frac{1}{2}$ [631] for the 145-th neutron. In the case of Pu²³⁹, which also has 145 neutrons, * this prediction is confirmed; the experimental ground-state spin is $\frac{1}{2}$ and the ground-state rotational band appears to have the quantum number $K = \frac{1}{2}$.^[8] Figure 3c shows the lower portion of

the $\operatorname{Cm}^{243} \xrightarrow{\alpha} \operatorname{Pu}^{239}$ decay scheme. The analogously constructed rotational band for U^{237} can appear either as in Fig. 3a (given by Takahashi and Mor-inaga^[6]) or as in Fig. 3b. It should be noted that

the hindrance factor for α_0 (F = 700) does not conflict with either of these two versions of the decay scheme.

The Pu²⁴¹ α spectrum contains the still unconsidered 4973-keV transition α_1 (70 keV less decay energy than for α_0). It is reasonable to assume that, as in the decay $\text{Cm}^{243} \rightarrow \text{Pu}^{239}$, this transition goes to one of the ground-state rotational levels. The essential difference between the decay schemes of Fig. 3, a and b, lies in the fact that in the former α_1 goes to the $\frac{5}{2}$ level, while in the latter it goes to the $\frac{7}{2}$ level.

The following arguments can be advanced against Fig. 3a:

1. There is a great difference between the moment of inertia (A = 7.7 keV) of the ground-state rotational band with K = $\frac{1}{2}$ and that of the K = $\frac{5}{2}$ band (A = 6.0 keV). We recall that in the case of Pu²³⁹, which resembles U²³⁷, the moments of inertia for these two bands are practically equal (6.25 and 6.30 keV, respectively) although the $\frac{5}{2}^{+}$ energy level lies considerably higher (286 keV) in Pu²³⁹ than in U²³⁷ (145 keV).

2. The 145-keV γ transition occurs between $\frac{5}{2}^{+}$ and $\frac{1}{2}^{+}$ states and is thus of multipolarity E2. However, the total conversion coefficient for the 145-keV E2 transition is ~1.7, and the total intensity of the 145-keV transition is 24% of the number of α decays. This number is considerably smaller than the population of the 145-keV level.

3. Our measurements reveal no α transition to the 95-keV level. This means that if the transition does occur its intensity is at least one order smaller than that of the α transition to the 70-keV level. On the other hand, it follows from the data on Cm²⁴³ $\frac{\alpha}{2}$ Pu²³⁹ α decay that decay to the $\frac{7}{2}^{+}$ level is more intense than to the $\frac{5}{2}^{+}$ level, and that decay to the $\frac{3}{2}^{+}$ level is more intense than to the $\frac{1}{2}^{+}$ level.

For the decay scheme of Fig. 3b the first objection can be removed by a suitable selection of the decoupling factor a; for a = -0.166 and $E(\frac{7}{2}^{*}) - E(\frac{3}{2}^{*}) = 70$ keV the moment of inertia is A = 6.0 keV as for the $K = \frac{5}{2}$ band. The second objection is removed because the 145-keV transition can be mainly M1. Then $\Sigma \alpha = 6.4$ and

the total transition intensity can be as high as 67%. In $\text{Cm}^{243} \xrightarrow{\alpha} \text{Pu}^{239}$ this M1 transition is the main transition from the $\frac{5}{2}$ (K = $\frac{5}{2}$) level. The third objection disappears automatically.

It seems to us, however, that the aforementioned value a = -0.166 is not the most probable one. With this value of a, $x = E(\frac{3}{2}) - E(\frac{1}{2})$ would have the value 15 keV, thus disagreeing with the energy balance in the foregoing cycle. By setting a = -0.620 we obtain A = 6.5 keV and $x = E(\frac{3}{2}^{*}) - E(\frac{1}{2}^{*}) = 7$ keV; for Pu²³⁹ we have A = 6.25 keV and x = 8 keV.

¹G. R. Hall and T. L. Markin, J. Inorg. Nucl. Chem. 4, 137 (1957).

² Brown, George, Green, and Watt, J. Inorg. Nucl. Chem. 13, 192 (1960).

³Strominger, Hollander, and Seaborg, Revs. Modern Phys. 30, 585 (1958).

⁴ Freedman, Wagner, and Engelkemeir, Phys. Rev. 88, 1155 (1952).

⁵W. W. T. Crane and G. M. Iddings, Phys. Rev. **95**, 1702 (1954).

⁶K. Takahashi and H. Morinaga, Nuclear Phys. 15, 664 (1960).

⁷Dzhelepov, Ivanov, Nedovesov, and Chumin, Izv. AN SSSR, ser. fiz. 23, 782 (1959), Columbia Tech. Transl. p. 780.

⁸Dzhelepov, Ivanov, Nedovesov, and Chechev, JETP **45**, 1360 (1963), Soviet Phys. JETP **18**, 937 (1964).

⁹ Baranov, Kulakov, and Belen'kiĭ, JETP **43**, 1135 (1962), Soviet Phys. JETP **16**, 801 (1963).

¹⁰ J. O. Newton, Nuclear Phys. 3, 345 (1957); 5 218 (1958).

¹¹Bohr, Fröman, and Mottelson, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. **29**, No. 10 (1955).

 12 Bleaney, Llewellyn, Pryce, and Hall, Phil. Mag. 45, 773 and 991 (1954).

¹³ A. Kerman, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. **30**, No. 15 (1956).

Translated by I. Emin 228