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A theory of magnetic superstructures in nonmetallic antiferromagn~ts, a particular case of 
which are the so-called helicoidal structures, is developed on the basis of the Landau theory 
of phase transitions of the second kind. The large superstructure period can be explained 
either by assuming that the structure is created by relativistic spin-lattice or spin-spin 
forces or by a sharp anisotropy in the exchange interaction. 

1. INTRODUCTION 

THERE have been discussions in the literature in 
recent years about the question of the formation in 
certain antiferromagnets of an unusual superstruc­
ture. Such a crystal is found to be inhomogeneous 
over its volume; on its basic structure, which, for 
example, is represented as a system of two sublat­
tices with oppositely directed spins (Fig. 1a), there 
are superposed "beats" with a period many times 
greater than the interatomic spacings. In the sim­
plest case the directions of the spins, while re­
maining the same for the ions of one layer, are 
turned through a small angle about the preferred 
axis as the transition is made from layer to layer, 
so that the ends of the spins trace out a helicoid 
in space (Fig. 1b, the so-called helicoidal struc­
ture). 

The idea that such superstructures were pos­
sible was first expressed simultaneously by Vil­
lain [l], Kaplan, [2] and Yoshimori. [s] Subsequently 
the superstructures were experimentally observed 
in a whole series of antiferromagnetic substances. 
At present it can be stated with certainty that mag­
netic superstructures exist in all·antiferromagnetic 
metals and alloys; on the other hand, in nonmetals 
they are relatively rare. 

In our opinion the current theory on this suffers 
from a number of deficiencies (more details at the 
end of Sec. 5 ). Below we give a theory of magnetic 
superstructures based on Landau's theory of phase 
transitions (see, e.g., C4J). The large period of the 
superstructure is attributed in the theory either to 
relativistic spin-lattice or spin-spin forces, or to 
a sharp anisotropy of the exchange interaction. 

In Sec. 2, the necessary groundwork from Lan­
dau's theory is laid, and a general theory of the 
superstructure in the vicinity of the phase transi-
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tion point is given. In Sees. 3 and 4 the theory is 
applied to the case of nonmetallic antiferromagnets. 
In Sec. 5 the theory is generalized to the case of 
arbitrary temperature, and it is compared with the 
theories of Villain, Kaplan, and Yoshimori. 

The theory of superstructures in metals differs 
in a number of particulars. It will be treated in a 
later publication. 

2. PHASE TRANSITIONS OF THE SECOND KIND 
AND SUPERSTRUCTURES 

The theory of phase transitions of the second 
kind of Landau enables one not only to determine 
the thermodynamic properties of the system near 
the transition point, but also to enumerate all the 
types of magnetic structures that can arise in a 
transition of the second kind. The number of such 
possible structures for each substance is in fact 
always found not to be very large, which is con­
nected with the typical instability of most transi­
tions (E. Lifshitz, [sJ see also[4J). 

The transition from the paramagnetic to the 
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ferro- or antiferromagnetic state consists of the 
appearance below the transition point-in the mag­
netic phase-of a non-zero average density of spin 
s ( r ) [more exactly, in particular for the rare 
earths, it is necessary to speak of the average 
density of the magnetic moment m ( r ) ]. The ther­
modynamic potential of the system <I> is then a 
function of s ( r ) , and the equilibrium value of the 
mean spin density is determined by minimizing 
the potential. Since in a transition of the second 
kind the change in s ( r ) occurs continuously, such 
that at the very point of transition s = 0, then near 
the transition <I> can be expanded in a power series 
in s. In fact this expansion can be carried out by 
expanding s ( r ) in terms of the basis functions of 
the irreducible representation of the symmetry 
group of the paramagnetic phase. 

In what follows, it will be convenient for us to 
consider separately the dependence of si ( r) on 
the coordinates and its dependence on the vecto­
rial index i. Hence we shall expand si(r) in the 
functions (/'na(r ), which depend only on the coor­
dinates and realize the n-th irreducible represen­
tation of the symmetry group of the paramagnetic 
phase (a is the number of the basis function): 

(2.1) 
n,a 

The coefficients sha in the expansion (2.1), in a 
transformation of the symmetry group, themselves 
transform like the components of a pseudovector. 
Actually, however, it makes no difference whether 
we consider that in a transformation of the coordi­
nates x, y, z, the functions ({' change and the co­
efficients S remain unchanged (except, of course, 
for the transformation over the index i), or that 
the functions ({' are invariable and the coefficients 
Sna transform with respect to the index a. In the 
latter case the quantities sha transform according 
to the representation that is the direct product of 
the representation n and the representation formed 
by the components of the pseudovector. This rep­
resentation, generally speaking, is reducible. For 
example, in a uniaxial crystal the components 
S~a· and S~a· ~a are known to transform accord­
ing to different representations. In the general 
case one can construct from the quantities sfw 
different linear combinations Cpf3• Cqy •... , that 
transform now according to the irreducible repre­
sentations p, q, .... 

Using the expansion (2.1), we can reduce the 
functional series in s (r) for <I> to the usual series 
in powers of Sna or of the quantities Cpf3· The 
structure of the series is determined from the in­
variance requirement relative to the symmetry 

group of the paramagnetic phase. The latter con­
sists of transformations of the usual crystallo­
graphic group of the substance and the transfor­
mation R, consisting of a change in sign of all 
spins, currents, and magnetic fields. The pres­
ence of R leads to the absence in the expansion 
of terms that are odd in S (and in c ) , since R 
changes the sign of all of them. 

For each irreducible representation there ex­
ists only one invariant of the second order-a sum 
of squares; in general there are no invariants of 
the second order made up of terms that transform 
according to different irreducible representations. 
Thus, the expansion of the potential <I> has the 
form 

<D (T) = <D0 (T) + ~ ap (T) ~ Cp~ + . . . . (2. 2) 
p (> 

Along with the expansion of <I> in c, it is con­
venient to use the expansion in Sna· The latter 
permits an estimate of the orders of magnitude 
of the coefficients in the expansion by separating 
out the invariants, the coefficients associated with 
exchange forces, and invariants connected with 
relativistic spin-spin and spin-lattice forces. In 
fact the magnitude of the exchange forces in the 
system does not change if all the spins are rotated 
by the same, but arbitrary angle. In this connec­
tion, the exchange invariants are only those made 
up of the Sna which do not change under rota­
tion by an arbitrary angle with respect to the in­
dex i for invariant a. It is clear that the exchange 
invariants are the products of a different number of 
combinations of two types: 

In particular, for each representation n there ex­
ists only one exchange invariant of the second 
order ~a Srw. 

To the paramagnetic state correspond all Cpf3 
in (2.2) that are equal to zero. This can take place 
only in case all ap(T) > 0. Non-zero Cpf3 appear 
if one of the ap changes sign. By determining Cpf3 
from the condition of minimum <1>, we can then 
calculate the thermodynamic properties of the sys- . 
tern near the transition point and by means of (2.1) 
find the distribution of spin density, i.e., the mag­
netic structure of the crystal. Here the basic fea­
tures of the structure, as in the Bravais lattice, 
are the angles between the spins at the different 
lattice points, which are determined by the ex­
change invariants, and the relativistic invariants 
determine the orientation of the "vectors" Sna 
relative to the crystallographic axes. The theory 
of representations of the space groups is well 
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known (see, e.g., [(,GJ). A representation is real­
ized by a set of functions of the form 

cpr(r) = ur(r) eifr, (2.3) 

where f is a vector whose range of variation is 
confined to the cell of the reciprocal lattice, and 
Uf is a function that is periodic in the lattice. Be­
sides the functions (2.3), there also enter into the 
irreducible representation given by the vector f 
other functions as well, based on vectors f', f", 
... , which are obtained from f by operating on 
it with the rotating elements of the symmetry 
group. 

If the vector f takes an arbitrary (non-sym­
metrical) position in the reciprocal lattice, then 
all the vectors f, f', f", ... will be different. 0 

The number of functions 'Pf• 'Pf'• 'Pf"• ... that 
form the representation then agrees simply with 
the number of effective rotating elements of the 
space group, which, as is well known, equals the 
number of elements of the point group that deter­
mines the crystallographic class of the substance. 
Another situation arises when f lies along one of 
the axes or planes of symmetry. In this case there 
always exists a set of rotating elements that leave 
the vector f invariant or change it into f + 21rb, 
where b is any of the periods of the reciprocal 
lattice. In the application of such an element to 
the function cpf the factor eif•r does not change 
and the representation will be determined by the 
transformation properties of the function Uf· In 
particular, ''degenerate'' representations are 
possible, in which several functions Uf belong to 
each vector f. 

The coefficients Sf that correspond to a repre­
sentation with given f's [see (2.1)] transform like 
CTeif·ruf(r ), where CT is the usual pseudovector 
conveying the dependence on the variables that 
determine the spin direction. 

These considerations do not impose any limita­
tions on the magnitude of f. It might be shown 
that a magnetic structure with an arbitrary Bra­
vais lattice can arise as a result of a phase tran­
sition of the second kind. However, as E. Lif­
shitz [5] first showed, there is a reason that es­
sentially limits the possible types of phase tran­
sitions of the second kind. 

In fact, we shall return to our representation 
to see how a phase transition takes place. As was 
mentioned above, above the transition point all ap 
in the expansion (2.2) are greater than zero, and 
the transition proceeds at a temperature at which 

1>Naturally, two vectors that differ by the period of there­
ciprocal lattice b are considered to be identical. 

the first one of the coefficients ap0 vanishes, and 
the rest of them remain positive. Is such a situa­
tion possible for each of the representations of the 
space group? To answer this question we must 
know how the coefficients ap depend on the only 
continuous parameter that numbers the represen­
tation, the vector f. If it turns out that in the close 
vicinity of the considered transition ( representa­
tion Po) the coefficients vary linearly with f, then, 
as is known, some of the coefficients ap will go to 
zero earlier than aPo and the transition of the type 
considered will not be able to proceed. 

The dependence of the coefficients ap on the 
"quasi-momentum" f can be investigated in a 
general way on the basis of symmetry considera­
tions, as is done in the theory of the electronic 
spectra of metals. We begin with the case of a 
transition of "nondegenerate" type, when [see 
(2.3)] the vector f belongs to only one function 
cpf (i.e., one Uf)· Consider the transition, also 
"non-degenerate," with the vector f + k, k « 1/d, 
where d is the interatomic spacing. To this cor­
responds a single function cpf+k = ei(f+k)r Uf+k( r) 
and a single term of second order in the expansion 
(2.2): 

Thus, in the "nondegenerate case" it is sufficient 
to expand af+ k in a power series in k. The form 
of the expansion is determined from the require­
ment of invariance relative to the rotational trans­
formations that leave the vector f invariant. It is 
obviously possible here to replace all screw axes 
and glide planes with ordinary axes and planes, 
i.e., to consider the symmetry of the vector f in 
a crystal that does not have real screw axes and 
glide planes. The set of transformations so ob­
tained always forms a group, the so-called group 
of the vector f. 

Now it is easy to imagine that the linear terms 
in the expansion af+k are always present, if the 
group of the vector f does not contain intersecting 
axes and planes of symmetry, i.e., for the groups 
C1, Cs, Cn, Cnv and in the nondegenerate case 
not for any other groups. In particular, 

af+k = af + akx + ~kt/ + jkz for cl, 
af+k = af + akx + ~ky 
af+k = af + tkz 

for c •. 

(the z axis in the corresponding cases is perpen­
dicular to the plane of symmetry or directed along 
the axis of rotation). 

If the representation is "degenerate" the vector 
f corresponds to several functions cpf: 'Pfa 
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eifr Ufa(r ), a = 1, 2, .... For the representa­
tion with the vector f + k the "degeneracy" can 
be completely or partially removed. In this case 
it is necessary to do something like the quantum­
mechanical perturbation theory for a degenerate 
state. Namely, let there be several representa­
tions for the vector f + k: 

where n numbers the representation and {3 its 
basis functions. Then, in the first approximation 

cpf+k,nf3 = eikr h L~ll (k) crtcx, 
(X 

whereby, as in quantum mechanics, the coefficients 
L~f3 are determined simultaneously with the form 
of the expansion of af+k in k. 

For this we write out the general form of the 
expansion of the thermodynamic-potential terms 
quadratic in Cfa in a power series in k, a series 
permitted by the symmetry: 

<D z (ar + rxkx + ~ky + yk,) h I Ctcx j2 

a. 

(2.4) 

where Jx y z are quadratic combinations of the 
quantities' ~fa different from the scalar ~I Cfa 12 

and transforming as the corresponding component 
of a vector under all transformations that leave 
the vector f invariant. Transforming now this 
quadratic form to a diagonal form, we obtain 

<D ;:::::; h af+k,n h I Cf+k,n{l 12 ' 
n fl 

where 

Cf+k,n{l = h L~{l (k) Ctcx 1 

(X 

and af+k,n{3 ::::e af +terms of order k. 
Thus, in the case of "degenerate" representa­

tions the linear terms in k in the expansion of 
af+k can in principle arise not only for vectors f 
having the group Cb Cs, Cn, or Cnv when the 
quantities a, {3, y in (2.4) are different from 
zero. At this point the investigation must be car­
ried out concretely for each ''degenerate'' repre­
sentation. We note, however, that the linear terms 
are surely absent if the group of the vector f con­
tains the inversion. Actually, in this case the co­
efficients Cfa are either all even with respect to 
inversion, or odd. Therefore any quadratic com­
bination of Cfa is even, whence follows the asser­
tion just made. Consequently, only vectors f with 
the following eleven groups require a special treat­
ment: 

(2.5) 

These considerations very strongly limit the 
number of possible types of phase transitions and, 
in particular, the change in the Bravais lattice de­
scribed by the vector f. If it is considered that 
only transitions with the vector f whose symmetry 
group is one of the set C1, Cs, Cn, Cnv are for­
bidden, while vectors with symmetry of the type 
(2.5) are in general allowed, then analysis shows 
that the following types of transition are possible 
(see LifshitzC5J). In the majority of cases either 
the Bravais lattice is generally unchanged, or one 
or the other of its periods is doubled. In body­
centered lattices ( rhomdohedral, tetragonal, and 
cubic) and in the cubic face-centered lattice, tran­
sitions are possible in which some periods are 
quadrupled. In the hexagonal lattice there is a 
case when one of the periods is tripled. 2> 

There are, however, cases in which exceptions 
to the rules formulated above become possible. 
Namely, it can turn out that the coefficients for 
the terms linear in k in the expansion of the quan­
tity af+k for some physical reason are anoma­
lously small; for example, associated in their 
structure with forces of relativistic nature. Then, 
in addition to the linear terms in the expansion of 
af+k in k, it is necessary to take into account 
also terms of the second order, the coefficients 
of which, as we shall see, are always large. Let, 
for example, 

A>O, 

where, by assumption, y/A « 1/d (dis of the 
order of the interatomic spacing). But this means 
that the coefficient af+k for kz = k0 =- y /2A « 1/d 
has a minimum: 

ac+k = ar -r2/4A +A (kz -ko)2 +A (k.~ + 1c;). 

Thus the presence of terms linear in k with small 
coefficients leads to a phase transition that pro­
ceeds in fact not to a state described by a repre­
sentation with vector £, but to a state with vector 
f + k0• 

We emphasize in connection with this that these 
considerations are applicable principally only when 
y/ A « 1/d, since writing terms quadratic in k it­
self loses meaning already when y/ A "' 1/d. In the 
latter case the quadratic terms are comparable in 
order of magnitude with the linear ones only for 
k0 "' y/ A"' 1/d, when the expansion in powers of 
k is generally invalid. 

2>In a recent paper by Dimmock,['] these results were 
doubted in connection with an inaccuracy in the discussions 
in the original communication of Lifshitz.['] It seems to us 
that the deviation presented above completely removes 
Dimmock's objections. 
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It can be shown in various concrete examples 
that the coefficients of the linear terms are in 
practice small only for transitions corresponding 
to a small number of vectors f with high symme­
try. In general these will again be transitions with 
1-, 2-, 3-, or 4-fold change of the periods of the 
Bravais lattice. This circumstance leads to the 
following pattern of possible phase transitions. 

Besides the types of transitions listed by Lif­
shitz, there are possible phase transitions accom­
panied by the appearance of structures with a pe­
riod many times greater than the period of the 
original lattice. In the majority of cases (and to 
all appearances in all of them, although we have 
no proof in the general case ) , the crystal has a 
unique superstructure after the transition. On the 
fine scale of distances of the interatomic spacings, 
the structure of the crystal does not differ from 
those postulated by Lifshitz, i.e., it corresponds 
to a change of the periods of the Bravais lattice 
by 1, 2, 3, or 4 times. On this structure is super­
posed a superstructure, which appears as unique 
"beats" with the basic structure and has a period 
always many times greater than the interatomic 
spacings. 

The above expansion of the coefficients af in 
a power series in the vector f can be given another 
("coordinate") form. In this formulation, instead 
of "beats" of the form eik·rsf47f ( r ) , which corre­
spond to one irreducible representation, we con­
sider "beats" of a more general form: Sf(r)qJf(r), 
where the Sf(r) are arbitrary, slowly varying 
functions of the coordinates. Since qJf(r) oscil­
lates in the interatomic spacings and Sf( r) is 
practically invariant over them, the function <I> 

for these "beats" can be brought to the form 
J cJ> ( r ) dr, where the density of thermodynamic 
potential <I> ( r) is represented as a series in pow­
ers of Sf(r) and their derivatives over the coor­
dinates. 

The form of this series is determined by the 
requirements of symmetry. In particular, the 
first derivatives can enter in the expansion only 
in the form of the antisymmetric combinations 

s;asiJox - Si,asvax, (2.6) 

since the symmetric ones are total derivatives 
and describe surface effects, which are unimpor­
tant for our present purposes. 

Expanding s ( r ) in terms of the irreducible rep­
resentations, which corresponds to the substitution 
in the expansion of Sf(r) in the form eik·r, we ob­
tain the expansion of the coefficients af+ k in k 
that we investigated earlier. We therefore arrive 

at the original formulation of the criterion of Lif­
shitz, [5] which says that the possibility of a given 
phase transition depends on the presence or ab­
sence of terms of the type (2. 6). 

The large size of the period of the superstruc­
ture in this formulation corresponds to the small­
ness of the coefficient of terms linear in the deriv­
atives compared to the coefficient of terms involv­
ing their squares. This situation is perfectly real 
in magnetic transitions. In this case it can happen 
that, for example, the coefficient of the first deriv­
atives has a relativistic origin (connected with 
forces of the spin-lattice and spin-spin type) and 
is consequently small compared to the coefficient 
of the second derivatives, which is always deter­
mined by the exchange interactions (e.g., there is 
always a term of the type ( aSf/Bx )2 ). Other rea­
sons for the smallness of this coefficient in the 
magnetic case will be discussed in Sec. 4. 

A number of questions concerning the order of 
magnitude of the coefficients of the first deriva­
tives in magnetic transitions can be explained by 
using the aforementioned results of E. Lifshitz. 
We have seen that an invariant of type (2.6) surely 
exists for all those representations in which the 
group of vector f does not have intersecting axes 
or planes of symmetry or inversion, i.e., it is a 
group of the type C1, Cs, Cn, or Cnv· Conse­
quently in a magnetic transition an invariant of 
this type can be composed only of coordinate func­
tions in the expansion (2.1): 

But then the expression 

(2.7) 

with the functions Sf corresponding to these qJf 
will be invariant: the exchange nature of (2. 7) is 
obvious. Therefore, transitions of this type are 
in general certainly non-existent only if there are 
no special reasons for the coefficients of the first 
derivatives to be small. Thus, magnetic super­
structures can in principle arise on account of 
relativistic interactions only for transitions cor­
responding to representations in which the group 
of the vector is one of the eleven groups in (2.5). 

3. MAGNETIC SUPERSTRUCTURES IN NON­
METALS 

The magnetic structure of a nonmetallic crystal 
is completely determined by the values of the av­
erage spins of its magnetic ions sa at each lattice 
site. The corresponding spin density in this case 
has the form 
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s (r) =~SaO (r- ra)· 
a 

In practice it would be necessary to use in place 
of o(r -ra) in this relation a function f(r -ra) 
having a sharp maximum at r = ra, the form fac­
tor of the ion. For us, however, only the presence 
of this sharp maximum is important, and the o­
function is eminently suitable for this. 

This form of the spin density essentially limits 
the number of possible irreducible representations 
according to which s ( r ) should be expanded. In 
particular, "little" representations are deter­
mined by it for crystals whose symmetry group 
has no real screw axes or glide planes. There is 
a simple recipe for finding them. Namely, let us 
symbolize all the magnetic ions within the limits 
of one elementary cell by the different numbers 
At, A2, ... , and the magnetic ions in other cells 
in a corresponding manner by Ateif•Rt, ... , where 
R is the number of the cell. Then in the transfor­
mations of the little group, the magnetic ions go 
into one another, and the qu~ntities At, A2, ... go 
into one another or into Atelf-Rt, . . . . All the little 
representations of interest to us are contained in 
the representation that arises in this way (see, 
e.g., [5J). 

In case the crystallographic group contains real 
screw axes and glide planes, the task of finding ir­
reducible representations is more difficult. We 
shall not give the general procedure, but shall 
when necessary find the representations by using 
specific group properties. 

As an example we shall consider a crystal hav­
ing a cubic body -centered lattice and symmetry 
group ot (close -packed ) ' in which the magnetic 
ions are on the points of its Bravais lattice, and 
find out for which second-order transitions in it 
we can expect a magnetic superstructure. 

The reciprocal lattice of this crystal has a 
cubic face -centered Bravais lattice and symmetry 
group q. Using the International Tables, [8] we 
readily verify that besides the vectors f having 
the symmetry of the type Ct- Cs, Cn, Cnv. which 
describe absolutely unstable transitions [in the 
sense of the appearance of exchange invariants of 
the type (2. 7)], there is only one vector f whose 
symmetry group is included among the eleven 
groups (2. 5). This is a vector with coordinates 

11 tl tl • 1; 1; 11 
14, 14. 14. 14. 14. 14 and sy.mmetry Td. Correspond-
ing to this the functions e1f•r have the form 3> 

3Jit should be taken into account that the period of the 
reciprocal lattice for the face-centered cube is twice as great 
as the period of the lattice itself. 

eirt(x+y+z)ja 
' 

e-ir.(x+u+z)ja. 

Furthermore, since there is only one ion per unit 
cell, and this is immobile under all the transfor­
mations of the group of the vector f, i.e., there 
is always one quantity A, then it is necessary to 
take the unit representation as the little represen­
tation for the function qJf from (2.1). Thus, as cpf 
we may take the function transforming like 

ein(x+y+z)ja + eir.(x-y-z)ja + ei1t(-x+y-z)ja + ei"(-x-y+z)ja 
. ' 

and the complex conjugate function or its real and 
imaginary parts: 

cp- ~sin nx sin~ sin= 
a a a 

The corresponding vectors s+ and s- (see (2.1)] 
transform like 

S + ~ a cos nx cos ~ cos ::: 
a a a ' 

s-~a sin nx sin J!:.Y sin :t.:_ 
a a a • 

(3.1) 

We emphasize that the functions on the right 
hand sides of (3.1) are not equal to the real spin 
density in the crystal, which is given by a o-type 
function. The sign ,... means only that the quanti­
ties that describe the real spin density transform 
like the right sides of (3.1). However, knowing to 
which representation of the symmetry group the 
real spin density of the crystal corresponds, i.e., 
knowing s+ and s-' it is possible to construct, if 
necessary, also the density itself s ( r ) . For this 
we note that from the transformation properties 
of the vectors s+ and s- it follows that the spin 
density corresponding to s+ goes to zero at the 
cent:r of the cube, and the density corresponding 
to S goes to zero at its vertices. Thus, in a non­
metallic crystal s+ represents simply the average 
spin of the ions located on the vertices of the cube 
and s- the average spin at its center. 

The magnetic structure described by the vee­
tors s+ and s- can be represented in the form of 
two inter lacing antiferromagnetic s ublattices, the 
first of which is formed by the ions on the cube 
vertices and the second by the ions at the centers. 
Inside each of the sublattices the spins of the ions 
differ only in sign; however, the spins of the dif­
ferent sublattices are oriented arbitrarily with re­
spect to one another. In Fig. 2 is shown the order 
of the alternation of sign of the spins for the sub­
lattice formed by the spins on the corners of the 
cubes. 

The representation based on the vectors s+ and 
S- is irreducible. Hence in the expansion of the 
potential q, in powers of s+ and s- there is only 
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FIG. 2 

one second-order invariant that does not contain 
derivatives: 

(3.2) 

In its structure this invariant has an exchange 
character. It is not difficult to show that for the 
transition we are considering there is one invari­
ant containing first derivatives with respect to the 
coordinates: 

b (.· s+as~ _ 8_as~ + 8+as~ _ s;.as:, + ) (3 . 3) 
X OZ y OZ y OZ X OZ • • • • 

To the terms written out here there should be added 
terms obtained from them by cyclic permutation 
x- y- z. The structure of Eq. (3.3) shows that 
its origin can only be relativistic spin-spin and 
spin-lattice interactions. To it should be added 
a single exchange invariant of the second order 
containing second derivatives: 

~B [ (a;;r + (a;;y + (0:z7 + (a;:y 
+ (a;;y + (a;z7J. (3.4) 

We do not write out the non -exchange invariants 
quadratic in the derivatives, since they give a 
small contribution. 

Near the transition temperature ( ® - T « ®, 

® the transition temperature) it is necessary to 
add to these invariants, which are quadratic in s+ 
and s-, exchange invariants of the fourth order 
(more will be said about the effect of non-exchange 
invariants of this type below). These have the 
form 

In the immediate vicinity of the transition point 
the magnetic structure is determined from the 
condition of absolute minimum of the sum of the 
expressions (3.2)-(3.5). In general, a very com­
plex structure arises from this. The mean spins 
of the ions can change in space from point to point, 

generally speaking both in magnitude and direction, 
even though the "rate" of change will undoubtedly 
be small. The determination of the magnetic 
structure in this case requires the solution of a 
cubic algebraic equation and cannot be carried 
out in general form. At temperatures not too 
close to the transition point the task of determin­
ing the magnetic structure is greatly simplified. 
At these temperatures the invariant (3.5) will al­
ready be many times greater than the sum of the 
invariants (3.3) and (3.4), so that the minimization 
of the free energy can be carried out in stages.4> 

Namely, first it is necessary to minimize the ex­
change invariant (3.5) under the condition of con­
stant magnitude of (S+ )2 + ( s- )2 = 2s2, where s 
is the mean spin of an ion at the considered tem­
perature. From this is determined the "coarse" 
magnetic structure, Le., the average ion spins 
and the angles between them (but not relative to 
the lattice!). After this, the sum of the terms (3.3) 
and (3.4) is minimized, now for the given "coarse" 
structure. 

Three types of "coarse" st:r;-ucture correspond 
to a minimum of Eq. (3.5): 

1. s+ = Y2s, 
II. s+ = s- = s, 
III. s+ = ± s-. 

s-=o or s-= V2s, 
s+ ..l s-; 

s+ =O; 

Structure I exists for D > 0 and D + E > 0, 
structure II for D < 0 and E > 0, and structure 
III for D + E < 0 and E < 0. In cases I and III, 
the invariants linear in the derivatives go to zero 
and the superstructure does not arise. Super­
structure appears only in case II, when the ion 
spins on the corners and in the centers of the ele­
mentary cube are perpendicular to each other. 

The dependence of S+ and s- on the coordi­
nates is determined by a linear second -order dif­
ferential equation obtained by variation of the sum 
of the functions (3.3) and (3.4) under the condition 
of constancy of the exchange invariants (3.2) and 
(3. 5). The real solution of the equation has the 
form 

s+ = 2-'/, (Jeikr + J*e-ikr), s-= i2-'f, (Jeikr _ J*e-ik•); 

12 = 0, II* = s2 • (3.6) 

Substituting (3.6) in (3.3) and (3.4), we obtain an 
expression for the addition to the thermodynamic 
potential, associated with the superstructure: 

£!>' = - 4b Re (kzlxl: + kylxz; + kxlyl;) + Bl>:2s2 • (3.7) 

The wave vector of the superstructure k and the 

4>A more exact estimate for this temperature region will 
be given below. 



THEORY OF HELICOIDAL STRUCTURES IN ANTIFERROMAGNETS 967 

vector 1 are determined by the variation of (3. 7) 
over k and 1 with the additional conditions 12 = 0, 

1·1* = s 2 • It is found that k is directed along one 
of the three-fold axes and has the magnitude k 
= I b IIB(3 )112• The components of the vector 1 
then lie in a plane perpendicular to k, and the 
addition <P' = - b2s 2 I3B. 

The coordinate dependence of the spins at the 
vertices s+ and centers s- of the cubes for the 
case k II [111) has the form 

s+ = s [!Jo cos k (x + y + z) - 'Y sin k (x + y + z)l 

X cos n:r cos ny cos nz , 
a a a 

S =s[-~Josink (x-f-y-f-z)-vcosk(x+y+z)l 

X sin nx sin ny sin nz · 
a a a ' 

k =I b II BY3. (3. 8) 

where IJ., 1.1 are mutually perpendicular unit vee­
tors lying in the (111) plane. 

The smallness of the vector k is guaranteed 
by the smallness of the coefficient b relative to 
B. The coefficient b, being related to interactions 
of relativistic nature, is of order bsij ~ v2Eijdl c2®, 
where v is of the order of the velocity of the 
atomic electrons, Eo is of the order of atomic en­
ergies, d is the interatomic spacing, s 0 is the av­
erage spin of an ion far from the transition point, 
and ® is the order of the exchange energy, i.e., 
the transition temperature in energy units. The 
coefficient B has exchange origin: Bsij ~ ®d2• 

Thus, k ~ (v2Eij lc2®2 )d -t; the ratio v 2Eij lc2®2 is 
small for magnetic substances, as a rule never 
exceeding 0.1. 

The results finally obtained can be formulated 
in the following way. The "coarse" magnetic 
structure was described above (see p. 965). To 
this it is necessary only to add the possibility of 
three different relative orientations of the spins 
of the ions located on the vertices s+ and at the 
centers S- of the cubes. That is, S+ and S- can 
be either perpendicular or parallel, or one of them 
can go to zero. In the two latter cases, no kind of 
superstructure results; but in the first one gets a 
magnetic superstructure of the "helicoidal" type. 
The axis of the helicoid is directed along one of 
the [111) axes and the rotation of the spins occurs 
in the corresponding planes of the (111) type. The 
pitch of the helicoid is great in comparison with 
the period of the "coarse" structure. The direc­
tions of the spins at each point are given by Eq. 
(3. 8). 

As has already been mentioned, this picture 
must undergo strong changes very close to the 

transition point. The closeness to the transition 
point is determined from the condition that the 
contribution to the thermodynamic potential from 
terms associated with derivatives with respect to 
the coordinates should not surpass the contribution 
of the exchange invariant: 

b2s2fB<Cs\ 

or, considering that at ® - T « ® we have from 
Landau's theory of phase transitions the formula 
s 2 = sij(®-T)I®, 

8- T ~ 8 (v 4et/c46 4 ). 

At ® -T ;S. ®(v4 E~Ic4®4 ), the magnetic structure 
can turn out to be immensely more complicated. 
We also note that if the ratio between the coeffi­
cients in the exchange invariant (3.5) are such 
that the states type I and II are energetically favor­
able, then the superstructure that must arise at the 
transition point must subsequently disappear at 
temperatures such that ® - T ~ ® ( v4d I c4®4 ). 

It should be noted further that at temperatures 
far from the transition point, relativistic invari­
ants of higher order can become important. In the 
case considered, when the rotation of the spins 
takes place in (111) planes (anisotropy of sixth 
order ) , they are of order v6 Eg I c6®5• Considering 
that the contribution of the terms with derivatives 
has the order v4 E~ I c4®3, we conclude that the ani­
sotropy can be neglected at all temperatures. 

4. MAGNETIC SUPERSTRUCTURE OF Mn02 

We now turn to the case when the magnetic 
structure that arises as a result of a phase tran­
sition of the second kind is such that the thermo­
dynamic potential has exchange terms linear in 
the derivatives. Such a situation leads, as a rule, 
to the impossibility of the transition. There are, 
however, substances in which for one reason or 
another associated with their structure and not 
with symmetry, as before, the exchange invari­
ant linear in the derivatives turns out to be small 
compared with the invariant quadratic in the de­
rivatives. Then a superstructure arises, the large 
period of which is due to this smallness. The in­
vestigation in this case should be carried through 
separately for each concrete substance. 

As an example we consider antiferromagnetic 
Mn02• The crystal has a simple tetragonal lattice 
with two Mn atoms in a unit cell (positions 000 

and 112 112 % ) ; the space group of the lattice is n!h. 
The group has essential screw axes' and glide 
planes; hence, in using the results given in Sec. 2, 
it is necessary to assign to the vector f that de-
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termines the representation the symmetry it would 
have if the screw axes and glide planes were re­
placed by simple axes and planes. Such a lattice 
for Mn02 is a body-centered tetragonal lattice 
(group D!h). By consulting the International 
Tables, [8] we find at once that only one vector, 
namely % Y2 Y2 (symmetry D2d), has a group that 
belongs to the set of eleven (2.5). In all the other 
cases exchange invariants arise. 

We begin with the representation based on the 
vector 1/ 2 1;2 t;2 when there is only the relativistic 
invariant. To the vector % t;2 % corresponds the 
function eirr(x+y)/a + irrz;c, in place of which we 
can also take cos ( rrx/ a) cos ( 1IY I a) cos ( rrz/ c ) , 
which has the same translational properties. The 
latter remains invariant under all symmetry trans­
formations that leave in place the Mn ions ar­
ranged on the lattice sites and transforms to the 
function sin ( rrx/a) sin ( 7TJ /a) sin ( rrz/ c) under 
transformations that carry the corners of a cell to 
its center. It immediately follows that as func­
tions <Pf in (2.1) we can select the functions 

+ nx ny :rtz 
m ~ COS- COS - COS -
...,... a a c ' 

_ • :rtx • ny . nz 
<p ~ Slll- Slll- Slll - • 

a a c 

It is not difficult to verify that the representation 
realized by cp + and cp- is irreducible. To it cor~ 
respond the vectors 

S + ~ a cos nx cos ny cos ~ 
a a c ' 

s-~a Sin llX Sin :ty Sin~, 
a a c 

The structure described by the vectors s• and s­
coincides precisely with the structure we consid­
ered in the preceding section for a cubic body­
centered crystal; for Mn02 (for s• 1 s- ) it had 
been assumed in early work by Erickson. [9] 

The representation realized by the vectors s• 
and s- is reducible; it breaks down to three ir­
reducible representations based on different com­
binations of their components 

s~, s~; s~ + s~, s;- s~; s~- s~, s; + s~.(4.1) 
It is not difficult to show that terms of the second 
order in s+' s- in the expansion of the thermody­
namic potential have the following form: 

<I>= +A [(8+)2 + (S-)21 + + a1 [(S~ + S~)2 + (S;- S~)2 l 

( as- as-
+ ..!..a [(S+-s+)2 +(S-+S-)2l+b s+_u +S+_x 

2 2 II X Y X az Y f}z 

_ 8 _ as; _ 8 _ as~) +..!.. 8 [ (as+)2 + (as-)2 J 
II at X OZ 2 az az ' 

The presence, however, of an invariant linear with 
respect to the derivatives in this case does not in­
dicate any instability. This is due to the terms 
with derivatives being much smaller in order of 

magnitude than the terms connected with aniso­
tropy. In fact the contribution of the first is, to 
within a factor, equal to b 2s 2 /B, and the ratio of 
it to the anisotropy energy b2 I a 1; 2B is of the order 
v2 E~/c 2®2 ; this quantity, which is merely the ratio 
of the anisotropy energy to the exchange energy, is 
always small, attaining order unity only for very 
heavy ions. For Mn ions, then, there is no basis 
for not considering it to be small. 

We now consider the representation determined 
by the vector 0 0 t;2• In the reciprocal lattice of 
group D!h the vector corresponding to it has C4v 
symmetry, from which it follows that an exchange 
invariant should appear in the thermodynamic po­
tential. It is not difficult to show that to the vector 
0 0% there belongs a representation given by two 
vectors s• and s- transforming like 

s+ ~a cos (nzfc), s-~a sin (nzfc). 

The corresponding structure is shown in Fig. 3. 
It is made up of two interpenetrating antiferromag­
netic lattices, the first of which is formed by Mn 
ions on the points of the Bravais lattice and the 
second by ions in the centers of the unit cells. The 
orientation of the spins in the two lattices relative 
to one another is arbitrary. Here s• and s- rep­
resent the mean spins in the corresponding lattices 
(circles and squares in Fig. 3 ) . 

FIG. 3 

The representation realized by s• and s- is 
again reducible; the irreducible representations 
-are given by the same combinations of components 
as in (4.1). The second-order terms in the ther­
modynamic potential have the following form: 

<D = tA [(S+)2 + (S-)2 ] + ~a1 [(S~ + S~)2 + (S:;;- S~) 2 ] 

+ ~a2 [(S~- S~)2 + (S~ + S~)2 ] 

+ b (S+as-;az- s-as+;az) + ~B [(as+;az)2+(as-;az)2 J. 
(4.2) 

In (4.2) we have dropped terms quadratic in s• 
and s- that contain higher derivatives. Such neg­
lect is justified if the derivatives themselves are 
small; for this it is required that the coefficient b 
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be small in comparison with B. This is just the 
case in Mn02• In fact, from the structure of the 
linear invariant it is seen that it is due exclusively 
to the interaction of the ions located on the points 
of the unit cell with the ions at the cell centers 
(in particular, this invariant goes to zero when 
the average spin at the centers goes to zero). On 
the other hand the quadratic terms in the deriva­
tives are connected mainly with interactions be­
tween themselves of the ions situated at the cor­
ners (or at the centers ) of the cell. We might re­
mark at this point that the distance between the 
ions of different type is 20% greater than the min­
imum distance between ions of one type (a = 4.44 A, 
c = 2.89 A). Because of the exponential fall-off in 
the exchange forces this should lead to the inequal­
ity b « B. In later estimates we shall use the re­
lation b ~ AB, where A is a small quantity. Ac­
cording to Erickson, [3] A ~ 0.1. 

If, as in the preceding section, we do not inter­
est ourselves in the special region very close to 
the transition point, then at first it is necessary 
to minimize the exchange terms of the fourth or­
der. For Mn02 they have exactly the same form 
as in (3.5). Again, we can show that for structures 
I and III (see p. 966) the linear invariant goes to 
zero. For structure II, however, we shall seek s+ 
and s- in the form 

s~ = scoscp, s~ = ssincp, s; =- ssincp, 

s; = scoscp, s; = s~ = 0. 

(We can, without losing generality consider that 
the spins lie in a (001) plane, which corresponds 
to a 1 < 0, a2 < 0. Similar results are obtained for 
other relations between a 1 and a 2.) 

The terms in (4.2) that depend on the angle cp 
take the form 

<D' = (a1 - a 2) s2 sin 2cp - 2bs2dcp/dz 

(4.3) 

For I a 1 - a 2 I « b2 /B we can neglect the effect 
of the first term. By varying the remaining ex­
pression with respect to cp, we obtain cp = kz. The 
value of k is obtained by the minimization of the 
expression - 2bs 2k + Bs 2k2, whence k = I b 1/B. 

Thus we can have in Mn02 a helicoidal struc­
ture of large period ( k = b/B "' A « 1). The axis 
of the helicoid is along [001], and the rotation of 
the spins takes place, depending on the relation 
between a 1 and a 2 either in the (001) plane, or in 
planes of the type (100) and (110). For the case of 
rotation in the (001) plane, the spins of the ions at 
the corners and at the centers of the lattice are 
described by the formulas 

S~ + iS~ = seibzfB cos (nzlc), 

S; + iS; = iseibzfBsin (nzjc). (4.4) 

For a 1, a 2 .<:. b2 /B, the anisotropy should be con­
sidered more carefully. This will be done in a 
later publication. 

5. SUPERSTRUCTURES FAR FROM THE TRAN­
SITION POINT 

The theory of superstructures presented above 
rests heavily on the possibility of expanding the 
thermodynamic potential in a power series in the 
spin density s ( r). At temperatures far from the 
transition point, the series expansion is already 
unsuitable. In this case, however, it is possible 
to put the question about the stability of the mag­
netic structure found from some theory or approx­
imately fitting neutron diffraction data. 

One can try to explain on the basis of symmetry 
considerations whether any other magnetic struc­
ture exists [i.e., another spin density s (r)] that 
would give a minimum value to the thermodynamic 
potential. As before, we may treat the potential .P 
as a function of s ( r ) and assume that the form of 
the function and its apparent temperature depend­
ence are determined by the properties of the para­
magnetic phase. The latter is associated with the 
smallness of the magnetic interaction energy (of 
the order of the Curie temperature ® for one 
atom ) with respect to the change in the coupling 
energy of the atoms in the crystal E: 0• We may 
assume in the zeroth approximation that the ar­
rangement of the atoms and the interaction between 
them remains the same as in the paramagnetic 
phase and take their small magnetostrictive changes 
into account via the functional dependence of .P on 
s. 

The spin density of a real crystal is a periodic 
function of the coordinates; the corresponding 
magnetic Bravais lattice is determined by three 
vectors f1, f2, f3• Therefore only integral degrees 
will enter in the decomposition of s ( r) into the 
irreducible representations (2.1), and all possible 
products of the representations based on the vec­
tors f 1, f 2, f3, and consequently the potential .P will 
be a function of the maximum of three continuous 
parameters. There are fewer of them if all f or 
any two of them transform into one another under 
rotations. 

Thus the question of the stability of the mag­
netic structure comes down to a determination of 
the form of the expansion of .P in degrees of the 
vectors f1o f2, f3, i.e., the very same problem we 
took up in Sec. 2. At temperatures far from the 
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transition point, however, complications arise in 
connection with the necessity of considering in­
variants formed from arbitrary powers of the 
representations entering into s(r ). Still, some 
highly important conclusions can be drawn with­
out getting into the complications 5>: 

1) If at least one of the vectors f1, f2, f3 has 
symmetry of the type Ct> Cs, Cn or Cnv• then in 
the expansion of <I> there are always terms linear 
in f with coefficients of an exchange nature. Such 
structures, consequently, are absolutely unstable, 
except in special cases (see Sec. 4 ) . 

2) The spin density, whether even or odd with 
respect to inversion [ s (- r) = ± s ( r) ) , is always 
stable. 

We note that the criterion of stability can be 
given, as before, in the coordinate form of Lifshitz. 
It appears as the absence of invariants of arbitrary 
order that are linear in the derivatives. 

The theory given above of superstructures that 
occur if the coefficients of the linear terms are 
small remains completely valid also for arbitrary 
temperatures. The reason for this is the small­
ness of the energy of formation of the superstruc­
ture in comparison to the energy of the basic 
structure. Actually, the basic features of the orig­
inal structure are determined by the strong ex­
change interactions. The latter, in particular, set 
the angles between the spins of the ions at neigh­
boring points and their absolute values. Hence the 
only result of the effect of relativistic forces or 
especially weak exchange forces that lead to the 
emergence of a superstructure can only be a ro­
tation of the spin system of the basic structure 
as a whole relative to the crystal axes, but differ­
ing now at different points in the lattice. The angle 
of rotation between close neighbors will of course 
be small on account of the large period of the 
superstructure. 

Thus the superstructure can be represented as 
a twisting of the basic structure. We remark, how­
ever, that in real substances, particularly in the 
case of transition temperatures close to zero or 
with large atomic numbers, the difference between 
the relativistic and exchange forces is often quite 
small. As a result there can appear a greater 
wealth of superstructures; in particular the magni­
tudes of the spins will change. A concrete theory 
can scarcely be constructed in these cases, how­
ever. 

The orientation of the system of spins relative 
to the lattice at each point can be given by the 

5>we present these without proofs, since they completely 
duplicate the corresponding items in Sec. 2. 

three Eulerian angles or by a single unit complex 
vector y ( y • y* = 1, y2 = 0 ) ; this can be a vector 
directed along any of the parameters Sna· Since 
all remaining Sna are firmly tied to the first, 
they are also expressed through y. Carrying 
through this orientation it is not difficult to see, 
for example, that the exchange invariants linear 
in the derivatives (if, of course, all their coeffi­
cients are small ) , reduce to y • 8y* I az - y* • 8y I az. 
And if all such invariants are relativistic, then it 
is sufficient to be limited by the invariant of the 
lowest order in y. 

In particular, at arbitrary temperatures the 
theory of superstructures considered in Sees. 3 
and 4 is still valid. In the first case it can be 
shown that from the coordinate functions cp + and 
cp- [see (3.1)) and arbitrary powers of them it is 
in general impossible to make up an invariant lin­
ear in the derivatives. Therefore, it is sufficient 
at arbitrary temperatures to limit ourselves to 
only two invariants (3.3) and (3.4), replacing S+ 
and S- in them by Re y and Im y, respectively. 
In this it is necessary, of course, to treat b and 
B as arbitrary functions of the temperature. In 
the case of Mn02 any exchange invariant will be 
small, since it must certainly contain as a factor 
the quantity s+ • aS- I az ( s+ • s- = o), which gives 
a large period to the superstructure. As has been 
pointed out, it is sufficient in the theory to take 
into account the single exchange invariant 

ray•;az-r·a,;az, 
In conclusion, we pause to compare the results 

of this theory with the theories of magnetic struc­
tures given by Kaplan[2] and Yoshimori. [a] They 
are based on an investigation of the classical ana­
log of the Heisenberg Hamiltonian: 

(5.1) 

where Si is the average value of the spin on the 
i-th lattice site, and the Jik are the correspond­
ing exchange integrals. The exchange integrals 
for the interaction between 1, 2, and 3-the near­
est neighbors -were considered here, generally 
speaking, to be quantities of the same order ( J 1 

"'J2"' Ja). 
It was found that the smallest eigenvalue of the 

quadratic form (5.1) for certain relations among 
J 1> J 2, J 3 corresponds to a distribu.tion of the av­
erage spins of the form S(r) = S0e1f·r with the 
vector f having type Cnv symmetry. This result 
can agree with the criterion of stability providing 
it is assumed that because of the specific proper­
ties of the model not connected with symmetry the 
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coefficients of the linear term in the expansion of 
the energy of the system in powers of f goes to 
zero. 

This property is none other than having an en­
ergy quadratic in the average spins. But this is 
found to be in our problem a completely artificial 
circumstance. In fact, the quadratic form (5.1) 
emerges as the classical limit of the usual Heisen­
berg spin Hamiltonian, the transition to which has 
meaning only for very large spins ( S » 1 ) . On the 
other hand, for a spin not equal to %. the quantum 
spin Hamiltonian will by no means be quadratic in 
the spins; it may contain powers of the scalar 
products 81 • 82, different from unity, and in the 
classical limit S - oo also as many greater ones 
as desired. Then all the exchange integrals will 
be a priori of a single order of magnitude. Be­
sides, because of the use in the theory of the as­
sumption J 1 ,... J 2 ,... J 3 there is no basis whatso­
ever for neglecting third-order, fourth-order, etc., 
interactions of the form ( S1 • S2 ) ( S1 • S3 ) , and so 
forth. 

Thus, in the classical limit the problem of find­
ing the magnetic structures at absolute zero comes 
down to an investigation of the general form of the 
functionofthe spin density s(r) = 6sio(r-ri), 

i 
which is precisely the approach described at the 
beginning of this section. The solution of the ques­
tion about the possibility of a given spin density as 
the ground state of the system can be found only 
with the aid of symmetry considerations. The re­
sults obtained with the model of the Hamiltonian 
(5.1) have therefore hardly any connection with 
reality. 

Finally, we shall mention the results of the in-

vestigation of magnetic structures, based on the 
molecular fi~ld theory. [1•10•11 ] In essence, in 
these papers one finds the dependence of the coef­
ficients af in (2.2) on the temperature and the vec­
tors f. It is frequently found then, that in the ab­
sence of some physically small parameter af has 
minima at those points of the reciprocal lattice 
where its symmetry does not demand it. This 
circumstance, as in the preceding case, indicates 
probably that the simplifications on which the mo­
lecular field theory is founded render it inadequate 
for the present problem. 

1 J. Villain, J. Phys. Chern. Solids 11, 303 (1959). 
2 T. A. Kaplan, Phys. Rev.116, 888 (1959). 
3 A. Yoshimori, J. Phys. Soc. Japan 14, 807 

(1959). 
4 L. Landau and E. Lifshitz, Statisticheskaya 

fizika (Statistical Physics), Gostekhizdat, 1951 
(Engl. Transl., Addison-Wesley, Reading, Mass., 
1958). 

5 E. M. Lifshitz, JETP 11, 253, 269 (1941). 
6 G. Ya. Lyubarskil, Teoriya grupp i ee pri­

menenie v fizike (Group Theory and Its Application 
to Physics), Fizmatgiz, 1958. 

7 J. 0. Dimmock, Phys. Rev. 130, 1337 (1963). 
8 Intern. Tabellen zur Bestimmung von Kristall­

strukturen, 1934. (Now superseded by International 
Tables for X Ray Crystallography, Kynoch Press, 
Birmingham, England, Vol. I, 1952.) 

9 R. A. Erickson, Phys. Rev. 85, 745 (1952). 
10M. J. Freiser, Phys. Rev. 123, 2003 (1961). 
11 T. A. Kaplan, Phys. Rev. 124, 329 (1961). 

Translated by L. M. Matarrese 
200 


