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The interaction of a charged particle with a nonequilibrium plasma is investigated. It is shown 
that the particle energy losses due to the excitation of plasma oscillations can become ano
malously large as the plasma approaches an unstable state. 

IT is well known that critical fluctuations [1, 2] 

(see the review in [3]) i.e., anomalously large 
fluctuations, can arise in a nonequilibrium plasma 
that is almost unstable. These critical fluctua
tions lead to an anomalously large cross-section 
for the scattering of light in such a plasma [1] and 
to anomalously large coefficients for the scattering 
of longitudinal waves and conversion of such waves 
into transverse waves. [4] 

In the present work we investigate the interac
tion between charged particles and a nonequili
brium plasma. It is shown that the particle energy 
losses due to the excitation of collective plasma 
oscillations can be anomalously large 1) if the 
plasma is almost unstable. 

The probability for transition of a particle 
from a state characterized by momentum p to a 
state characterized by a momentum p' is related 
to the fluctuations in plasma charge density by 
the familiar expression 

d _ ( 4nez )2 2 dp' 
W - ~ (p )qw (2nll)" ' 

where ( p2 ) is the correlation function for the 
charge density, tiq = p' - p and nw = ( p'2 

- p2)/211 are the changes in particle momentum 
and energy, ez is the particle charge and 11 is 
the particle mass. 

( 1) 

For a plasma consisting of hot electrons mov
ing with respect to cold ions, the charge density 
correlation function in the frequency region 
q( Ti/M) 112 « w « q( T/m) 112 is given by[t] 

(p2) = ___!___ ( Tq' )2 (qs)' 6 (w2 - q2s2) (2) 
qw 2 Q m I w - qu I ' 

where T and Ti are the electron and ion temper-

l)The interaction of particles with a plasma in which an 
external source produces the nonequilibrium wave distribution 
has been investigated by TsytovichJ5] 

atures and m and M are the electron and ion 
masses, u is the mean directed velocity of the 
electrons, n = ( 4ne2n/m )1/ 2 is the plasma fre
quency and s = ( T /M) 112 is the sound speed ( T 
is the sum of electron and ion temperatures). 

Using Eqs. (1) and (2) we can estimate the 
energy lost by the particle per unit time in the 
excitation of sound waves: 

dP = ( ezT )2 (qs)2 {I) (qv + qs + nq2/2[L) 
Q m qs + qu 

_ I) (qv- qs + hq2(2[L)} dq 
qs- qu 2nn' ( 3) 

where v is the particle velocity. The first term 
in this expression describes the induced radiation 
and the second describes the absorption of waves 
by the particle. (We are interested in plasma states 
that are nearly unstable, in which case the number 
of sound waves is large; hence we can neglect the 
additional term in Eq. (3) that takes account of 
the spontaneous emission which is independent of 
the radiation.) 

Carrying out the integration over angle in Eq. 
(3) we can find the intensity of the Cerenkov radi
ation per unit frequency interval dP/dw. This 
quantity is found to be anomalously large if 
v cos e 0 r:::: u r:::: s ( e0 is the angle between v and 
u); in this case 

dP (ezTw)2 ws 
dw = -Qs2 m[L(vcos80 -u)2 • ( 4 ) 

Integrating Eq. ( 4) over the frequency we de
termine the particle energy loss per unit time 
due to the excitation of sound waves: 

p = (;~~2 r _m_[L_(,---v-co-s-oe-o -~u70)2, 

where a is equal to several Debye radii. If 
( v cos e0 - u )2 < 1/ 4 uv ( m/11) (a/a )4 we have 
P > P 0 where P 0 = ( ezQ )2/v is the magnitude of 
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( 5) 
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the particle energy loss due to binary collisions 
neglecting the Coulomb logarithm). 

It is evident that dP/dw and P can become 
infinite only within the framework of the linear 
theory that has been used to obtain Eq. (2) for the 
fluctuations in charge density. Actually, however, 
nonlinear effects must lead to saturation of the 
critical fluctuations; as a result the intensity of 
the Cerenkov radiation remains finite. Hence, 
Eqs. (4) and (5) [and also Eqs. (8) and (10)] do not 
apply at very small values of v · u - u2 in which 
case the critical fluctuations giving the particle 
energy loss become so large that their proper 
description requires a nonlinear theory. In the 
present work we limit ourselves to the linear 
theory and do not attempt to find any limitation on 
the growth of the critical fluctuations nor to de
termine their ultimate amplitudes. 

We now consider the interaction of a particle 
with a plasma which is traversed by a compen
sated beam of charged particles. It is assumed 
that the beam velocity u is greater than the 
thermal velocity of the plasma electrons but that 
the beam temperature T 1 is high enough so that 
the damping of the plasma Langmuir oscillations 
is determined primarily by the interaction with 
the beam electrons. Under these conditions, the 
charge density correlation function in the high
frequency region ( w » q ( T /m) t/2 ) is of the 
form [2] 

2 1 q2Q.Z 2 2 < p )q"' = 2 T 1 I(!)- quI <'> (w - Q ). (6) 

It is well known that the existence of a hot 
beam always leads to the growth of short wave 
Langmuir oscillations that satisfy I q · u I > Q. If 
nonlinear effects are neglected in the interaction 
between fluctuations Eq. (6) can be used in the 
wave-vector region in which plasma oscillations 
are still nongrowing. The energy lost by the par
ticle per unit time in the excitation of Langmuir 
oscillations can be found from Eqs. (1) and (6): 

dP = ( ezQ )2 T { & (qv + Q + Jiq2/211) 
q 1 Q. + qu 

_ & (qv- Q + liq2/211)} ~ 
Q. -qu 2nh · (7) 

This formula takes proper account of the interac
tion of the particle with nongrowing oscillations 
i.e., modes for which I q · u I < SJ. 

Carrying the integration over angle in Eq. (7) 
we find the intensity of the Cerenkov radiation 
per unit wave number interval q. In the simplest 
case, in which u 11 v, we have 

dP 
dq 

(ez)2 T 1qu 
11 (n- u)z . 

(8) 

Integrating Eq. (8) over q, we find the p~rticle 
energy lost in the excitation of Langmuir oscilla
tions 

( ez )2 T 1u 
p = a 2ft(v - u) 2" (9) 

If the particle velocity v and beam velocity u 
are approximately the same P is very large and 
can exceed the energy loss due to binary collisions 
as well as the energy loss due to excitation of 
Langmuir oscillations in the absence of the beam. 
This is the case when 

(v- u)2 < u2 (mT/I,lT) (a/2Zi) 2 • 

If the angle e0 between v and u is different 
from zero and q""' SJ/u, then 

dP (ez)2T1qu 
----ciq 11 (v cos flo- u) 2 ( 10) 

In contrast with Eqs. ( 5) and (9) the expression 
for the particle energy loss due to the excitation 
of Langmuir oscillations P at 00 ~ 1 does not 
contain the resonance denominator ( u · v - u2 ) 2• 

In this case the value of P is proportional to a 
large parameter that characterizes the cutoff of 
the amplitude of the critical fluctuations by non
linear effects; thus, in this case P is large. 

The difference in the structure of the expres
sions for the particle energy loss due to excita
tion of Langmuir oscillations when e 0 ~ 1 and 
when eo « 1 is related to the fact that the parti
cle interacts strongly with modes for which q · v 
""' Q whereas the amplitude of the oscillations is 
anomalously large for the condition q · u ""' SJ. 
Hence, it is only when the conditions u ""' v and 
e0 « 1 are satisfied that all modes with which 
the particle interacts will be anomalously large, 
regardless of their wave vectors. 

In conclusion we wish to thank A. I. Akhiezer, 
A. A. Vedenov and K. N. Stepanov for valuable 
discussions. 
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