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We investigate the solutions found by the Fredholm method for the linear integral equation 
describing the scattering of spinless particles with equal masses. The problem is treated 
over a restricted energy range but with arbitrary momentum transfer. The analytic proper
ties of the scattering amplitude are studied as a function of the complex energy (or momen
tum) and angular momentum. The asymptotic form of the partial amplitude as JZJ - oo is 
found and it is shown that one can go over to the total amplitude by using the Watson
Sommerfeld transformation. The analyticity of the total amplitude as a function oft is 
demonstrated, and conditions for Regge asymptotic behavior when t - oo or u - oo are 
formulated. 

1. INTRODUCTION 

THIS paper describes an investigation of the anal
ytic properties and asymptotic form of the ampli
tude for elastic scattering of two particles. In 
nonrelativis tic theory, for a potential of the form 

00 

V (r) = ~ dvU (v') e~vr (1.1) 
p.' 

it has been possible to obtain the Mandelstam 
representation [tJ (under very general assumptions 
about U ( v) ) , and to use the Watson-Sommerfeld 
transformation to get the asymptotic scattering 
amplitude for large values of the cosine of the 
scattering angle. [2] In quantum field theory in
formation about the asymptotic scattering ampli
tude is usually obtained from the unitarity rela
tions and from the Mandelstam representation, 
whose validity has as yet not been demonstrated. 
The Mandelstam representation is used here to 
prove the analyticity of the partial scattering am
plitude in some part of the Z-plane and to establish 
the connection between the singularities in the 
Z-plane and the asymptotic behavior of the scatter
ing amplitude at high energies. [aJ To get this re
sult it is, however, not necessary to use the 
Mandelstam representation. It may happen that 
there is no Mandelstam representation but, never
theless, the partial amplitude is analytic in some 
portion of the l -plane, and the asymptotic behavior 
of the scattering amplitude in cos e (where e is 
the scattering angle in the system of the center of 
inertia) is given by the singularities of the partial 
amplitude with respect to l . It is therefore desir
able to develop a method for studying the analytic 
properties of the scattering amplitude and its 

asymptotic behavior as a function of cos e directly, 
without using the assumption that there is a 
Mandelstam representation. 

For this purpose it is very convenient to des
cribe the scattering amplitude and the bound states 
of the two particles using a Schroedinger-type 
equation with a generalized complex potential. [4J 

For the case of scattering of spinless particles of 
equal mass, this equation has the form [4J 

Y p2 + m2 (k2- p2) '¢k (p) =~ daqV(p, k; k2) '¢k (q), (1.2) 

where k is the momentum of the particles in the 
ems, which is related to the square of the total 
energy s = 4E2 by the formula s = 4 (k2 + m 2). 

It is convenient to introduce the invariant scatter
ing amplitude T (p, k) by the relation 

'ljlk ( ) = b(a) ( - k) + T (p, k) 
p p (k2- p• + iO) V p• + m• • 

(1.3) 

Substituting (1.3) in (1.2), we get the equation for 
the scattering amplitude: 

T (p. k) = v (p., k; k2)+ I d8q v (p, q; k2) T (q, k) (1 4) 
J y q• + m• k2 - q2 + iO ' ' 

In general V (p, q; k 2 ) is a very complicated 
function of p 2 , q 2 , p · q and k2 • It was shown 
earlier, [sJ however, that one can construct poten
tials of a much simpler type which lead to the 
same values of the scattering amplitude T (p, k) on 
the mass shell, i.e., for p2 = k 2 = E 2 - m 2 • Using 
the results of[5J, we assume that the even and odd 
projections of the amplitude T ± satisfy the equa
tions 

r± (p, k) = v± ((P- k)2 , k'J) 
+ 1 asq v± ((p-q)•, k•) r± (q, k) 

J V q2 + m• k2 - q• 
(1.5) 
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where the potentials V ± are representable in the 
form 

00 

y± ((p- q)2 k2) = \ dv u± (v, k•) (1.6) 
' ~ v+ (p- q)" 

p.' 

and that there is t> a p (-1 ~ p ~ 0), such that 
00 

~ dvU± (v, k2)vP<oo. (1. 7) 
p.' 

We shall assume in addition: a) The functions 
u± ( v, k2 ) defined for JJ. 2 ~ v < oo in some 
domain K of the complex k plane, are analytic in 
this domain except possibly for branch points on 
the real axis. We note that in addition to branch 
points, which correspond to thresholds for various 
inelastic processes, the spectral functions 
u± ( v, k2) may have some additional branch 
points arising from the presence of ..f q2 + m2 
in Eq. (1.5). 2> A more detailed discussion of such 
branch points will be given below. 

We shall also assume b) that the spectral func
tions are real in some interval I c K of the real 
k2 axis, containing the point k2 = 0. This assump
tion insures that the potentials are real in the 
region corresponding to elastic scattering and to 
bound states. 

2. SOLUTION OF THE EQUATIONS FOR THE 
PARTIAL AMPLITUDES. MEROMORPHY IN 
THE 1-PLANE 

Expanding the projections of the amplitudes and 
potentials in partial waves 3> 

00 

r± (p, p') = 2P1P. ~ (21 + 1) tf' (p, p') P1 ( .W:) , {2.1) 
l=O pp 

00 

= -f, ~ (2l + 1) F[' (p, p'; k2) P1 ( ~), (2.2) 
pp l=O PP 

and using the relation 

\' dQqP1 ( pq) P 1, (~) = ~ll' ~ P 1 ( W ) (2.3) 
.\ pq qp' 21 + i pp· f 

1>conditions (1.7) and (1.8) mean that the potential in 
r-space V(r, k2), which is related to U(v, k2 ) by formula (1.1) 
(to within a numerical factor), can be represented as a sum 
of generalized Yukawa potentials, and that for r ~ 0 it in
creases more slowly than r-2 • 

2>Polivanov, Zav'yalov and Khoruzhii [•J have shown that 
for the potential (1.1) additional singularities appear in (1.5) 
in the second approximation. 

3 >we note that the momenta p and p' are not on the mass 
shell, i.e., are not related to E. The transition to the mass 
shell can be made by setting p = p = k. 

one can easily get the equations for the partial 
amplitudes: 

fr (p, p') = Ff- (p, p'; k2)+ C d 21tF[= (p, q;k'l)f[' (q, p'). 
~ q Vq•+m•(k•-g•) (2.4) 
0 

From the well-known expansion 

1 1 ( p2 + q2 + v pq )-1 
v + (p-q)2 = 2pq 2pq - pq 

00 

= _1 "'(21 + 1) Q (P'+q'+v) p (pq) 
~~ l ~ lM 

(2.5) 
I=G 

and formulas (1.6) and (2 .2) we get for F t the 
representation 

00 

F[= (p, q; k2) = ~ dvU±(v, k2) Q1 ( r+2~q+v ). (2.6) 
p.' 

To solve (2.4) it is convenient to introduce the 
function (we shall omit the ±superscript) 

R, (p, p') = cp{p) fi(p, p') cp(p'), 

cp(p) = Yzn [V r + m2 (k'- p2n-'t •. 

The function Rr satisfies the equation 
co 

Rr (p, p') = K1 (p, p'; k'l) + ~ dq K 1(p, q; k'l) R1(q, p'), 
0 

K 1 (p, p'; k2) = cp(p) F1(p, p'; k'l) fJI(p'). (2.7) 

Thus the function Rl is the resolvent C1f the 
kernel Kl and can be represented as a ratio of 
two Fredholm series: [7J 

R, (p, p') = D1 (p, p'; k2) D? (lr). (2.8) 

Here 

(2.9) 

K0 = 1, (q} ... qn) 
Kn q . q, = deL JIKI(q,, qj; k2} I· 

1· · n (i. j) 
(2.11) 

The series (2.9) and (2.10) conl'erge if[e~ 
00 

~ dqldq~ I K I (ql, q2; k2) 1 2 < OQ. (2.12) 
0 

Using the condition (1.7) and the asymptotic formula 
for the Legendre functions 

Qz(z);::::;z-H Ylir (l + 1)/21+If (l + 3;2) 

as I z i --. oo, 

it is easy to show that the integral (2.12) is bounded 
for Re l > -1 -p, if k2' lies in the region K' ob-
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tained from K by making the cut k2 ~ 0. Since Qz 
is analytic in l for l ,.e -1, -2, ... (it has simple 
poles at these points), because of the convergence 
of the series (2.9) and (2.10) the functions Dz ( k2) 

and Dz ( p, p' ; k 2 ) are analytic in the halfplane 
Re l > -1 -p if k 2 is in K'. In this half-plane Rz 

is a meromorphic function of l and can have poles 
only at the zeros of the function Dl ( k2). 

3. STRUCTURE OF THE PARTIAL AMPLITUDE. 
SPECTRAL REPRESENTATION OF DZ(k2) 

We shall now show that the Fredholm method 
automatically leads to the N/D structure (cf., for 
example, [sJ) for the partial amplitude f 1, and we 
shall find the expression for fZ in terms of Dl (k2). 

From formulas (2.8)-(2.11) it follows that 

lz (p, p') = q>-1 (p) Rz (p, p') q>-1 (p') 

= N, (p, p'; k2) Dj1 (k2); 

Nz (p. p'; Jil) = 'tl-1 (p)D, (p, p'; k2)cp-t (p') 

Fo = 1; ( q} ... q"' ) 
Fn = det li F~, (q,, qi; k2) [[. 

ql ... qr> (>. j) 

1be obvious identity 

n (q,2- ttl = ~ (q.2 - tftl ~I (q:l - f}l2rl 
> • l'i"'' 

enables one easily to get the relation between 
(3.2) and (3.3): 

N1 (q, q; q'Z, F) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.6) 

We note that (3.5) is obtained purely algebraically, 
and that the convergence of the Fredholm series is 
sufficient for its validity. This formula is analog
ous to the corresponding relation in the usual N/D 
method. 

Let us coneider Dl{k.2 ) :In the k2-plane. on the 

segment I, where the potential has no branch 
points, we get from (3.5) for k2 ? 0 (where we 
denote the intersection of the segment I and the 
half-line k2 ? 0 by ( 0, kf)) the relation 

D 1 (k2 + iO) - D1 (k2 - iO) 

= 2n2 i 1 N (k2) 0 < k2 <kf, (3.7) 
k fk" + m> l ' 

where 

N 1 (k2) = Nz (k, k; k2) = N1 (k, k; k2 , k2) 

= '1 (-t r ICOI d . 2n F (. kqt ... ·qn) 
..LJ n! j q, ; . n+I • 

n=o 0 i=I J qf + rn2 (k"- qf) kq, ... qn 

(3.8) 

The function Nz ( k2 ) has no singularity in the 
interval 0 ::5 k2 < k~, since for k = qi the deter
minant Fn+1 ( kkqt · · ·1'ln) in formula (3.6) vanishes. 

qt ... qn 
On the energy surface f z has the form 

fz(k 2) = fz (k,k) = Nz(k2 ) Dz1 (k2). For 
0 ::5 k2 < ki it is given by the ratio of the limiting 
values of Dz ( k2): 

N (k") 

fl W + iO) = Dz (~' + iO) 

= i k y k' + m• [- .D1 (k2 
- iO) _ J . 

2n• l>1 (k2 + iO) i 
(3.9) 

From this we get the unitarity relation in the inter
val o ::5 k2 < k{: 0 

fz (k')- t;. (k") = - n2 1 ---=-It (kz) f;. (1.:2). (3.10) 
2i k v "" + "'' 

ANALYTIC PROPERTIES OJ' Nz JN THE k-PLANE •. 

1n the preceding section we have already pointed 
out that the vanishing of the denominator in (3.8) 
does not give rise to branch points of Nz ( k2). 

Thus Nz(k2) has no singularities if 0 ::5 k7 < ki. 
Considering Nl as a function of k (denoting it by 
Nz (k) in this case), we find that it bas no singulari• 
ties if k is in the interval - ki < k < ki . From 
formulas (3.8), (3.4), and (3.6) it is now clear that 
in the analytic continuation along any curve, 
singularities can appear in Nz (k) in only two 
cases: 1) if we hit a singularity of U ( v , k) or 
2) if a singularity appears in one of the functions 
Qz .. ( ( k2 + q2i + v) /2kqi J which cannot be e1im-

'J·2 1,2 
ina ted by deforming the contour (''coalescing'' 
singularities or a "boundary" singularity). 

4>outside this interval one must add to the tight side of 
(3.10) the expression 

00 

2112 ~ dr·r2 11Pkz (r) 12 lm V(r, h'). 

0 

where 1/Jkl (r) is the wave function in the r•tepresentation. 
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Let us consider the second case. Qz (z) has 
singular points at z = oo, z = +1 and z = -1. Using 
(2.16) we easily get rid of the first singularity. 

Dividing Qz [(k2 +q2 +v)/2kq] by (kq) 1+1 , we 
also eliminate the singularity at k = 0. We there
fore consider only the singularities at z = ± 1. 
The equation for the singularity in the q -plane 

w + qr1 •2 +v)/2kq;1,2 =± 1 (4.1) 

has the solution qi 1, 2 = ± k ± i -[V. Here the sign 
of ifV is not related to the choice of sign in (4.1). 

\ 

\ 
I 

a b 

FIG. 1. Deformation of the integration contour in the ex
pression for Nt; a_ rays along which the analytic continua
tion is carried out in the k-plane; b - trajectories of singu
larities and turning of the contour in the q-plane, for k in the 
first quadrant. 

Suppose that k moves from the origin along a 
ray in the first quadrant of the k-plane (cf. Fig. 1). 
If we turn the contours for the qi 1, 2 integrations 
through the angle cp, the line of singularities will 
not intersect these contours. We turn the contour 
for the other q's through the angle cp. The argu
ments of the corresponding Legendre functions will 
be ( qi + qj + ve-2icp) /2qiqj , so that for 0 ::s cp 
::s 1r /2 the Legendre functions will be regular. The 
function 1/V q2 + m2 has singular points only along 
the imaginary axis ( q = ± im), i.e., for cp ~ ± 1r /2 
we do not meet its singularities either. It is possi
ble to turn the contour because the integral along 
the arcs joining the old and new contours is zero. 
Carrying out the same procedure with k moving 
along rays in the other quadrants, we accomplish 
the analytic continuation of Nz ( k) over the whole 
complex k-plane, except for the cuts along the 
imaginary axis and cuts from the potential. 5) 

The branch points on the imaginary axis arise 
because in the motion of k along the imaginary axis 
the line of singularities hits the boundary of the 
integration contour ("boundary" singularity). 
There are no "coalescing" singularities in the 
present case. The closest branch points on the 
imaginary axis at ± iJ.L/2 appear because of the 

5)If the potential is defined over a finite part of the plane, 
we can carry out the analytic coninuation into this region. 

terms containing Qz (1 + v /2k2). The next branch 
points at ± iJ.L occur because of the terms contain
ing the product 

Q (k2 + q2 + V1 ) Q (k2 + q2 + V2 ) 
l 2kq l 2kq ' (4.2) 

etc. We remark that the presence of the factor 
1/V q2 + m2 in these integrals gives additional 
branch points along the imaginary axis. For ex
ample an expression containing (4.2), and equal to 
the second Born approximation for the amplitude 
f z , has additional branch points at ± i ( m + J.L ) and 
others. s> 

This is seen most easily by using the procedure 
described for the case of cp = 1r /2 (cf. Fig. 2). 

t(m•p} . I 
ip }---0 -iZ, I 

a I b I 
FIG. 2. Appearance of additional singularities i(m + JL): 

a _ the line along which the analytic continuation in the 
k-plane is carried out; b - deformation of the integration 
contour in the q-plane. 

Circling the point k = 0 and moving on along the 
imaginary axis, we meet the singularity im of the 
integrand. These additional singularities have no 
physical meaning and should not be contained in 
the amplitude f z • They are apparently compensated 
by corresponding singularities in the potential 
[cf. Sec. 1, assumption (a)]. The compensation can 
occur automatically in constructing the potential 
of the form (1. 7) from the given amplitude on the 
mass shell. [fiJ 

We note that in the k2-plane the function Mz ( k2) 
Nz ( k2) /k2 (l + t) has no branch points for 

k2 = 0. In fact the singularity at k2 = 0, which is 
contained in the functions Qz, is clearly eliminated 
by the factor k2 (Z + t) ; the appearance of branch 
points of the root type in going from the k-plane 
to the k2-plane is prohibited by the invariance of 
the function Nz (k2) /k2 (l + t) to the replacement of 
k by - k. This allows one to get a useful represen
tation for Dl : 

2n2i (k2)1 -v--k- . 2 .2 
-----'-::-'--c . .,.-1 k• + 2 1111 (k ) + <D1 (k ) , 

1 +e2'" m 
(4.3) 

where ~l ( k2) has no branch point at k2 = 0, but 
has a left cut (-oo, -J.L 2/4), so that the jump of 
~l ( k2) on this cut compensates the jump in 

6)These singularities are treated in [6]. 
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Mz ( k2), while this cut does not appear in Dz ( k2). 
To derive the representation (4.3) we define the 
function v'k2/( k2 + m2) in the k2-plane so that it 
takes on positive values on the upper side of the 
cuts ( - 00 , -m2) and ( 0, + 00 ) and negative values 
on their lower sides, and we choose that branch of 
the function ( k2 )Z for which arg k2 = 0 for k2 > 0. 
Then the change in the function Dz ( k2 ) in circling 
the point k2 = 0 in the positive direction is the 
same as the jump in Dz ( k2) computed from 
formula (3. 7). 

Formula (4.3) allows the definition of the func
tion DZ in the k-plane. The function Dz (k) thus 
obtained is a generalization of the well-known Jost 
function [toJ in terms of which the S matrix is ex
pressed by the formula sz (k) = DZ (kei71) /Dz (k). 
From the representation (4.3) it follows that for 
nonintegral l the point k = 0 is a branch point of 
the function DZ (k). 

5. ASYMPTOTIC SCATTERING AMPLITUDE FOR 
l- oo. 

To determine the asymptotic form of the scat
tering amplitude fZ for Ill - 00 , it is convenient 
first to transform the expression (3.10) for Nz so 
that the dependence on l becomes simpler. To do 
this we use the relation [ttl 

(5.1) 

where 

K (z1z2z) = z~ + z~ + z2 - 2z1z2z - 1. 

Applying formula (5.1) successively, one can trans
form the product of any number of Legendre func
tions into an integral of a single Legendre function, 
but the expressions obtained are quite complicated 
and will not be reproduced here. 

Let us consider the expression Nz ( k2) 
= fZ(k2) DZ(k2), where Dz(k2) for k2 < 0 has 
branch points only when the potential has singular 
points in this region. Integrating Eq. (2.7), we can 
get the Born expansion for fZ: 

00 

fz (k2) = ~ dvU(v, k2 ) Ql ( 1 + 2~2 ) 

,_. 
co 00 

+ ~ dv1 ~ dv2 U (v1 , k2) U (v2, k2) 

p..• I-Ll 

00 

X I d 2n Q ( k• + q• + v1 ) 

~ q V q• + m• (k"- q") 1 2kq 
0 

( q2 + k2 + "•) 
X Qz 2kq +' ... (5.2) 

To simplify the writing of the formulas, we con
sider the case when U(v, k2) = U(k2) 6 (v- JJ.). 
We transform the second integral in (5.2) using the 
relation (5.1). After straightforward transforma
tions we find 

r d~ 1 
X .\, k•-q• [(q•+m•)(q•-q:)(q"-q!)J'f,' 

(5.3) 

q_ 

where q~ ( v) is determined from the equation 
v = ( k2 + q~ + JJ. 2 ) q~ - 4k2 • The integral over 
q 2 in (5.3) can be expressed in terms of elliptic 
functions.· We shall, however, not give a detailed 
investigation of the Born series, but shall formu
late the general result. 

One can show that the function Nz ( k2 ) is repre-
sentable in the form 

00 

Nl (k2) = ~ dv Qz ( 1 + 2~2 ) I (v, k2 ) Dz (k2), (5.4) 
,_. 

I (v, 1f2) = U(v, 1f2) 

+ 8 (v - 4!12) 11 (v, k2) + 8 (v - 9!12) 12 (v, k2). (5.5) 

We note that the convergence of the series in (5.4) 
is guaranteed by the factor Dl ( k2 ), which goes to 
zero at those points where the amplitude f z ( k2) 

has a pole and where its Born expansion (5.2) 
diverges. 

From the representation (5.4) we see that the 
asymptotic behavior of NZ is determined by the 
behavior of Qz and Dz. The asymptotic form of 
Qz is (cf., for example, [t2J) 

Q ( h ) ~ -. / n e-" (!+';,) 
z c a ~ V 2 (I + 1;.) sh cr ' 

111-+oo 

I arg (ch a - 1) I< n, 

From formulas (3.3), (3.4), (2.6) and (5.5), using 
the assumption (1. 7) 7> we find the following 
asymptotic form for Dz (valid for Re l > - 1/2): 

*sh = sinh, ch = cosh. 
7>To simplify we set p = 0 in (1. 7). The generalization to 

the case of- 1 .:S p < 0 presents no difficulties. 
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(5.9) fz (k2 ) ~ z--'h {exp I II a2 sin¢} for -00 < k2 < -fl2/4. 

where C is a constant. To derive (5. 7) we substi
tute the asymptotic formula (5.6) in the formula 
for D7 , change from the variables v to variables 
0', and make one integration by parts. The con
vergence of the q integrals in (5. 7) is easily veri
fied. 

From the asymptotic formula (5.7) it follows 
that Dz ( k2) - 1 for Ill - oo if Re l > - 1/2. 

Now we investigate the asymptotic behavior of 
fz for different values of k2 • Its behavior is deter
mined by the behavior of Nz. To determine the 
asymptotic form of Nl when Ill - oo, we substi
tute the asymptotic form (5.6) in (5.4), make one 
integration by parts, first changing from the inte
gration variable v to the variable 0'. The result 
is 

N 1 (k2 ) = C (k2 ) e-a_l. ')...-'!,; 
II 1-+oo 

We set 

ch a= 1 + !J-2/21.:2. (5.10) 

l + 1/ 2 ='A= 'A1 + i'A2 =I 'Aj ei<l>, - n <¢ < n; (5.11) 

a = a 1 + ia2 , a 1 > 0, - n < a 2 < n. (5.12) 

Using the identity 

(5.15e) 

We note that the regions of exponential fall-off 
and growth of the amplitude f z in the l-plane are 
separated from one another by the line 
tan l/J == a 1/a 2 • On the real axis f z drops off like 
z-31 2 e-Z 0' 1 so long as k2 does not lie on the cut 
(-oo,-t-t 2/4). Inthelattercase fz oscillateson 
the real axis, while it decreases in the upper half
plane if k 2 is on the upper side of the cut and in
creases if k 2 is on the lower side of the cut. For 
any k2 the amplitude f z ( k2 ) cannot increase on 
the imaginary axis of l faster than 
z- 312 exp {1rl Im ll}. 

6. THE WATSON-SOMMERFELD TRANSFORMA
TION. ANALYTICITY AND ASYMPTOTIC FORM 
OF THE SCATTERING AMPLITUDE IN TERMS 
OF THE MOMENTUM TRANSFER 

For working with the Watson-Sommerfeld trans
formation, we need some asymptotic formulas for 
the function Pz (z) /sin 1rl as Ill - oo. Setting 

z = ch \;, \; = \;1 + i\; 2 , \;1 > 0, - n< \;2 < n, (6.1) 

we use the well-known asymptotic formula (cf., for 
example, [t2 ~) 

= 1 + 1/ 2!J-2 j k l-2 [cos arg 1.:2 - i sin arg k2 ] (5.13) Pz (ch \;)/sin nl 

it is easy to show that 

a~ = 0, + oo > a 1 > 0 for 0 < lt!l < + oo; (5.14a) 

-Jt < a 2 < 0, a1 > 0 for Im k2 > 0; (5.14b) 

for-Im k2 < 0; (5.14c) 

on the upper side 
of the cut ( -oo, 0); 

(ti.14d) 

for -- oo < !t2 < - !t2/4 and k2 on the lower side 
of the cut (-oo, 0). 

(5.14e) 

Substituting (5.11) and (5.12) in (5.10), we find 
the asymptotic form of Nz ( k2) (and consequently. 
of f z ( k2) ) for IZI - oo in the different regions of 
variation of k2 • We have (for Ill - 00 ) 

f 1 (/. 2 ) ~ l-',, exp {- ill a 1 cos¢} for k2 > 0, (5.15a) 

/ 1 (/.'") ~- .[-'/, exp {ll I (- a1 cos¢ + a2 sin¢)} 

for lm k2 < 0, (5.15b, c) 

f1 (P) -l-'f,exp {!!I (- a1 cos¢+ n sin¢)} 

for -f-l2/4 < 1.:2 < 0, (5.15d) 

~ r'1• !exp 1 'A 1 (s1 cos¢ - t2 sin¢ - n I sin¢ I)} 
j 1/-+CO 

+ e:ii"12 {exp It- I(- \;1 cos¢ + \;2 sin¢ - n I sin¢ I)}], 

-n/2 <;;; ¢ <;;; n/2. (6.2) 

From this general formula it is easy to show 
that 
a) if -1 < z < 1, then \;1 = 0 and 

Pz (z)/sin nl -' r'lz exp {- lll[sin ¢ I (n - I \;21)}; 
Jl 1-+oo 

(6.3a) 

b) if 1 < z < oo, then \;2 

= 0 and along the imaginary axis I. (¢ = ± n/2) 

P 1 (z)lsin nl ~ z-'!, e-1 n "; (6.3b) 
Im z--co 

c) if -oo < z < 1, then \; 2 = n and along the 

imaginary 'A axis 

P 1 (z)/si n nl oscillates as Im l ~ oo; (6.3c) 

d) if z is not on the cut (-oo, - 1), then along 

the imaginary A. axis 

Pz (z)/sin nl ~ r'lz exp {-I 'A I (n - I \;2[)}. (6.3d) 
Im l--+oo 

We now go over from the series (2.1) to the 
Watson-Sommerfeld integral along a contour C 1 
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FIG. 3. Integration contours in 
the [-plane. 

encircling the positive semiaxis in the l-plane 
(cf. Fig. 3): 

T(k2, cos 8) = 4
1k2 I dl (2l + 1) /z (k2) Pz (~co; e) • (6.4) 
' . • \ Sill :It c, 

For -1 < cos e < 1 and k2 > 0, the convergence 
of this integral follows from (5.15a) and (6.3a). 

Using the meromorphy of the amplitude in the 
l-plane, which was proved in Sec. 2, one can fur
ther deform the contour C 1 to a contour C2 along 
the line Re l = -1/2 (cf. Fig. 3). We have 

- 1/,+z+ioo p ( ") 
1 \ l -cos v 

T(k2 , cos8) = 4ik2 .\ dl (2l + 1) /z (k2) sinnl 
_tf2+e:-ioo 

. p "' (k') (-cos 6) 
'V b· (k2) ' + ~ ' --s.,--in_n_r:t_;.,-,(k"'2)-' 

t 

(6.5) 

where ai are the positive poles of fz inside the 
contour C2 • From formulas (5.15a) and (6.3a) 
when -1 < cos e < 1, k2 > 0, it follows that the 
integral over the semicircle at infinity is equal to 
zero. 

The representation (6.4) enables us to complete 
the analytic continuation of the amplitude to com
plex values of cos e. Since Pz (-cos 8) is an 
analytic function in the complex cos &-plane with 
the cut (1, +00 ), and the integral in (6.5) converges 
when k2 > 0 (by virtue of (5.15a) and (6.3d) ), 
formula (6.2) shows that when k2 > 0 the ampli
tude T (k2 , cos 8) is analytic in the complex 
cos 8-plane with the cut 1 :::.=: cos e < oo. 

One can show that the cut in the cos 8-plane 
begins not at 1 but at 1 + J..t 2 /2k2 • In order to see 
this we note that the asymptotic formula (5.15a) 
quarantees the convergence of the series (2.1) in
side the ellipse with semiaxes 1 + J..t 2 /2k2 and 
[ ( 1 + J..t 2/2k2)2 -11 112 , where the major semiaxis 
1 + J..t 2 /2k2 is along the real axis in the 
cos 8-plane. [t3J Thus when k2 > 0 the series 
(2.1) defines a function which is analytic inside this 
ellipse. Since along the real axis the amplitude f z 
drops off like z- 312 e-Zat (cf. the end of the pre
ceding Section), for arbitrary k2 not on the cut 
(- oo, - J..t 2 /4) there is an ellipse in the cos &-plane 
containing the segment -1 < cos e < 1 such that 

the series (2.1) converges if cos 0 is inside this 
ellipse. 

Let us consider the representation (6.5) for 
1 <-cos e < oo. According to (6.3b) and (6.15), 
the integral in (6.5) converges for arbitrary k2 , 

so that this representation is convenient for de
termining the asymptotic behavior of the ampli
tude T (k2 , cos e) for cos 8 - - oo. To study the 
asymptotic behavior as cos e- + oo, it is not con
venient to use (6.5) since when - oo < cos e < - 1 
the integral in (6.5) diverges for all k2 (except 
possibly for k2 > 0), and we therefore consider 
the modified Watson-Sommerfeld representation [2J 

2 - 1 (' Pz (cos6) -bl .2 
T(k , cos 8) ~ !JJ<?: ~ dl (2l + 1) sin nl e fz (k ). (6.6) 

c, 
The integral (6.6) converges for the same reasons 
as (6.4). But now one cannot deform the integra
tion contour C 1 into the contour C2 when k2 > 0, 
- 1 < cos e < 1, since this is prevented by the 
exponential growth of e- i n:l in the upper l-half
plane. According to (6.3a) and (5.14a) one can 
deform the contour C 1 into the contour C3 consis
ting of the two rays 1/J = - n: /2 and 1/! = 1/Jo, where 
tan 1/Jo = at/1 ?::2l (cf. Fig. 3). 

Now let -J..I- 2/4 < k2 < 0 (Im k2 - 0) and 
- 1 < cos e < 1. Then according to (5.15a) and 
(6.3a) the integration contour C3 can be deformed 
into c2, giving the representation 

-'f,+<+ioo p l (cos 6) 

T(k2 , cos 8) = lJ:z ~ dl (2l + 1) /z (ft2) c-nl- sin nl 
_lf2+E-iOO 

'V _2 -i""; P "·i (k'l (cos 0) +.::.A (k) e -.-----··c;- · 
i Sill :rt:li (k·) 

(6. 7) 

From (5.14), (5.15) and (6.3b) it follows that when 
1 <cos e < oo the integral in (6.7) converges if 
Im k 2 2: 0. s> 

Standard arguments [2] permit one to find the 
asymptotic form of the amplitudes T ± ( k2 , cos e) 

for cos e - ± oo (we recall that our whole treat
ment above applied to the even and odd projections 
of the scattering amplitude T): 

(6.8) 
+ " z"m r (cr'~ '·'I·) ·- ± "In <k') 

T ± (k2 0) ~ b± (k2) '".· ' 2 -t"xm .<_c,o_s_6.:_) --
' COS ....--..- In . - ·_":: I e 

cos 9-++oo V 2f (:tm T 1) sin :rt:t~, (k') 

(6.9) 

8>1n the case of lm k2 < 0 one can get analogous results. 
But to obtain the physical consequences it is sufficient to 
consider values of k2 in the upper halfplane. 
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Here a in (k2) are the positions of the poles farthes 
to the right in the 1-plane for the amplitudes ft 
respectively. 

Remembering that the total amplitude T is re
lated to the amplitudes T ± by the formula (cf. for 
example [14 J) 

T(k2 , cos 6) = + rr+ (k2 , cos 6) + r- (lc2, cos B) 

+ r+ w,- cos 6) - r- (k2 , -cos O)l. (6.10) 

we find from (6.8) and (6.9) the asymptotic form 
ofT: 

T(k2 , cos 6) 

Treating the amplitude T as a function of 
t = - 2k2 (1 - cos e) or of u = - 2k2 (1 + cos e), we 
can find its asymptotic form for t - + oo or 
u- + oo, i.e., for large energies in the t- or u
channels of the reaction (cf. also [ 15 ]): 

T(k2 cos 6) ~ 1 ~ e-i"" t" 
, ' sin n::t ' t->-00 

(6.12) 

1 ±e-i"" 
T(k2 ,cos6) ~ . u". 

U--+CO SID 3t:X 
(6.13) 

We emphasize that to derive (6.12) and (6.13) it 
is sufficient that 1) the potentials v±, representa
ble in the form (1.6), exist only in some domain K 
containing a segment of the real axis of the 
k2-plane, and 2) that the spectral functions u± 
satisfy the condition (1. 7). As shown earlier, [5] 

for small k2 the representation (1.6) can be proved 
using perturbations in quantum field theory. The 
convergence of the integral (1.6) and the condition 
(1. 7) are, however, complementary assumptions, 
and if they are not satisfied the asymptotic ampli
tude fort- oo or u- co may have a form different 
from (6.12) and (6.13). For example, if the integral 

co 

~ dv U (v, k2) v-1 
fl.' 

diverges, the amplitude can have branch points in 
the 1-plane, which have an essentiql effect on the 
asymptotic behavior (compare [ 16• 17]). We remark 
that the method developed in this paper is conven
ient for solving the problem of the effect of branch 
points in the l-plane on the asymptotic form of the 
scattering amplitude, since it permits a simple 

comparison with the results from solving the prob
lem using a potential scattering model. [ 16 ~ 

7. CONCLUSION 

In conclusion we mention some results which 
can be gotten from the present work. Although on 
the whole the method considered here is most ef
fective for studying partial waves and the depen
dence of the total amplitude on the variables t and 
u, it can also be used to study its dependence on 
s (or k2), if one has sufficient information about 
the properties of the generalized potential as a 
function of k2. 9 ' If the potential is an analytic 
function of k2 with branch points (on the real axis) 
corresponding to the thresholds for inelastic 
processes, then using the results of Sees. 5 and 6 
one can show that for t < 0 the scattering ampli
tude is an analytic function of s = 4 ( k2 + m 2) 
with cuts along the real axis. Here, however, we 
come upon the problem of additional singularities 
(cf. Sees. 1 and 4), so that the question of the 
validity of the Mandelstam representation within 
the framework of our approach requires further 
investigation. 

We emphasize again that this complication is 
related to the presence in (1.4) of the relativistic 
factor .J q2 + m2. If this factor were not present, 
the equation would become the usual equation of 
nonrelafivistic scattering theory with a complex, 
energy-dependent potential. If this potential is 
representable in the form (1.6), satisfies condi
tion (1. 7), is analytic in the k2 -plane with a cut 
along the positive real axis starting from the in
elastic threshold, and if the absorptive condition 
(Im U ( v, k2) :::::: 0) is satisfied on the cut, then the 
arguments given here allow one easily to obtain 
the Mandelstam representation for the scattering 
amplitude (cf. [ 19 ]). 

Finally we mention that the equation Dl ( k2) = 0 
is apparently a convenient means for studying 
Hegge trajectories. In particular the behavior of 
the trajectories as k2 - co and k2 - 0 is' obtained 
very simply in the first approximation. 

The authors are sincerely grateful to Academi
cian N. N. Bogolyubov for stimulating discussions, 
and also to 0. I. Zav'yalov and M. K. Polivanov 
for valuable information. 

9 >on the other hand, for studying the analyticity and 
asymptotic form of the amplitude in the variable s, one can 
simply interchange the roles of s and t in the fundamental 
equations, and obtain an equation with some new potential 
defined in a bounded region in t, but for arbitrary s. There is 
an obvious analogy of such an approach with the "pole ap
proximation" of Chew and FrautschiJl•] 
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