Brief Communications

PHOTOPROTONS FROM Li⁶

E. D. MAKHNOVSKIĬ

A. F. Ioffe Physico-technical Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor June 14, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1136-1138 (March, 1964)

By means of nuclear emulsions exposed in a vacuum chamber at angles of 20, 50, 70, 90, 110, 130, and 160° to a γ -ray beam, we have studied the energy and angular distributions of protons produced by irradiation of Li⁶ with bremsstrahlung of maximum energy $E_{\gamma max} = 20$ MeV. The target, containing 90% Li⁶ and 10% Li⁷, had a thickness of 6.8 mg/cm². All particle tracks measured were considered to be proton tracks. We estimate that the contribution of deuterons, tritons, and He³ and He⁴ nuclei to the proton spectrum was 11–13%. The background due to the reaction Li⁷(γ , p) He⁶ was 1.5%. The instrumental background of protons arising from scattered neutrons and γ radiation was evaluated by special measurements and was subtracted from the experimental results.

Figure 1 shows the total energy distribution of the photoprotons. In agreement with Titterton^[1] and Proctor and Voelker^[2], we find that protons with $E_p > 5.7$ MeV are most probably due to the (γ , p) reaction, when He⁵ is formed only in the

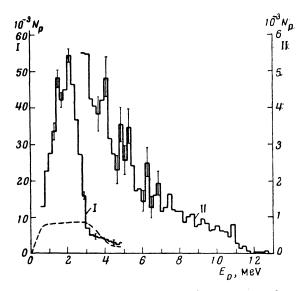


FIG. 1. Total energy distribution of photoprotons from Li⁶. The dashed curve is the calculated total energy distribution of protons from the reactions $\text{Li}^{6}(\gamma,n)\text{Li}^{5} \rightarrow p$ + He⁴ and Li⁶(γ,p)He⁵ \rightarrow n + He⁴.

ground state. Their angular distribution has the form

$$N(\theta) = 41.0 + 43.6 \sin^2 \theta (1 + 0.66 \cos \theta)^2$$

which is quite characteristic of (γ, p) processes. The solid curve in Fig. 2 shows the excitation function for the reaction $\text{Li}^6(\gamma, p) \text{He}^5$, plotted from the total energy spectrum of protons with $\text{E}_p \ge 5.7$ MeV. The corresponding integrated cross section is

$$\int_{1.6}^{20} \sigma_{\gamma p} \left(E_{\gamma} \right) dE_{\gamma} = (3.2 \pm 0.3) \text{ MeV-mb.}$$

1

We have approximately evaluated the integrated cross sections for the (γ, np) reaction and the (γ, p) and (γ, n) reactions accompanied by formation of He⁵ and Li⁶ in their ground states. For the evaluation the plotted excitation function of the (γ, p) reaction was extended to low energies in such a way that its shape was similar to that of the total photoneutron cross section^[3]. By this means we obtain

$$\int_{4.7}^{19} \sigma_{\gamma p} (E_{\gamma}) dE_{\gamma} \approx (4.9 \pm 0.6) \text{ MeV-mb.}$$

Assuming the (γ, n) excitation function to be similar in shape to the (γ, p) excitation function,

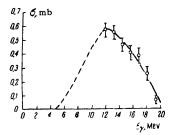


FIG. 2. Excitation function of the (γ, p) reaction for the case when the final He⁵ nucleus is formed in the ground state. The dashed curve shows the extension of the excitation function to the low energy region with a form similar to the total cross section for reactions accompanied by neutron emission.

and taking into account that the (γ, n) reaction is roughly 1.9 times more probable than the (γ, p) reaction^[2], we obtain

$$\int_{5.7}^{19} \sigma_{\gamma n} (E_{\gamma}) dE_{\gamma} \approx (9.2 \pm 4.3) \text{ MeV-mb.}$$

Since the integrated cross section of all reactions with neutron emission is 21 MeV-mb, then

$$\int_{3.7}^{10} \sigma_{\gamma np}(E_{\gamma}) dE_{\gamma} \approx (6.9 \pm 4.9) \text{ MeV-mb.}$$

In the region Ep < 6 MeV in Fig. 1, the dashed curve shows the total calculated energy distribution of protons produced in the reactions $\text{Li}^6(\gamma, p) \text{He}^5 \rightarrow \text{He}^4 + n$ and $\text{Li}^6(\gamma, n) \text{Li}^5 \rightarrow \text{He}^4 + p$. The calculation was carried out using the approximate excitation functions cited above and taking into account kinematic processes. For E_p = 3–5 MeV the calculated spectrum approximately exhausts the observed number of protons. The number of protons in the calculated spectrum with energies 0-3 MeV, as it turns out, amounts in all only to 25-30% of the number of protons of the same energy in the experimental spectrum. The contribution of tritons, α particles, He³ nuclei, and protons from the Li⁷(γ , p) He⁶ reaction amount to roughly 15% in this region of the spectrum. Consequently 55–60% of the protons with energies ≤ 3 MeV most probably arise from the (γ , np) reaction. This number of protons agrees with the approximate evaluation given above of the integrated cross section for the Li⁶(γ , np) He⁴ reaction. The peak in the excitation function for the (γ , np) reaction, in agreement with the observed position of the large proton peak at E_p ≈ 1.9 MeV, should occur at E_{γ} = 7–9 MeV.

¹E. W. Titterton, Prog. Nucl. Phys. **4**, 31 (1955).

² D. G. Proctor and W. H. Voelker, Phys. Rev. **118**, 217 (1960).

³T. A. Romanowski and W. H. Voelker, Phys. Rev. **113**, 886 (1959).

Translated by C. S. Robinson 156

HALF LIFE OF Tb¹⁵⁷

E. P. GRIGOR'EV

Physics Institute, Leningrad State University

Submitted to JETP editor June 28, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1138-1139 (March, 1964)

In the present investigation we determined the half-life of Tb¹⁵⁷ from the number N₀ of radioactive nuclei contained in the source and from the decay rate dN/dt = $-N_0 \log (2/T)$. The radioactive Tb¹⁵⁷ was obtained as the decay product of Dy¹⁵⁷ produced by irradiating tantalum with 660-MeV protons on the synchrocyclotron of the Joint Institute for Nuclear Research. N₀ was determined from the decay rate of the parent isotope Dy¹⁵⁷. A double-focusing β spectrometer with $\pi\sqrt{2}$ angle was used to measure the internal-conversion K line having the strongest period in the decay of Dy¹⁵⁷, with energy 327 keV. This transition occurs in 98% of decays with multipolarity E1 and with conversion coefficients $\alpha_{\rm C} = 0.0113$ and $\alpha = 0.0136$. The transmission of the apparatus was estimated by measuring the 662-keV K-con-version line of the transition in Ba¹³⁷ under the same condition, using a Cs¹³⁷ standard compound. The number of accumulated Tb¹⁵⁷ nuclei, equal to the number of the decaying Dy¹⁵⁷ nuclei, was N'_0 = $(1.18 \pm 0.26) \times 10^{13}$. Fourfold chromatographic purification yielded a sufficiently pure Tb¹⁵⁷ compound. The losses during the chemical operations amount to $(66 \pm 7)\%$, and the number of nuclei in

10