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A theory is proposed for second order phase transitions in liquid helium. The principal 
role in the phenomenon under consideration is played by long-wave fluctuations. On approach 
to the phase transition curve, the mean occupation numbers of low momentum states increase, 
and as a result the fluctuation correlation increases at large distances. In such a situation, 
not only the two-particle, but many-particle interactions become important. For this reason, 
the only small parameter that is introduced in the theory is the deviation from the transition 
temperature I T- To I/T0• 

The calculation employs the Green's function technique and the diagram technique. The 
chief quantities studied are the Green's function G, which determines the fluctuation spec­
trum, and the total vertex part 0, which describes the two-particle scatterin,?:. The solution 
of the set of equations for these quantities is found. It has the form G ~ [ Ap3 2 ]- 1 (A is a 
constant) on the phase transition curve; D (Pi) is a zero-order homogeneous function. 

Liquid helium near the phase transition curve can be described thermodynamically as an 
ideal gas of quasi particles with a spectrum £ = Ap3/ 2• 

The theory shows that only the width of the phase transition region L!.T ~ V2/T 0 depends 
on the magnitude of the potential interaction between the particles V. Within this region, the 
transition is of a universal nature. With an accuracy to constant factors, the fluctuation 
spectrum and the particle scattering amplitude are the same for any V > 0, and do not de­
pend on the details of the interaction at small distances. In the small momentum region, the 
effective interaction is determined by a dimensionless charge g. The condition of consist­
ency of the theory uniquely defines g, which is thus independent of V. The complexity of the 
equations does not permit us to find g or even to demonstrate the existence of the root of 
the corresponding equation. However, some arguments can be presented to prove that the 
mathematical scheme proposed here is the only possible one. 

The main theoretical conclusions of the theory are: 1) the logarithmic behavior of the 
specific heat Cp on both sides of the equilibrium curve; 2) the equality of the coefficients 
before ln (IT- T0 I/T0 ) on both sides of the A. curve; 3) the appearance of a finite jump 
l!.Cp. superposed on the logarithmic curve. All of these results have been confirmed ex­
perimentally. 

In conclusion, some simple physical considerations are presented which confirm the law 
£ = Ap3/ 2 and the general problem of phase transitions is discussed. 

1. INTRODUCTION 

IN an ideal Bose gas of given density N, the 
phenomenon of "condensation" in momentum 
space takes place at a definite temperature T 0• 

At temperatures T < T0, a finite fraction of the 
particles is in a state with momentum equal to 
zero. The Einstein condensation is a phase transi­
tion in which the derivative of the heat capacity 
Cv undergoes a finite jump. However, Cp has an 
infinite discontinuity and behaves like ( T - T 0 ) -1/ 2 

near T 0; T > T 0• For T < T 0, the pressure is 
uniquely determined by the temperature, so that 
the concept of Cp loses its meaning. 

A real system in which an Einstein condensa­
tion takes place is not an ideal gas but a liquid 
(liquid He4). The strong interaction between the 
particles of the liquid changes the phase transi­
tion picture materially. Evidence of this is given 
by experimental data on the measurement of the 
heat capacity close to the critical temperature, [1]; 

these show a logarithmic increase in the heat 
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capacity as T- T0• The reason for the less 
abrupt behavior of the heat capacity Cp than in 
an ideal gas at temperatures close to T 0 is the 
strong repulsion between the helium atoms. This 
repulsion significantly decreases the compressi­
bility of the material. Attraction would evidently 
have led to a condensation in real space, that is, 
to a first order phase transition. 

In a Bose liquid, as in an ideal Bose gas the 
mean occupation numbers of low momentum 
states increase as T approaches T 0 from above. 
Particles with long wavelengths are strongly cor­
related with one another for suitably small inter­
action. Therefore, neither the weak interaction 
approximation, nor the "gaseous" approxima­
tion, [2] in which only two-particle scattering is 
taken into account, can be used. As the phase 
transition point is approached, the role of proc­
esses of single particle scattering is increased. 
Weak interaction or low gas density leads only to 
the result that the phase transition region is con­
tracted. But inside the transition region the in­
teraction cannot be regarded as weak. 

2. STATEMENT OF THE PROBLEM 

We shall describe a Bose-liquid by means of 
the Hamil ton ian 

H = ~ e~a;aP + ~ ~ V (Pu p2 , p3 , p4) a~.a~,ap,ap,, 
p,+pz=Ps+P• ( 2 .l) 

where ap and ap are the creation and annihila­
tion operators and £~ = p2/2m (the volume occu­
pied by the system is set equal to unity). Regard­
ing V (Pi ) , we shall assume that there exists a 
finite positive limit V( 0, 0, 0, 0) = v0• The in­
teraction has the characteristic dimension Po in 
momentum space. The particle momenta of inter­
est to us are small in comparison with p0• There­
fore, we can assume V ( p 1, p2, p3, p4 ) equal to 
the constant value V0, which corresponds to an 
interaction of the form V06 ( r - r') in the co­
ordinate space. 

We shall apply the method of temperature 
Green's functions. The fundamental quantities 
subject to investigation are the single-particle 
Green's functions G ( p, wn) and the vertex part 
D ( Pt• P2• P3• P4), the determination of which is 
given in the book of Abrikosov, Gor'kov and 
Dzyaloshinskil. [3] The equations for these quanti­
ties are different for different sides of the phase 
transition curve. We begin with the description of 
the region lying above the phase transition curve 
(no condensation). The region of the existence of 
condensation will be considered in Sec. 6. 

The total Green's function G( p, wn) has the 
form 

Wn=2nnT (n=0,±1,±2 ... ), (2.2) 

where ~ 11 , T ( p, wn) is the total part of the char­
acteristic energy. The number of particles N is 
expressed most simply in terms of G ( p, wn): 

N = - T ~ ~ d3pG (p, Wn)• (2.3) 

A singularity in N as a function of T and 11 
arises for those values of the variables for which 

c-l (0, Wn) = 0 (2.4) 

for any value of n. If Eq. (2 .4) is satisfied for 
n "' 0, then it is equivalent to two real equations 
and determines an isolated singularity. We shall 
not consider this case, but turn our attention to 
the situation in which there is a phase transition 
curve. Such a situation corresponds to satisfac­
tion of Eq. (2.4) for wn = 0 (since ~ (p, 0) is 
real): 

- ~1'-. T (0, 0) + ft = 0. 

Equation (2.5) determines the phase transition 
curve 

ft = fto (T) or T = T 0 (~t). 

We introduce the notation 

(2.5) 

IJlp., T (p) = ~1'-. T (p, 0) - ~1'-. T (0, 0), (2 .6) 

by means of which one can write the Green's 
function in the form 

G (p, 0) = - ht + e0 (p) + IJlp., T (pW\ (2 .7) 

where 

l] = - ft + ~1'-. T (0, 0). (2.8) 

For fixed T, 

lJ = - [ft- fto- ~1'-. T (0, 0) + ~p.,, r(O, 0)1. (2.8') 

For fixed fl, 

l] = ~I'-. T (0, 0) - ~1'-. T, (0, 0). (2 .8") 

It must be expected that as p - 0 the value of 
cp , T ( p) falls off more slowly than £~. If this 
w~re not the case, then the phase transition would 
take place in the same way as in an ideal Bose 
gas. Further calculation confirms this supposi­
tion. The momentum for which £~ is equal to 
'Pfl, T ( p) we shall denote by p 0• In a real Bose 
liquid, this quantity is identical in order of mag-
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nitude with the characteristic momentum for the 
interaction, and also with the value of N1/ 3• In the 
models, it is customary to take the smallest of 
the momenta described as the value of p0• For 
p « p0, £p will be neglected in Eq. (2. 7). Then 
G ( p, 0) takes the form 

1 
G (p, 0) = -'IJ+<Jl (p). (2.7') 

1'-· T 

In the construction of various quantities as the 
sum of the contribution of graphs, it is necessary 
to carry out summation over the frequencies of 
the internal lines. Close to the phase transition, 

IG (p, O) I~ I(TJ + C!li'-.T(p))r1 > IG (p, con) I 

~ I (i<unt1 I (n =I= 0). 

If only the region of small momenta p « Po makes 
a real contribution to the graph under considera­
tion, then components with wn 7"- 0 can generally 
be neglected, producing an error in this case of 
the order of ~1)/T. If there is a contribution from 
the region ~p0 , then one must also take into con­
sideration the components with wn 7"- 0. But for 
graphs whose external momenta Pi are small in 
comparison with p0, the contribution from the 
region p ~ Po does not depend on Pi. Therefore, 
in all the sums, we have left only components with 
wn = 0, which results in this case in an error 
small relative to the error ~ 1J /T, or adds a con­
stant quantity in other cases. The diagram tech­
nique becomes three dimensional.!) In what fol­
lows, we shall assume that all wn = 0. 

Let us consider the set of graphs for the self 
energy part ~ ( p). In each graph we separate its 
first section on the left by three lines with wn 
= 0, p « p0• Graphs which do not contain such an 
intersection at all, make after substraction by Eq. 
(2 .6) a contribution ~ p2 to cp ( p), which we shall 
neglect. The set of graphs which must be con­
sidered can be drawn in the following way: 

(2.9) 

where V1 is the sum of such graphs with four 
terminals, such that the bare vertex, into which 
enters the momentum p in the graph (2 .9), cannot 
be separated from the graph by a cut on three lines 

1>Such an approach to the problem was suggested by L. D. 
Landau and worked out by him and his co-workers in the In­
stitute for Physics Problems of the USSR Academy of 
Sciences. 

with w = 0, p « p0• Moreover, the graphs in V1 

which cannot be cut on two lines with w = 0, 
p « Po· The square indicates the complete vertex 
part D with frequencies of the external lines 
Wn = 0. 

The principal contribution to V 1 is made by 
integration over the region of high momenta and 
summation for wn 7"- 0. Therefore, in the region 
of small momenta, V1 is a constant quantity with 
accuracy up to terms of the order p2, which can 
be neglected. From the definitions of (2 .6) and 
(2. 7') we find the equation for cp (the parameters 
f.!, T are omitted for brevity): 

X rGJ (p. q~. qg, p + qg _ ql _ o (0. q1. qg. qg _ q1)J 
' 'IJ + <p (p + qg- ql) 'IJ + <p (qg- q,) • 

(2 .10) 

One must supplement the equation (2 .10) with 
the equation for D. It is convenient to introduce 
auxiliary quantities-the irreducible vertex parts 
ff12;34• 9"13;24• ff"14; 23. In particular, the vertex part 
which is "irreducible along the vertical," 5 12 ; 34 

is defined as the sum of graphs with four ends, 
with the exclusion of those which can be cut only 
along two lines with w = 0, p «Po in two parts, 
into one of which enter the momenta p1 and p2, 

and into the other, p3 and p4• In similar fashion 
the vertices 5 13 ; 24 , 9"14 ; 23 are irreducible along 
the horizontal and diagonal. The complete vertex 
part D can be expressed in terms of each of the 
quantities 9" by means of an equation of the type 

Equation (2 .11) can be regarded as the analytic 
definition of 9"12 ; 34 . 

We introduce the doubly nonintersecting vertex 
parts ff12 ;34• J/13 ;24 , ffi 4; 23 , which represent the 
set of graphs with four terminals which are not 
intersected along two lines with arbitrary fre­
quencies and momenta. These vertex parts are 
distinguished from the nonintersecting vertices 
9"12;34• 9"13;24• 9"14;23 by quantities which are con­
stant in the region of small momenta. 

We also introduce the absolutely irreducible 
vertex part which cannot be cut along two lines 
with arbitrary frequencies nor in any direction. 
The absolutely irreducible vertex part 5* can be 
represented in the form of a sum of graphs in 
each of which there enter only complete G func-
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tions and complete vertex parts 0. An exception 
is the first graph-the "bare" vertex V0: 

7"=. + ~ + ~ + (2 .12) 

We are interested in the case in which to all ter­
minals of the vertices there correspond w = 0 
and small momenta p « p 0• In this case one can 
assume all the frequencies of the internal lines in 
the graphs (2.12) are equal to zero. The contribu­
tion from non-zero frequencies leads to a re­
normalization of the bare vertex V0• 

The vertex parts 0, ff, ~r are connected by 
the logical identity 

0 _ 1 (Gf + Gf + ff GT*) - 2 "' 12; 34 "' 13; 24 "' 14; 23 - "' • 

From this identity, we get the equation 

0 = f- ($"" 12;34 + .!1 13;24 + .!1 14;23 - .!1*) + const. (2 .13) 

The set of equations (2.10)-(2.13) is complete. 

3. THE FUNCTIONS cp AND 0 ON THE 
TRANSITION LINE 

We begin with the solution of Eqs. (2.10)-(2.13) 
on the phase transition line ( 7J = 0). We seek 
cp ( p), 0 (Pi) and .!1 in the form of homogeneous 
functions of their arguments of degree a, f3, y, 
respectively. At first glance, such an assumption 
appears to be arbitrary. However, one can hardly 
suppose any other physically reasonable depend­
ence of the quantities cp and 0 on the momenta. 
Actually, the value of cp vanishes for p = 0 more 
slowly than p2, and has the characteristic dimen­
sion p0• Therefore, in lowest order in p/p0 it 
should have the form Apa. It is true that one 
could assume a priori that A and a are oscil­
lating quantities of the type A0 + At cos ( p 0/p ). 
But fast oscillations for small p are not repro­
duced in integral equations. 

For estimate of a, f3, y, we carry out a calcu­
lation of the powers in Eqs. (2.10)-(2.13). From 
the Dyson equation (2 .10) we find 

4a- ~ = 6. (3.1) 

We now consider two possible cases separately: 
1. a ? %. In this case, f3 ? 0 follows from 

(3.1). We have to deal with Eq. (2.11). We first 
consider the integral term-the second component 
on the right hand side. A formal calculation of 
the powers for this term leads to the expression 
f3 + y - 2a + 3 = y + {3/2 [use is made of the rela­
tion (3.1)]. But if this quantity is positive, then 
the integral formally diverges in the region of 
large momenta. In fact, this means that upon in-

tegration, the real part of the momenta ~ Po and 
the integral does not depend on the momenta of 
the external terminals. 

Of the two vertices 0 and $"", the larger is 
that whose degree of homogeneity is less. Thus 
we find 

min(~. r) = r + ~/2. ( 3.2) 

It is not difficult to verify that the only solution 
of Eq. (3.2) which satisfies the condition f3 ? 0 is 
f3 = 'Y = 0, 0! = %. 

Here we consider one of the possibilities, in 
which the integral term of the equation is not 
small. In other cases, a consideration of the com­
plete set of equations is necessary. 

2. a < %. In this case, using Eqs. (4.14), 
(4.15), and (4.19) (see below), one can show that 
8!: (p, wn)/Bf.l is large. As will be shown in Sec. 
4, this leads to a contradiction. 

Thus only the following values are possible: 
0! = %. (3 = 'Y = 0. 

One can attempt to construct a scheme in 
which cp and 0 contain different powers of Lt 
= ln ( PoiP) (and also the powers of L2 = ln Lt 
etc.). Here it is seen that the series for an ab­
solutely irreducible vertex can be broken off at 
the second term. As a result, either this equation 
or the equation for $"" cannot be satisfied. This 
is connected with the impossibility of compen­
sating Ln for any finite n. In our variant, as will 
be shown below, such compensation takes place at 
the expense of all the terms of the series for $""* 
[see Eq. 3.9) ]. 

We shall seek a solution for cp in the form 

<p (p) = Ap'f,, (3.3) 

and assume 0 to be a homogeneous function of 
zero order. Equation (2 .9) takes the following 
form under these assumptions 

_ 0(0, qr, q2, q2-q1)) 
J q2- qrJ'/a ' f 

( 3 .4) 

where n is an arbitrary unit vector. The integral 
on the right hand side of (3.4) converges only in 
the case in which 0 ( Pt• p2, p 3, p4 ) becomes a 
constant, when two arguments are significantly 
larger than the other two. In the opposite case, 
an uncompensated divergence arises in integration, 
for example, over qt. This property of 0 ( Pi ) 
agrees with the equations for the vertex part. In 
general, there arise two different limits 0 ( p, p, 
0, 0) = 0 (p, 0, 0, p) and 0 (p, 0, -p, 0) 
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= 0 ( 0, p, 0, - p). In what follows, it will be shown 
that 

0(p, p, 0, 0) = o. (3.5) 

The value of the quantity 0 ( p, 0, -p, 0) is not 
known to us. 

We now proceed to Eq. (2.11). It is written 
explicitly in the following fashion: 

D (Pu P2• Pa• P4) =ff12; 34 (Pl• P2• Pa, P4) 

-T ~ d3 q 0 (Pu pz, q, q + P1 - P2) 

X G (q) G (q + P1- p2) + const, (3.6) 

where the constant represents the contribution 
from the region of momenta ~ Po and frequencies 
different from zero. We shall regard it as an 
equation for the determination of .ifi2 ;34 for given 
Cl (Pi). Equation (2 .11) is linear and inhomogen­
eous. 

The analysis given in the Appendix shows the 
solution of Eq. (3.6) is determined uniquely if we 
take into account the conditions imposed on 
ff12;34 by Eqs. (2.12), (2.13). The solution of 
ff12;34 ts seen to be a homogeneous function of 
zero order satisfying the condition 

ff12; 34 (p, p, 0, 0) = const. ( 3. 7) 

The same results are also valid for the function 
3"14;23· These confirmations also apply to the 
quantity 3"13 ;24 if the equality 0 ( p, 0, -p, 0) = 0 
is satisfied. If 0 ( p, 0, -p, 0) ~ 0, then .;'[13 •24 

is seen to be a small quantity of the order of' 
1/ln [Poll P1 + p3j]. We now assume Jf12 -34 , $'13 .24 

d GT k ' ' an ~14;23 are nown functionals of o, and sub-
stitute in (2 .12) the absolutely irreducible vertex 
part .;r· for the series (2.13). A closed equation 
is obtained for 0. 

Let us consider the isolated graph entering 
into the series (2 .13) for the absolutely irreduci­
ble vertex .;r•. A simple calculation of the powers 
shows that each graph diverges logarithmically 
for large momenta. We emphasize that the diverg­
ence is connected with the region in which all the 
momenta of the internal lines are large. This 
takes place for the reason that in the graphs for 
g-• there are no parts which have an internal 
structure and which are joined with the remainder 
by only four lines. Any part of the graph which is 
joined to the remainder by a larger number of 
lines converges in the region of large momenta. 

Thus the equation for 0 takes the form 

<l>o (0) ln (poiP) + <l>1 (0) + V0 + V' = 0. (3.8) 

Here p is the maximum in the values of the 
arguments of 0. The quantity <1> 0 represents the 
sum of coefficients for ln ( p0/p) from each of 
the diagrams. <1> 1 is represented in the form of a 
sum of the quantities 2[l- 3"12 ;34 - 3"13 ;24 - 3"14 ;23 
and contributions from different diagrams for 
g-• from the residues of the diverging parts. The 
quantity V' represents a constant which arises 
in integration over the region p ~ Po and summa­
tion over wn ~ 0. The functional <1> 0 ( [l) does not 
depend on external momenta since integration in 
each of the graphs (2 .13) takes place over a region 
of momenta of the internal lines qi » p. The 
principal contribution to <l>d 0) is made by the 
region qi ~ p (because of the homogeneity of 0). 
Therefore <I> 1 ( 0) depends on the external mo­
menta Pi· In order to make (3.8) agree with the 
initial assumptions on [l, it is necessary to set 

(3.9) 

Equation (3.9) does not determine 0 com­
pletely, but imposes only a single numerical 
condition. Equation (3.6) now takes the following 
form: 

V =V0 +V'. (3.10) 

From Eq. (3.10), the vertex part 0 is determined 
as a function of the momenta and the parameter 
V: 0 = 0 (Pi· V). Substituting the value of o 
found from (3.10) in (3.9), we get an equation2> 

for V: 

<Do (0 (pi, V)) = 0. (3.11) 

We have not succeeded in finding the root of 
Eq. (3.11) or even of showing its existence since 
the structure of the equation is extremely com­
plicated. If it were shown that Eq. (3.11) does not 
have a root, then all of the schemes created here 
would be invalid. In particular, the power ap­
proximations for cp in 0 would be invalid. We 
do not see any other physically realizable scheme 
in which the fundamental role is played by small 
momenta. Therefore we shall assume that Eqs. 
(3.10) and (3.11) have a real solution. 

Let us analyze some properties of the assumed 
solutions. In the. transition in the graphs for .;r· 
from n-th to ( n + 1) st order, there is added one 
vertex, two G functions, one integration over 
momentum space and the factor T. Therefore 
the series for <1> 0 ( 0) and <1> 1 ( 0) are power 
series in the quantity 

2lEquation (3.11) can be regarded as the condition for 
joining the solution for p << Po with the solution in the region 
P "' Po· See also Appendix 3. 
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(3.12) 

We introduce the "dimensionless charge" g by 
the relation 

(3.13) 

After this, the parameter V is eliminated from 
Eqs. (3.9)-(3.11), and they become completely 
universal. This means that the dimensionless 
charge represents a universal constant, while 
r (Pi) is a universal function. 

By substituting (3.12) in Eq. (3.4), we get the 
following equation for A 

(3.14) 

where the numerical constant Q is determined by 
the integral: 

Q = _1_ 1 d3q1d3q2 [ r (O, q1, q2, q2 - q1) 
2 (2n)" J q'f'g~' 1 qz- q1 1'1• 

- r (n, ql, q2, n + q2-ql)J 
ln+q2-qd1• · 

Finally, substituting (3.14) in (3.12) we find 

0 = QVlr (p;) (2n)3. 

( 3 .15) 

( 3 .16) 

Equations (3.14) and (3.16) make it possible to 
estimate the values of A2 and D. We now attempt, 
albeit very roughly, to find the signs of these 
quantities. In a rough approximation, we replace 
the quantity r by a constant, determined by the 
equation 

<Do (f) = 0. ( 3.9') 

Consideration of the graphs shows that 4> 0 ( r) 
is a power series in r with alternating coeffi­
cients. Therefore, if the solution of (3.9') exists, 
it is positive, which corresponds to an effective 
repulsion of particles. From (3.15), we find, in 
the approximation under consideration, 

Q =~r. (3.17) 

Consequently, Eq. (3.14) can be solved only for 
V1 > 0. 

4. VICINITY OF THE PHASE TRANSITION 
CURVE 

Let us consider the behavior of the functions 
cp and D in the vicinity of the phase transition 
curve. We shall assume T) "' 0 for a fixed value 
of T. It is natural to expect that for sufficiently 
small T) the functions cp ( p) and D do not change 
too strongly in the region where cp(p) ~ T). 

Therefore, for estimate of <-p(p), we substitute the 

quantity <P ( p) = Ap3/2 and D from the formula 
(3 .14) in the integral on the right hand side of 
(2.10). We get 

where 

/ 0 (x) = F0 (x) I F0 (0), 

( 4 .1) 

(4.2) 

It is therefore natural to seek a solution of Eqs. 
(2.10)-(2.13) in the form 

cp (p) = Ap'l•j ('YJ!Ap'!,), 

0 = Q vlrl (pi, <11 1 A)'1'), 

(4.3) 
(4 .4) 

where f ( x) is some standard function (which 
does not contain the parameters of the problem); 
r 1 (Pi· X) is a standard homogeneous function of 
zero order. The functions f ( x) and r ( Pi, x) 
obey the normalization conditions: 

f (0) = 1, 
rl (pi, O) = r (P;); 

(4.5) 
(4.6) 

r (Pi) is determined in the preceeding section. 
Equation (2.10) takes the form 

f (x) = F (x) IF (0), (4.7) 

F ( ) - I d3qld3q2 
X - J [x + q'f'f (xq~'l')] [x + q"f'f (xq;,'l•)] 

r rl (n, ql. q2, n- q2- q~. x'f,) 

XL x+ln+q2-qll'1•f(xln+q•-qll ·'f,) 

- rl (0, ql, q •. q2- q!. x'1•) J 

x + I q2- qd1•f (xI In + q2- q1 ll . (4.8) 

Equations (2.11) and (2.12) transform into 
standard equations for the function r 1 (Pi, 1). 
The dimensionless charge g = VT/A2 as before 
reamins a universal constant (it would appear, 
the same is also true of the transition curve, 
since it is determined by the values of r ( Pi• 1) 
in the region Pi » 1). We note that the factors 
V and A 2 individually do not depend on f.l and T 
and their derivatives on the transition curve are 
logarithmically large. The equations under con­
sideration are universal with an accuracy to 
small terms of the order of 7)/T or ( p/p0 ) 1/ 2 • 

As x- 00 , the function f( x) behaves as x- 113 

Thus for p « pT/ = ( 7)/ A )213 , we have cp ( p) 
= const·p2A- 413 T)- 113 . This result is to be expected 
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since the singularity in G ( p) should not arise 
for TJ > 0. The vertex part of r 1 ( Pi, 1) for Pi 
« 1 becomes a constant quantity. 

In order to make clear the behavior of thermo­
dynamic quantities close to the transition curve, 
it is necessary to investigate f ( x) and r 1 (Pi· x) 
for small x. In the first place, it is evident that 
the quantity f' ( 0) cannot be infinite. In the oppo­
site case, one could neglect TJ in comparison with 
q 312 f(TJ/Ap 3/ 2 ) and in the denominators of the G 
functions. But after this, the set of equations for 
G and 0 would have been the same as for TJ = 0, 
and we would reach the conclusion that f ( x) does 
not depend on x, in contrast with what was as­
sumed. Therefore, f ( x) has the form 

f (x) = 1 + /1x + ... (/1 = const). (4.9) 

We consider the structure of any term of the 
series which represents 5•. For small TJ « Ap~12 , 
we expand G ( p, TJ) in a series in TJI Ap3/ 2: 

(4.10) 

The contribution to the increment of gr• from the 
internal line of the graph with momentum q (for 
small x) has the structure 

(4.11) 

where qi are the remaining independent momenta 
of the external lines, qj are all the momenta of 
the internal lines, qs are the momenta of lines 
entering into a single vertex. The integral over 
q diverges logarithmically for small q. Clearly 
one must cut off the integration over q from be­
low in (4.11) for q ~ ( TJI A )2/ 5• The integral of 
(4.11) converges on the high momentum side. The 
principal contribution to the integral is made by 
the region of momenta q ~ Pi. 

Thus the estimate of ( 4 .11) for small TJ gives 
X p'f, rl (p.; x'll) = r (p.) +fl ... ; ln-. (4.12) 

t 1. p 2 X' 

Here r (Pi) is the value of r 1 (Pi, x 213 ) for 
x = 0 (see the previous section), p is the maxi­
mum of the arguments of the function r 1, and y 
is a constant. 

The coefficients in the expansions of f ( x) and 
r 1 ( p, x213 ) in powers of x could be obtained by 
solving the equation for f ( x) and r 1 by the 
method of successive approximations. Of course 
the actual solution of these equations is scarcely 
possible at the present time, since the equations 
themselves are very complicated and the solution 
of r ( p) is not known at x = 0. Some evidence on 
the solutions can be obtained by means of the 

Ward identity (see [3]) which we write in the fol­
lowing fashion: 

o:E (p, ffin) 

i:lft 

= 1' ~ ~ d3q0 (pro, pro, q(t)'; qro') G2 (q, (!)'). (4.13) 

The right side of Eq. (4.13) can be drawn graph­
ically: 

ar(p,w)= 
all 

Ww ,w' 

p.w q,w' 

(4.14) 

We first consider the case w = 0, p « Po· We 
represent the set of graphs (4.14) in the form 

IDw'=ID 
p,o q,w' q,w'to 

(4.15) 

Here a set of diagrams is chosen which are not 
cut by the two lines with w = 0, p « p 0• It is not 
difficult to see that the quantity 

p,o q w'/'0 

)(H)= c 

p,o q,tut'O 

(4.16) 

does not depend on p. From (4.14)-(4.16), we get 

a:s (p, O) = c + ( 1 - c) P (x), ( 4 .17) 
Oft 

P(x) = T ~ daq D (p, p, q, q) G2 (q) 

~ \ 'I•) d3q • - J f (n, n, q, q, X [x + q'f,J (xjq'1•)]2 
(4.18) 

In the integral on the right hand side of (4.18), the 
quantities n and G are taken for w = 0. 

In similar fashion we get, for w "'- 0 or p ~ p 0: 

o:E (p, ffin} ( ) 
Ofl = cl., p 

+ c"' (p) (1- c) ~G2 (1- P) d3q, (4.19) 

where c 1w, cw are determined by the graphical 
equations: 

p,UI 0,0 

c.., (p) = TI (4.20) 

p,l&l 40 
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We shall show that P ( x) does not diverge as 
x - oo. If the contrary is assumed, then, by 
virtue of (4.17)-(4.19), all the derivatives 
8I: ( p, w )/811 on the transition curve become in­
finite. In the equations for G and D, the value of 
11 enters only through the Green's function G: 

G = [fl - 1:1'- (p <On) + iw11 - e~]-1 • 

In accord with the assumption, one can neglect 
11 - 11o in comparison with I: 11 ( p) - I: 110 ( p). After 
such a neglect, the explicit dependence on 11 
vanishes from the equations of the theory and 
they have a unique (by continuity) solution I: 11 (p) 
= I: 110 ( p), in contradiction with the assumption. 

Thus, as x - oo, the value of P ( x) tends to a 
universal constant value P ( oo). It follows from 
(4.17), (4.19), that 81: (p, 0)/811lp,=110,p«po is 

also a bounded quantity, Whereas oi: ( p, Wn )/811 
diverges logarithmically. 

Using the Ward identity (4.17)-(4.18), we can 
get the equation for 

I ' () __ P(x) -P(oo) 
X - 1-P(oo) • (4.21) 

Equation (4.21) can be used in place of (4.7) and 
(4.8), with the initial condition f(O) = 1. In de­
riving (4.21), we have made use of the fact that 

OTJ!Ofl = - (1 - 81: (0)!8fl) 

= - (1 -c) (1 - P (oo)). (4.22) 

The quantity 81: ( 0 )/811 is not universal. 
Therefore, the vanishing of 1 - a~ ( 0 )/811 can 
only take place accidentally, at isolated points. 
The value of 1 - 8I: ( 0 )/811 cannot be negative. 
In the opposite case, 1J could be negative for 
11 - 11o < 0 and the Green's function would have a 
pole for cp ( p) = -1). This means that the mean 
occupation number of the particles could be nega­
tive for p close to the pole, which is physically 
impossible. Thus we finally obtain3l 

1'] = - a (fl - flo) (0 <a< 1), 

a= (1- P (oo)) (1-c). (4 .23) 

If 11 and T change simultaneously, then 1J can be 
written in the form of the linear combination 

'I]= -a (fl- flo) + b (T - T 0) (b > 0) (4.24) 

with coefficients a and b depending on the point 
( 11o· T0) on the transition curve. Such a possibil­
ity arises from the fact that the phase transition 
curve can be written in the form 1J = 0. On the 

3>See the note at the end of the article. 

other hand, the derivative ( 811/BT)A on the 
transition curve is generally finite and different 
from zero. 

5. THE THERMODYNAMICS OF THE PHASE 
TRANSITION 

We shall find the value of oN/811: 

oN "'~ 2 ( a~ (p, ron) ) 
OJl.·=Tr:;:_jcPpG (p,wn) 1- OJ.!. • (5.1) 

Equation (5 .1) is represented graphically in the 
form 

::= C> + <CD . (5.2) 

Using the same considerations as in Sec. 4 [see 
Eqs. (4.13)-(4.19)], we find 

aN - = c1 + (1 - c) 2 (1 - P (0)) T 
OJ.I. 

\ d"p 
X a a • 

• [TJ + Ap l•j (TJ/Ap 1•))2 
( 5 .3) 

The values of c 1 and c are finite on the transi­
tion curve. 

The integral on the right hand side of ( 5 .3) 
diverges logarithmically for large p. Therefore 
oN/311 can be written in the form 

oN = !!_ ln To + R 
0).1. v 'lj 1 ' 

(5.4) 

R (1 - c)2 (1 - P (0)) 
= 2n2 g, (5.5) 

where R and R 1 are finite on the transition 
curve. Integrating (5.4), we get 

N -N0 =-a~ 'l]ln ~0 , (5.6) 

where N0 is the regular part of N. 
The thermodynamic potential Q is expressed 

in term of N by the equation 

Q Q R 2 l To 
= 0 - 2a2V 'I] n 1] (5.7) 

(the integration is carried out for fixed 
(5.6) and (5.7) we get the result that 

T). From 

,.... ,.... R 2 l To 
•• = ••o - 2a2V 'I] n Tj• (5.8) 

We express Cv in the variable 11 
[4]. p. 88): 

and T (see 

c.= T Q!J.T -QQ!l.ll.QTT (5.9) 
IJ.IJ. 

It is not difficult to establish the fact that, be-
cause of the linear dependence (4.23) of 1J on 
11 - Po and T - T0, the logarithmic term does not 
appear in Cp· For calculation of Cp. we use the 
well-known formula 

Cp = Cv -T(:n:N/ (Z )TN (5.10) 
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and express the derivative entering into (5.10) in 
the variables 

(op) NQp.T (op) N 2 

oT vN = S- Ql'-1'- ' iJv TN= Ql'-1'- • 
(5.11) 

Here s is the entropy per unit volume of the 
liquid, N is the density. Substituting (5.11) in 
(5.10) and using (5.8), (4.23), we find 

C = T(s+Nbfa) 2 Rl To (5.12) 
P N 2V n 1'J ' 

The ratio b/a is identical in value with the de­
rivative ( dt.t/dT )A. along the phase transition 
curve. Actually, we get for (4.23) 

(dv.!dT),.. = b/a. (5.13) 

Furthermore, we express ( dt.t/dT )A. in terms of 
the entropy s and the measured physical quanti­
ties p and T. We have 

( dl1) s 1 ( dp) 
dT A = - N + N dT A. (5.14) 

Substituting (5.13) and (5.14) in (5.12), we get 

Cp = ~~ (~~ ): ~ In T !_oTo. (5.15) 

We note that the following equation is satisfied in 
the phase transition curve. 

(fJpjfJT)vN = (fJp!fJT)i... 

The fact that the coefficient in front of the 
logarithm increases as the interaction in (5.15) 
decreases should cause no surprise, since the 
heat capacity in an ideal gas increases more 
rapidly close to T 0• Thus 

C~d~ VT 0j(T- To). (5.16) 

Comparing (5.15) with (5.16) we find the region of 
logarithmic phase transition: 

(5.17) 

The same estimate can be made in another way. 
One can define T - T 0 in order of magnitude as 
the kinetic energy of the particle when it becomes 
equal to the potential: 

T- T0 ~ p~j2m ~ Ap:i'. (5 .18) 

From the latter equality, we find p 0 = 2mA2 and, 
substituting it in the first, we reach the same 
estimate. 

The thermodynamic relations also lead to 
logarithmic singularities in the compressibility 
and the coefficient of linear expansion. 

6. REGION OF EXISTENCE OF CONDENSATION 

Below the "'A curve, a condensation appears in 
momentum space: a macroscopically large frac-

tion of the particles of the liquid are in the state 
with p = 0. For a description of a Bose liquid in 
the presence of a condensation, we make use of 
the mathe!llatical apparatus developed by 
Belyaev L2_1 (see also [3]). Here we shall take it 
into account that the density of the condensation 
N0 is small close to the A curve. 

Below the phase transition curve the Green's 
function G ( p, w) has the form [2] 

{J (p, ffi) = 

11- ~1 (p, w)- p 2 f2m- w 
(11 ~1 (p, w) p 2 /2m + w) (11- ~1 (p, w)- p 2 /2m- w)- ~2 (p, w)" ' 

(6.1) 

Here L 1, L 2 are the self-energy parts, L 1 corre­
sponds to a graph with one input and one output, 
and L 2 to one out two inputs (outputs) of conden­
sation particles. 

In all the quantities of interest to us we select 
the sum of graphs which do not contain condensa­
tion lines, and note the contribution of such graphs 
by the superscript (0). The remaining quantities 
we denote by the index (1). All quantities with 
index ( 0) are analytic continuations of the corre­
sponding quantities above the "'A curve. For ex­
ample, L fO) ( p, w) is the analytic continuation of 
the function L ( p, w) above the A curve. Obvi­
ously, Lio) = 0. 

Let us consider the quantities L and 0 for 
w = 0 (the argument w = 0 will be omitted below). 
The relation derived by Belyaev (see [3]) connects 
L 1 ( 0 ) and l: 2 ( 0 ) with t-t : 

fl = 1:1 (0)- 1:2 (0). (6.2) 

From (6.2), we immediately get 

~il) (0) - ~ 2 (0) = - 1] = fl- ~io) (0). (6.3) 

The equations of Pines and Hugenholtz [5] (see 
also [3], p. 293) make it possible to get the exact 
relation between L io) and L2: 

f) (~il)- ~2)/fJNo = ~2/No. (6.4) 

From (6.3) and (6.4) we get 

(6.5) 

It is natural to assume that N0 is proportional to 
TJ for small TJ (this will be supported by a calcu­
lation). It then follows from ( 6. 5) (for small TJ) 

that 

~2 (0) = - 1], (6.6) 

and from (6.6) and (6.3) we get 

~il) (0) = 2 ~2 (0) = - 21]. (6.7) 

Above the transition curve TJ > 0, below, TJ < 0. 
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Therefore ~f0 l(O) and ~ 2 (0) are positive. 
We now determine N0 as a function of TJ. For 

this purpose, we represent ~ 2 ( p) in the form of 
a power series in N0: 

>;~>r- ~-·+ ~ + •.• (6.8) 

p ~ I ~p 

All the multipoles entering into (6.8) do not con­
tain condensation lines. In particular, for p = 0, 
a 2n-pole behaves as Cn vn-t;T/n- 2, where Cn is 
a universal constant. Therefore, we get the fol­
lowing equation for N0 from (6.7) and (6.8): 

00 

Y (x) = 1 + ~ Cnxn. (6.9) 

n=2 

Thus N0 is associated with the root x 0 ( x 0 "' 0) 
of the standard function y ( x) in the following 
fashion: 

(6 .10) 

Knowing N0, we can find I: 2 (p) as a function 
of TJ and p by using Eq. (6.8). It is not difficult 
to see that ~ 2 ( p) is a standard function of 
TJI Ap3/ 2. The function ~) 1) ( p) also takes the 
same form and can be drawn in the series: 

<0\---( 
r,(p)=~+ (6.11) 

It is important to note that in the region Ap3/ 2 

» TJ the quantity ~ P) becomes a small quantity 
of the order of 71 2/ Ap 3/ 2• This follows from the 
fact that in this region all the 2n-poles with 
n ~ 3 fall off as p- 3(n- 2)/ 2• In Sec. 4 it was 
shown that the vertex part of D (p, p, 0, 0) also 
falls off (as TJ/Ap 312 ). 

From the given property of I:)!) ( p), ·it follows 
that not only G, but also oG/op is discontinuous 
on the transition line. We recall that everything 
pointed out above refers only to the case w "' 0, 
the value of ~ f1) is represented by the series 
(6.11) just as for w = 0. By neglecting all the 
terms of the series (6.11) except the first, we 
find 

I:i1) (p, w) = - Cw (1 - P (0)) N 0 • (6.12) 

The remaining terms in the series have a higher 
order of smallness in TJ /T. In similar fashion, 
we get the result that I: 2 ( p, w) ~ VN0 ( w "' 0). 

We again begin the calculation of the thermo­
dynamic functions with the quantity oN/op 

aN = _ T "1 ac d3 + aNo. 
Of! L.J J Of! p Of! (6.13) 

"' 
The continuity of oG/op on the transition line 
makes it possible to conclude immediately that 
oN/op is proportional to ln ( T I I TJ I) below the 
transition curve as before, with the same coeffi­
cient. 

In Fig. 1 are shown the experimental values of 
the heat capacity close to the transition point, 
taken from the review of Buckingham and Fair­
bank. [t] 

In addition, for the logarithmic singularity, the 
heat capacity Cp experiences a finite jump at the 
phase transition point. It is not difficult to estab­
lish the fact that Cv does not have such a jump. 
Simple calculations with the use of Sec. 5 give 

b..C = T(opfoT)~ {a No I I - p ( oo )](1 -c) 
P VN2 Of! 

(6.14) 

The first term on the right hand side of (6.14) is 
connected with the appearance of the condensation; 
the second evidently corresponds to the genera­
tion of a new branch of elementary excitations 
(phonons). Both components are positive and 
have the same order of T ( op/oT )~/VN2 . Thus 
the heat capacity curve as a function of I T - T 0 I, 
for T < T 0, should be higher than for T > T 0. 

This conclusion is also substantiated by experi­
ment (see Fig. 1). 

2S 

0 

0 
w~-~.----~----~~--~w--.~,----~----~--~~,~?~ 

jT-T;,_j 

FIG. 1 
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7. THE PROBLEM OF SECOND ORDER PHASE 
TRANSITION 

The theory proposed in the present work 
possesses greater generality than that put on it 
on the basis of the assumption. Actually, we see 
that in the most important region 17 « T0, 

p « p0, the mean occupation number np is seen 
to be large. This means that one can neglect the 
noncommutability of the operators ap and ap 
and regard them as numbers. In other words, 
our theory applies to the classical wave field 
ljJ ( r), whose Hamil toni an has the form 

H ['ljl] = i ~ (V'IJl)2 d3r- J.l ~ 'ljl2d3r + ~ ~ 'ljl4 (r) d3r. (7 .1) 

The theory of the classical field l/J ( r) with the 
Hamiltonian (7 .1) can be regarded as the general­
ization of the phase transition theory of Landau. [4] 
In the Landau theory, the quantity l/J plays the 
role of an ordering parameter and does not de­
pend on the coordinates. The generalization given 
in the Landau theory is connected with the neces­
sity of taking into account order fluctuations 
close to the phase transition curve. In our theory, 
singularities of thermodynamic quantities, if they 
arise, should have a logarithmic character. 
From this point of view, the logarithmic singu­
larity of the heat capacity in the two-dimensional 
Ising model, found by Onsager,[GJ does not seem 
to us accidental. 'Apparently a comparison of the 
phenomenological order parameter l/J ( r), for 
which the Hamiltonian takes the form (7 .1) and 
parameters of the given model are by no means 
so simple. Therefore, we cannot comment at all 
on the temperature dependence of the average 
order parameters of the given model below the 
transition point (for example, on the total moment 
in the Ising model). 

Then the non-arbitrary phase transition (or, 
in any case, the non-arbitrary model) can be re­
duced to the generalized Landau model. As an 
example, one can use the Hamiltonian model of 
Bardeen, Cooper, and Schrieffer (BCS) [7] which, 
in an exact calculation, [BJ gives a finite jump in 
the heat capacity. This result is connected with 
the specific characteristics of the BCS model, 
in which the interaction is considered only in the 
measure in which it leads to pair formation. If 
one considers a phase transition in a system of 
Fermi particles with a more realistic interaction, 
then the phase transition is seen to be the same 
as in the problem considered by us. (A separate 
paper will be devoted to phase transitions in a 
superconductor.) 

Our theory can also be generalized by inclu-

sion in the Hamiltonian (2.1) of terms describing 
non-pair interaction, but preserving the number 
of particles in the system. It is not difficult to 
see that such terms lead only to renormalization 
of the interaction constant. 

The theory developed in this paper is very 
complicated mathematically. Therefore, it seems 
appropriate to us to carry out simple physical 
considerations here in the spirit of the turbulence 
theory of Kolmogorov, which makes it possible to 
obtain one of the fundamental relations. 

The energy of interaction of particles with 
small momenta p « Po on the phase transition 
curve is much larger than its kinetic energy. Let 
there be fluctuations of large scale 1/p in the 
system. Because of the interaction, the occupa­
tion number np changes materially in some 
region of momentum space. The dimension of 
this region can depend only on p and V. From 
dimensional considerations, it is evident that this 
dimension is equal to p. Therefore the interaction 
energy of particles in such fluctuations has the 
order Vn~p3 • In the state of thermodynamic equili­
brium, the energy entering into the degree of 
freedom is of the order of magnitude T. From 
these considerations, we find np ~ ( V /Tp3) t/ 2• 

The mean energy of "quasiparticles" can be de­
termined from the approximate equality £pnp ~ T. 
These considerations lead to the conclusion that 
the phenomenon of the i\ transition can be de­
scribed by the ideal gas model of quasiparticles 
with dispersion £p = Ap312 • Apparently, such con­
siderations do not permit us to determine the 
power of the logarithm and, consequently, the 
thermodynamic behavior of the system. 

Recently measurements [9] have shown that, 
close to the critical point, the heat capacity also 
has a logarithmic singularity. This result, from 
our point of view, testifies to the fact that, close 
to the critical point, the principal role is played 
by fluctuations of small amplitude but of large 
dimensions (at this point, not of the order but of 
the density). Evidently, even critical phenomena 
can in some measure be described within the 
framework of the generalized Landau model. 

The idea of the generality of the nature of all 
second order phase transitions was advanced by 
Landau. To him also belongs the mathematical 
formulation of the problem on the basis of the 
Hamiltonian (7 .1). These ideas were developed 
by his co-workers A. A. Abrikosov, L. P. Gor'kov, 
I. E. Dzyaloshinskil, L. P. Pitaevski'l, and I. M. 
Khalatnikov. They constructed a three-dimensional 
graph technique and showed the identity of prob­
lems of phase transitions in a classical fluctuating 
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system and a Bose liquid. Searchers for solutions 
of the type (np) ~ p- 312 were also undertaken 
under this initiative of L. D. Landau, and his 
colleagues at the Institute for Physics Problems, 
and also by A. A. Vedenov. The authors regard 
their own work as an extension of the research of 
this group of physicists, with whom they are 
closely associated, and convey to them their sin­
cere gratitude. 

We consider it our pleasant duty to thank A. A. 
Vedenov for many discussion, contributing to the 
clarification of the physical side of the problem. 
The authors are grateful to A. I. Larkin, V. V. 
Sudakov, D. V. Shirkov, G. M. Eliashberg and 
other participants in the Second Odessa Sympos­
ium on theoretical physics for extended discus­
sion, to E. G. Batyev, S. K. Savvinykh and G. I. 
Surdutovich for useful comments, permitting them 
to eliminate some errors. 

We should like to note the role of Yu. B. 
Rumer, whose unchanging enthusiasm maintained 
interest in research in this field over the course 
of many years. 

APPENDIX A 

ANALYSIS OF THE EQUATION FOR VERTEX 
PARTS 

The set of equations for vertex parts consists 
of equations of the Bethe-Salpeter type (2.11), the 
logical identity (2 .13) connecting the irreducible 
vertexes with the reducible, and Eq. (2 .12) for the 
absolutely irreducible vertex part. Let us first 
find the equations of the Bethe-Salpeter type. We 
shall consider the total vertex part as known and 
determine the irreducible vertex parts from 
equations of the type (2.11). 

The following analytic formula can be written 
down for the vertex part JT12 ; 34 of Eq (2.11): 

JJI2;a4 (pi, P2. Pa, P4)=0(PI,p2, Pa. P4) 

+ (2~)3 ~ 0 (PI. P2. q, q- PI+ P2) 

X ff12;a4 (q, q- P1 + P2, Pa, P4) 

X G (q) G (q- P1 + P2) d3q. (A.1) 

The kernel of this equation is not of the Fredholm 
type, since the integral 

~ 02 (p, p, q, q) G2 (p) G2 (q) dapdaq (A.2) 

diverges logarithmically. In this connection, the 
homogeneous equation corresponding to (A.1) has 

an irreducible spectrum of eigenvalues. 4l The 
entire divergence of the integral of (A.2) is 
associated with regions in which two of the mo­
menta are approximately equal and are much 
larger than all the others; the non-uniqueness of 
solution of Eq. (A.1) is also connected with this 
region. Therefore, the problem of the uniqueness 
of the solution of Eq. (A.1) can be solved in a 
much narrower setting. 

Let us consider Eq. (A.1) for the case p 1 = p2, 

p 3 = p4 = p'. In this case, 0 and JT are functions 
only of the ratios of the moduli of their vector 
arguments and the angle e between them. We 
represent them in the form of series in Legendre 
polynomials of cos e with coefficients On (p/p' ). 
The equations for the different harmonics sepa­
rate: 

00 

(ffr2;34)n (x) =On (x) +A~ On ( ;, ) (Jil; a4)n (x') d::, 
0 

T 
A= 2nM•. (A.3) 

From the properties of 0 (Pi) it follows that 

On (x) = On (1/x), On(O) = o. (A.4) 

Equations (A.3) are easily solved with the help 
of the Mellin transform. Denoting the Mellin 
transform of cp ( s ) by (jJ ( s ) , we get 

(ffl2;a4)n (s) =On (s)/[1 -A-On (s)]. (A.5) 

The inverse transform of (A.5) gives a function 
possessing the property 

(JI12; 34)n (x) = (JI12; 34)n (1/x). (A.6) 

To the solution of (A.5) of Eq. (A.3) can be 
added an arbitrary superposition of solutions of 
the corresponding homogeneous equation. They 
all have the form xs(;\), where s ( ;\) is a root of 
the equation 

1 - A On (s) = 0. (A.7) 

The function ffn ( x) must satisfy the condition 
(A.6) (symmetry relative to the permutation of 
the arguments). Therefore, the solutions of the 
homogeneous equation must always lead to the 
combination xs(;\) + x-s(;\l. Substituting x in the 
ratio p/p', we find that each solution of the 
homogeneous equation becomes infinite as p/p' 
- 0 and as p/p'- oo. 

We now compare the results obtained with Eqs. 

4lV. E. Zakharov called our attention to this fact, for which 
we express our gratitude. 
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(2.11), (2.13). From Eqs. (2.12), which do not 
contain vertex parts, it is clear that the absolutely 
irreducible vertex part ff* does not contain di­
vergences when two of the momenta vanish. It 
then follows from Eq. (2 .13) that the coefficients 
in the solution of the homogeneous equations are 
equal to zero. 

The situation is somewhat different for the 
vertex part ff13 ;24 • The Bethe-Salpeter equation 
for it is written in the form 

ff1a; 24(p1, P2• Pa• P4)- 2 (Jn)" ~ 0 (Pl• q, Pa• P1 + Pa -q) 

X ff1a;21 (qu P2• P1 + Pa- q, P4) G (q) 

In this case the kernel of the corresponding inte­
gral equation generally tends toward a constant 
value when the momentum of the integration in­
creases. The equation will have a solution only 
for explicit furnishing of the integration limit Po· 
Its solution is a small quantity of the order of 
V /ln [ p0/l p1 + p 3 !J. We can establish this fact by 
direct substitution. 

Thus, in both the cases considered, the solu­
tion of the Bethe-Salpeter equation is uniquely 
determined. 

The equations considered here have a great 
resemblance to the equations of quantum field 
theory, the solutions of which were studied in a 
number of well-known researches. [to] These 
solutions are materially different from those 
found by us, which is explained by important 
differences in the equations themselves. A more 
detailed consideration of this question goes be­
yond the limits of the present communication. 

APPENDIX B 

STRUCTURE OF THE SERIES <1> 0 (0), <1> 0 (0). 

We shall consider the structure of the terms of 
the series which correspond to the quantity ff* 

for the simplest example of an "open envelope" 
diagram (Fig. 2). The contribution of this diagram 
to the .\ curve is equal to the integral 

A 6 (2n)9 

Ot020£J• d3qld3q2d3qs 

xi~ q'/_•q'.f.•q~'l Pl- ql- q21'1• I Pl + P2- q. 1'1• I P• Pl- qa I''• ' 

(B.1) 

FIG. 2 

complete vertex parts, the arguments of which 
are given in Fig. 2. Since a logarithmic diverg­
ence arises for large values of all the momenta 
qi, it is convenient to transform to new variables. 
As one of these, we introduce the quantity Q: 

(B.2) 

We shall not write down the remaining variables 
(angles in nine-dimensional space) explicitly. 

The integral (B.1) in the new variables has the 
form 

T3 I dQ 

AB (2n)9 J Q 

X v'/_•v'.j•vi'l Pt/Q- Vt- V2\'1•1 (Pt + P2) I Q- V4 \'1•lp.!Q- Vt-Vsl'1•. 

(B.3) 

Here dQ is the element of solid angle in nine­
dimensional space. The rest of the notation is 
obvious. Integration over Q is cut off above at a 
value ~ p0• Below, it is cut off in practice at 
Q ~ p, where p is the maximum of the momenta 
Pi· Thus the logarithmic term in the integral (B.3) 
has the form 

T 3 \ Ot020aO• dQ ln .1!2.. ( B .4) 
(2n)• AB ~ v'/'v'.f.•v~•v~' I Vt + "•1'1• I Vt + val'1• P ' 

where the external momenta can be set equal to 
zero. 

For calculation of the next term of the expan­
sion, we make use of the following method. Let 
the integral I have the form 

I=~· f (x) a; (x0 ~ 1), (B.5) 
0 

where f( 00 ) = f0 "#- 0, and f(x) ~ x 1+0!( a > 0) 
for x- 0. Then integration by parts yields 

00 

I = / 0 ln x0 - ~ f' (x) ln x dx. (B.6) 

Making use of this relation, we obtain the next 
term of the expansion of the integral (B.1) in the 
form 
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A" ~3 )" r dQ dQ ln Q _!__ [ 'I 'I 'I p1 02 Oa 04 ~J (B 7) 
n ~ oQ v1 'v2 'va'\PI!Q-vl-vi\ 1'\(Pl+P2)/Q-v.J'1•J P•/Q-vl-vs\'1.. . 

In view of the homogeneity of the D quantities, 
the integral (B.7) converges for Q ~ p. From the 
form of the integral (B.7), it is evident that if, 
say, p1, p3 are much greater than p2, p4, then 
we can neglect the latter. Because of the homo­
geneity of the integrand, the integral (B.7) will 
not depend on p 1 in this case. 

Generalization of the results that have been 
obtained to the general term of the series for $"* 
follows directly. We thus obtain ( 3 .6). 

We proceed to an estimate of the later terms 
of the series 4> 0 (D). The contribution from each 
diagram can be illustrated by an integral of the 
form 

n-1 2(n-1) n 

T (' dQ II v~'l, II 0 
A2(n-l) (2n)an J n i=l J k=l k• 

(B.S) 

Integration over dQn gives, on the surface, 

n-1 

~ vr = 1 (B.9) 
i=l 

(summation only over the independent momenta). 
In the important region of integration, all the vi 
have the identical order 1/Vn. The region of in­
tegration itself has the order n- 3n/2• Therefore, 
with factorial accuracy, the integration is of the 
order ( T D/ A2 )n. 

We can only estimate very crudely the number 
of diagrams of n-th order by the upper limit 
( n - 1) ! ! Although this estimate is evidently 
quite rough, the factorial increase in the number 
of graphs raises no special doubt. Therefore, the 
series for 4> 0 (D) is evidently asymptotic. 

APPENDIX C 

ONE DIMENSIONAL ANALOG OF THE EQUATION 
FORD 

The one-dimensional analog of Eqs. (2 .11)­

(2 .13) can be written in the following fashion: 

c' ' dx' F (0) = .l <I> (0. X ) X'' (C.1) 
X 

Here D ( x) is the desired function, F and <I> are 
certain given functions. It is assumed that <I> 0 ( D) 
= <I> ( D, 0) is a finite quantity. We shall somewhat 
simplify the situation by assuming that <I> does 
not depend explicitly on x. Then Eq. (C.1) can 
easily be reduced to a differential equation with 
separable variables. The solution of the latter 
has the form 

D 
(' F' (0) x 
J <D (OJ dO = - ln -;;, (C.2) 
o. 

where D1 is a root of the equation F (D) = 0. We 
investigate the solution (B.2) for x close to zero. 
Let <I> (D) have a simple root D0• We introduce 
the notation F'( Do) = F0, <I>' ( 0 0 ) = 4> 0. For x 
close to zero, we shall seek the solution of D 
close to D0• A simple calculation gives 

{ F~ x} I [J - Do[= exp - -----,- ln- . 
<D0 xo 

(C.3) 

By analyzing Eq. (3.8) in the region of small 
momenta, we obtained Eq. (3.11), which deter­
mines the value of V. On the other hand, this 
constant itself makes an important contribution 
from the region of large momenta. At first glance, 
such a situation appears to be contradictory. In 
fact, there is no contradiction. The change in the 
interaction in the region of high momenta pro­
duces such a change in the region of small mo­
menta that the constant V does not change. 

We shall illustrate what has been pointed out 
by the simple example we have considered. Here 
the value of D ( 0) = Do is also determined from 
the condition of solvability of the equations for 
small x. On the other hand, it follows from Eq. 
(C.1) that 

F (0o) = ~·<I> (0) c~ · (C.4) 
(I 

Equation (C.4) shows that there exists a con­
tribution (for Do) of the region of ''large'' 
x ( x ~ x 0). We simulate the change of the inter­
action by the change in x 0• Then (C.3) shows that 
the value of D also changes in the region of 
small momenta. For correction of the initial 
assumptions, it is necessary to satisfy two con­
ditions: 1) the existence of the root <I> (D); 
2) the satisfaction of the inequality F0/<I> 0 < 0. 
However, the second condition is a consequence 
of the simplifying assumption made by us on the 
independence of <I> on x. It is not difficult to 
establish the fact that if a<I>/B xD=Do,x=o "" 0, then 

the second condition drops out, and D has the 
form D = Do + ax for small x. 

Note added in proof (February 22, 1964). Experiment shows 
that Jl. - Jl.o > 0 above the transition curve, and in Eq. (4.23), 
a< 0. It is shown that \al /b << 1. The consequences of this 
fact are discussed in the work of E. Batyev and the authors 
[JETP 46, No. 6 (1964), Soviet Phys. JETP 19, No. 6 (1964)]. 
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