
SOVIET PHYSICS JETP VOLUME 19, NUMBER 3 SEPTEMBER, 1964 

REGGE TRAJECTORIES IN THE BETHE-SALPETER EQUATION 

Yu. A. SIMONOV 

Submitted to JETP editor August 10, 1963 

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 985-993 (March, 1964) 

An equation is derived which defines Regge trajectories for the sum of diagrams of the 
ladder type (particles of mass m exchange with particles of mass J.!). The behavior of the 
trajectory l ( s) as a function of s and of the coupling constant g2 is investigated. An ex
pansion of l ( s) in a series of g2 is obtained and it is shown that the sum of the senior 
terms in the asymptotic ladder diagrams yields the first two terms in the expansion, i.e., 
l ( s) = Z0 + g2Z1 ( s). The cause of this situation is ascertained. The equation for l ( s) is 
solved exactly in the particular case of s = 0. The analytical form of l ( g2 ) is presented 
for J.! = 0 and the results of numerical calculations for a number of values of p2/m2 are 
given. 

THE problem of finding the bound states in rela
tivistic theory is of great interest, but is far 
from solved (only one particular case was actually 
investigated [tJ). On the other hand it is quite 
important to investigate the asymptotic behavior 
of the amplitude. Both problems are combined in 
a single approach, the so-called Regge pole 
method, in which the bound states can be obtained 
from the asymptotic behavior of the amplitude in 
the other channel. 

In equation ( 1) the external ends with momenta 
p 3 and p4 are on the mass surface, whereas the 
'masses' of the particles with momenta p 1 and 

Thus, the problem reduces to finding the Regge 
trajectories from the asymptotic value of the 
amplitude. Since the properties of the Regge 
trajectories have been little investigated in rela
tivistic theory, there is undoubtedly interest in at 
least using some relativistic model as an example. 
By way of such a model we use the Bethe- Sal peter 
equation. The method proposed below can be ap
plied to Bethe-Salpeter equation with any kernel, 
but for simplicity we confine ourselves to an ex
amination of the sum of ladder diagrams. 

Let us consider the sum of ladder diagrams 
for particles of mass m, which exchange parti
cles of mass f.l . We use the usual normalization 
for the amplitude T: 

S = iT (2n)46 (p1 + P2- P•- P•). 

V i6w1 !IP.!ffiaW• 

Assume for simplicity of all particles are scalar 
and that the dimensional coupling constant is g. 
The equation for the amplitude T takes the form 

T (s, t, p~, Pi)= 

ig2 \ d4qT (s, t', p~2 , p~2) 
-(2lt)4 j (q2~f12)(p~2-m2)(p~z-m2) +To(s,t). (1) 

Graphically this equation is shown in Fig. 1. Here 

p2 are equal respectively to PI and Pi ;r m 2• 

From (1) we obtain a recurrence relation for 
the diagrams in perturbation theory. 

ig2 \ d4qTn(s,t',pi,p~) 
T n+l = - {2lt)4 .) (q• _ !1") (p~ _ m2) (p~ - m2) • (2) 

We change over from integration with respect to 
d~ to more convenient variables [2] 

(3) 

Here 

'2 2 2 + 2 0 0 Z _ P1,2- P1,2- f1 P1.2q 
l, 2 - 2p1,2l q I ' 

I q I = ,1r- [(t + q2- t')2 - 4q2tJ'I', 
2 f t 

K (z, z1 , z2) = z2 + zi + z; - 2zz1z2 - 1. 

Equation ( 1) is rewritten in the following form 
(we leave out the free term T 0, which is no 
longer of interest): 

ig2 \ dq2 \ dt' I q I 
T (s, t) =- (2n)• j q2 - !12 j 2 Vt 

671 

(4) 
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The region of integration with respect to q2 and 
t' includes the values I q I ~ 0 (see [2]). 

It is more convenient to consider in place of 
( 4) the equation for the imaginary part of the 
amplitude in the t-channel. We assume first that 
s < 0 and put PL 2 = -K 1,2 and pj:2 = -KL2· Then 

X \ dz1 dz2 A (s, t', x~, x~) 

.l V- K (z, z1, z2) (x; + m•) (x~ + m•) ( 5) 

This equation, defined for s < 0, can now be 
analytically continued into the region s > 0. 
Equation ( 5) enables us to calculate in recurrent 
fashion An+P substituting An ( s, t, Kj, k2) in the 
right side under the integral sign. 

In accordance with the statement made in the 
beginning of the article, we should now investi
gate Eq. (5) in the asymptotic region t- ""· We 
first have to establish some properties of the 
function A. 

First, the region of integration over K 1 and K 2 
in the integral of ( 5), with s < 0, includes only 
the positive values, so that the kernel of the 
equation is positive. Since the first term of the 
perturbation theory series [the function A2 ( s, t, 
K 1, K 2)] is positive for positive K 1 and K2 (this is 
the imaginary part of the square diagram), A3 

and all the remaining perturbation-theory terms 
are also positive, from which it follows that the 
entire function A is positive (at least where the 
perturbation-theory series converges). 

For s = 0 the positiveness of A follows from 
the unitarity relation, which can be continued 
analytically towards the negative masses -K 1 and 
-K 2. From this follows the positiveness of A for 
s ::::: 4m2 by virtue of the property of the imaginary 
part as proved by Gribov and Pomeranchuk [3]. 

Analogously, we can prove with the aid of ( 5) 
that the function A ( s, t, K 1, K 2 ) decreases with 
increasing K 1 and K 2 , in agreement with the fact 
that the singularities in K 1 and K2 are located at 
negative values, and as K 1 and K2 increase we go 
over into the region where A(s, t, K 1, K2 ) has no 
singularities. We prove this in the appendix. It 
can also be shown that the terms of the perturba
tion-theory series decrease with increasing K 1 

and K2 • 

Let us investigate the behavior of the right 
half of (5) as t - 00 and for s :::::4m2. We can 
separate a region t' < M2 where A ( s, t', Kj, K2) 
does not have a simple asymptotic behavior, and 

limit this region as a function of t' from above 
and from below. Replacing the function A in the 
integral ( 5) by a constant, we can calculate the 
integral with respect to dz 1dz 2 (or with respect 
to dKjdK2). From this we can readily find that 
the behavior as t-oo of this (nonasymptotic) 
part of the integral takes the form Ina ~ C/t. By 
virtue of the positiveness of A it follows there
fore that the relation A( s, t, K 1, K2 ) =?:: C/t is 
satisfied for the entire amplitude for K 1 and K 2 

fixed, s :::::4m2, and t- 00 • We seek the asymp
totic behavior of the function A in the form 

A (s, t, x1, x2) > ~ r (s, x1 , x2) t 1<•l as- t -. oo. (6) 

This form agrees with the assumed existence 
of an extreme-right pole in the l plane for the 
partial amplitude in the s-channel. Within the 
framework of the model considered here (sum of 
ladder diagrams), this assumption was proved by 
Lee and Sawyer C4J. 

The function l ( s ) cannot depend on K 1 or K 2, 

since the Regge poles of the amplitude A( s, t, K 1, 

K2 ) (not on the mass surface) coincide with the 
Regge poles of the physical amplitude A( s, t, m 2, 

m 2 ). It can also be shown that ( 5) is not satisfied 
when l ( s) depends on K 1 and K2. 

We now consider the asymptotic part of the 
integral of (5), where the lower limit with re
spect to t' is larger than M2, and we transform 
the kernel using the fact that t - ""· We neglect 
in this case terms of the type s/t, K 1, 2/t and 
K1, 2/t, and also ,}/t and m 2/t. 

Inasmuch as the function A decreases with 
increasing Kt and K2, the neglect of K1, 2/t is 
justified if the resultant integrals converge as 

K1,2- ""· 
Making the substitution x = t' /t and letting 

t-oo, we obtain from (5) the following equation!) 
relating the Regge trajectory with the residue at 
the pole: 

(7) 

We have neglected the asymptotic part of the 
integral, assuming that l ( s) > -1. In fact, l ( s) 
is always =?:: -1 and becomes equal to -1 when 
s-±oo[4]. 

1>An equation of type (7) was obtained independently by 
Fubini et ai.[•] for the case of 1T1T interaction. 
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The function L ( x, u 1, u 2, s) has the following 
form: 

L (x, u1 , u2, s) = 4sJ.t2X - s2 (1 - x)2 - (u1 - u2) 2 

The region of integration with respect to K 1 
and K2 in (7) extends over those values where 

(8) 

L =:: 0. The boundary of the region is the parabola 
shown in Fig. 2. When K1, 2 > 0 the region of in
tegration encloses only positive values of K1, 2 

(with s < 0). The integral with respect to K 1.2 
converges by virtue of the decrease of r ( s, K t• K 2) 
for large K1, 2• X/:, 

I--

IXz~ -~ 
--T.-------

1Ix1 x; 
FIG. 2 

Equation (7) is a linear integral equation in 
r ( s, K 1, K2), with a kernal that depends on l ( s); 
s is a parameter of the equation. Therefore for 
each l (7) has a solution only for some value A 
(or a set of values of A), which defines A as a 
function of l, and, conversely, l = Z( f.., s ). The 
function l (A, s) is, generally speaking, multiple
valued, but Eq. (7) has been written out for the 
extreme-right Regge trajectory, so that we 
should choose the branch with the largest value of 
l. 

From (7) we can draw certain qualitative con-
clusions concerning the behavior of the trajectory 
l(s). Since 0 ~ x ~ 1, we have Re Z(s) < N, 
otherwise xl ( s) - 0 as Re l- 00 , and (7) has 
no solution. The singularity of l ( s) as a function 
of s occurs first at such values of s that the 
boundary of the integration region (7) is tangent to 
the lines Kt = K2 = -m 2, and in this case x is 
also on the boundary of the contour, i.e., x = 0 or 
x = 1. With the aid of (8) we find that a singularity 
occurs when s = 4m2• 

We can analogously investigate with the aid of 
(7) the threshold behavior of l ( s ) near s = 4m2• 

As s- - 00 , the integration region of Kt and 
K2 shifts to + 00 , and the integral in the right side 
tends to zero. Therefore the equation can have a 
solution only when Z( s) - -1 as s - _oo_ This 
agrees with the results of Lee and Sawyer [4]. 

The form of the trajectory obtained from the 
qualitative considerations is shown in Fig. 3. 

FIG. 3 

Let us consider now the expression obtained 
for Z( s) by using perturbation theory. The first 
term in the expansion of l ( s) in powers of g2 is 
particularly easy to find. It is first necessary to 
investigate the function A in the lower order of 
perturbation theory-the imaginary part of the 
square diagram A2• 

As t-oo the function A2 can be written as 
follows: 

A - £L<s] 
2 - 16n t ' 

1 l 2m2 - s + ·y s (s- 4m2) 

j (s) = V s (s-4m2) n 2m2 -s- V s(s- 4m2) 

(9) 

(10) 

A characteristic property of (9) is that A2 does 
not depend on K 1 or K2, nor on the mass J.L (in 
the limit as t - oo). In the next order the function 
A3 depends essentially on these variables. 

The quantities r ( s, K 1, K2 ) and l ( s) can be 
expanded in powers of the coupling constant g2: 

r (s, X 1 , x2) = r0 (s) + g2r1 (s, x1 , x2), ( 11) 

Z (s) = l0 (s)+ g2 l1 (s). (12) 

We then conclude from (9) that r 0 ( s) = g4f ( s )/16n, 
and Z0 = -1. In order to find lt< s ), we use (7), in 
whichweput Z(s)=-1+g2Z1(s), r(s,K 1,K2 ) 

=r0 (s): 

~1 1 ~ #.; dx~ 1 = A. dx x-Hg'l,(s) ---:;;-
0 " [L (x, u1 , u2, s) (x; + m2) (x~ + m2)]'1• 

( 13) 

The integral with respect to dK1 dK2 can be 
evaluated and is equal to q. ( x, s), where 

<I> (x, s) 

= {- s [4xt-t2 +(4m2 - s) (1- x)2 W'1• ln (F+!F_), 

F ± = (2m2 - s) (1 - x)2 

+ 2.ct-t2 ± {- s (4m2 - s) (1- x)2 (1- 2bx + x 2)}'1•, 

b = 1- 2 J.t2/(4m2 - s). (14) 

When x = 0 we have 4> ( 0, s) = f( s ). Thus, (13) 
is rewritten in the form 

1 

1 = A.~ dxx-Hg'Z.<•><t> (x, s). (15) 
0 

We integrate the integral in (15) by parts, and 
then let g2 - 0. This yields 
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11 (s) = <D (0, s)/16n2 = f (s)/16n2 • 

Consequently in first approximation of perturba
tion theory l ( s ) takes the form 

l (s) = - 1 + "Af (s), (16) 

where f ( s) is defined in ( 1 0). 
Substituting in the right half of ( 5) the expres

sion (9) for A2, we obtain 

A3 = T0 (s) "Ajr1 ln t + 0 (1/t) (17) 

and we get for the n-th term of the perturbation
theory series 

A - ( ) (J..f In t)n-2 ' en (In t)n-3 
n - To s (n- 2)! I t (18) 

Summing the principal terms in the asymptotic 
values of An, we get 

00 

A' (t, s) = ~ A~= To (s) cl+A/(s), (19) 
n=2 

which gives expression (16) for the trajectory 
l ( s ). 

Thus, summation of the principal terms in the 
asymptotics of the diagrams leads to the first 
perturbation-theory approximation for l ( s). 
This explains why the methods of Polkinghorne [s] 

and Arbusov et al. [7] do not give an exact expres
sion for the trajectory l ( s). We know that the 
properties of l ( s) determined in ( 16) do not 
correspond to the ordinary physical notions re
garding the trajectory, viz., l ( s ) does not de
pend on 11 ('radius' of the potential) and as 
s-. 4m2 ± 0 we have Z(s)- ±oo. These 
Coulomb properties of the trajectory (16) are 
only the consequence of the expansion in g2 and 
do not appear, as we have already seen, in the 
exact trajectory l ( s). 

In order to explain the meaning of the result 
( 19) in greater detail, we first neglect in (5) the 
dependence of A(s, t, K 1, K 2 ) on K 1 and K 2• 

Without writing out explicitly the argument s of 
the functions A and <I> (x, s ), we arrive at a 
simplified mathematical model of ( 5): 

1 

An+I (t) = A~ dx An (tx) <D (x), A 0 = +. (20) 
1/1 

For An+ 1 ( t) we get from (2 0) the expansion 

n 

An (t) = ~ a~ (In t)k r 1, 

k=O (21) 

a~= ("Aft In!, a~-l =- "AL1 ("Af)n-In/ (n- 1)1 

etc., where 

1 

L 1 = ~ lnx <D' (x) dx. 
0 

The sum of the principal terms yields 
00 

JO (t) = ~ a~t- 1 (In tt= Cl+A/. (22) 
n=O 

The sum of the next terms in the asymptotic ex
pression is 

00 

Jl (t)= ~ a~-~t-1 (In t)n-I = - "AL1ri+1-f (1 + "Af In t). (23) 
n=l 

It is seen from (22) and (23) that J 1 ( t) be
comes comparable with J 0 ( t) at sufficiently 
large t, i.e., it gives in principle an additional 
term in the trajectory l ( s). At the same time 
J 1 ( t) contains an extra A compared with J 0 ( t), 
so that in the first approximation in A the trajec
tory is determined by the contribution of the 
principal asymptotic terms of J 0 ( t). 

In the exact equation ( 5), the next terms in the 
asymptotic value of the ladder diagrams have a 
more complicated form, but even these include 
terms of the form (21), which lead to J 1 ( t) upon 
summation, so that the situation for ladder dia
grams is qualitatively similar to that considered 
above. 

Thus, the summation of the principal terms in 
the asymptotic value of the diagrams does not 
give the principal term in the asymptotic expres
sion for the entire sum, and can claim only to 
yield the Regge trajectory in the lower order in 
g2. 

Equation (7) can be greatly simplified in one 
very interesting case-for forward scattering 
( s = 0). In this case the region of integration 
with respect to Kt and K2 in (7) degenerates into 
a straight line, if the values of K 1 and K 2 are set 
equal to each other. Introducing the notation 
r ( K, K, 0 ) = r ( K ) , we reduce (7) to the form 

1 (X) 

( ) _ , (" .c d (" dx'r (x') _ 2 x 
T X - "' J X X J (x' + m2j2 , X 0 - XX + f.!. 1 _ x • (24) 

0 x, 

Integrating with respect to x and introducing 
the dimensionless variables y = K/m2, and Ao 
= A/m2, we obtain the integral equation 

00 

T (y) = "A0 ~ dy'T (y') Kz (y', y), (25) 

0 

Kz (y',y) = (l + 1) (~' + 1)2 

X [ y' + y + ~:--v (y' + Y+ ~2r-4yy' r(2y)-l-1. 

(26) 
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Equation (25) is homogeneous, of the Fred
holm type, with a kernel that can be reduced to a 
symmetrical form. Consequently there exists an 
enumerable and real set of values A. 0 for each 
l [conversely, (25) defines a multiply-valued 
function l ( A. 0 ) ]. In addition, from the positive
ness of r ( y) and Kz follows the positiveness of 
A. 0• Further, since (25) has been written for the 
extreme-right Regge pole, we should choose the 
branch of l ( A. 0 ) giving the largest Z. 

From (25) and from the condition aKzla,} < 0 

we find that with increasing ,} the same l is 
obtained from ever increasing A. 0, i.e., the 
coupling weakens with increasing particle mass 
(with decreasing effective interaction radius). 

Let us consider the limiting case 11 2lm2 - 0. 
Then 

K ( I ) - 1 { (y'fy)l+l, y' < y 
l y,y -(l+1)(y'+1)2 1, y'>y" (27) 

Differentiating (25) with the kernel (27) twice, 
we arrive at the following differential equation: 

yr" + (l + 2) r' + 'Ar I (1 + y)2 = 0. (28) 

The function r ( y) satisfies the following condi
tions: regularity at y = 0, and r ( y) - 1/yl+t as 
y- 00 • The solution of (28) under these conditions 
takes the form 

r (y) = CF (l + 2; - l- 1; l + 2; y I (1 +b)), (29) 

where F ( a, b, c, z) is the hypergeometric func
tion, and the connection between l and A. 0 is 
given by 

l + 2 = (1 + Y 1 + 4'A0) I 2. ( 30) 

For small A. 0 we have l = -1 + A. 0 + 0( A.~), which 
coincides with (16) for s = 0. For 112/m2 "'- 0 Eq. 
(25) was solved numerically. 

The table lists the values of A. 0, with the 
values of l + 1 indicated on the upper line and the 
values of ,}1m2 to which the given i\. 0 pertains on 
the right. 

Figure 4 shows the variation of l ( i\.0 ) for 
some 112lm2• We note that l increases slowly 
with A. 0; whereas l increases like .f'f'; for 11 = 0, 
for the growth becomes logarithmic for 112lm2 "' 0. 
Nonetheless, l ( A. 0 ) has no upper bound. 

~I 0.1 1 0.2 1 0.5 1 0.8 1 
0 0.11 0.24 0.75 1.44 
{) .1 0.111 0.246 0.80 1.61 
0.5 0.114 0.258 0.90 1.94 
1 0.116 0.27 0.988 2.22 
5 o: 125 0.31 1.37 3.59 

From the table and from Fig. 4 we can draw 
two conclusions. First, l ( A. 0 ) can become larger 
than unity, and this leads to violation of the 
Froissart theorem [s]. Second, once l ( i\. 0 ) be
comes positive for s = 0, a 'ghost' state arises
a bound state with integer l and s < 0. Both 
these features are connected apparently with the 
character of the model: the sum of ladder dia
grams does not satisfy the unitarity conditions in 
the t channel, nor does it satisfy the crossing 
symmetry condition. 

The author is grateful to G. M. Adel'son
Vel'ski'l, B. L. Ioffe, A. P. Rudik, K. A. Ter
Martirosyan, and M. V. Terent'ev for interesting 
discussions. The author is also sincerely indebted 
to G. M. Adel'son- Vel'ski'l and F. M. Filler who 
carried out the numerical solution of the equa
tions. 

APPENDIX 

BEHAVIOR OF r(K 1, K2, s) AS K 1 - oo 

Equation (7) has the following form: 

( ) _ 0 ~1 dxxl (s) 1 \ dx~dx~r (x~, x~, s) 
r x 1, x 2, s - "' . -\ , , , • V L (ztt, 112, x, s) :rt • (x1 + m') (x. + m2) 

o . 2 (A.l) 

with the integration region given by the condition 
L ~ 0 and shown in Fig. 2. Since the integral with 
respect to K 1 converges for fixed K 1 and the 
region of integration with respect to K i shifts 
towards larger Ki with increasing K 1, r ( K 1, K 2, s) 
should decrease with increasing K 1• Let us ex
plain the character of this decrease. We change 
over in (A.l) to the variable u 1: K1 = xK 1 + u 1; for 
fixed K 2 the integration with respect to u 1 occurs 
over the finite region between the roots of the 
equation L = 0. 

.f l 
9 
J 
2 

}'!Jmt;,f 

Ill l.f Z!l lJ" II J!/ 
0 

FIG. 4 

1,2 
\ 

1.5 I 2 I 3 I 5 

2.0 2.64 3.75 6 12 30 
2.30 3.13 4,66 8.1 19 64. 2 
2.90 4.12 6.50 12.4 34 147 
3.42 5,0 S.17 16.4 49.1 238 
6.04 9.57 17.5 40.7 131 906 



676 Yu. A. SIMONOV 

The integral with respect to du1 is of the 
form 

(A.2) 

Let r(Kj, K2} ~ f(K2) (Kt)-a as Kj- 00 • We 
break up the region x into parts: 0 :s x < C/ K 1, 

and the region where x K 1 » m 2• In the second 
region the integral of (A.2) is ~ f ( K2, s )/( u1 

)a+ 1 h ~ ' Th + XK 1 , w ere u 1 ~ K 2 • en 

\ dx~f (x~, s) 

J (Ul + X'K1ia+1 (x~ + m 2) 

converges and behaves like 1/( canst + XK 1 )a +1. 

Therefore the entire integral in the right half can 
be written in the form 

r dxxl (s) 

J(C + xx1)a+l- F(a + 1, l + 1, l + 2;- ~1 ). (A.3) 
0 

The asymptotic expansion (A.3) contains the terms 
Ktl-t and Kia- 1, and since the left half of (A.1) 
behaves like K 1a we conclude that a = l + 1. 

Thus, r(K 1, K2, s) ~ Ktl-t as K1 - oo. 

1G. Wick, Phys. Rev. 96, 1124 (1954). R. 
Cutcosky, Phys. Rev. 96, 1135 (1954). 

2 A. P. Rudik and Yu. A. Simonov, Soviet Phys. 
JETP 45, 10 (1963), Soviet Phys. JETP 18, 703 
(1964). 

3 V. M. Gribov and I. Ya. Pomeranchuk, JETP 
42, 1419 (1962), Soviet Phys. JETP 15, 984 (1962). 

4 B. Lee and R. Sawyer, Phys. Rev. 127, 2266 
( 1962). 

5 Bertocchi, Fubini, and Tonin, Nuovo cimento 
25, 626 (1962). 

6 R. Polkinghorne, Preprint, Univ. of Cam
bridge, (1963). 

7 Arbusov, Logunov, Tavkhelidse, and Faustov, 
Phys. Lett. 2, 150 (1962). 

8 M. Froissart, Phys. Rev. 123, 1053 (1961). 
9 S. Mandelstam, Cuts in Angular Momentum 

Plane, II. Preprint (1963). 

Translated by J. G. Adashko 
139 


