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Two kinds of instability are possible in an inhomogeneous system: a localized instability, 
characterized by the development of local fluctuations, and a global instability, characterized 
by the behavior of the system as a whole. The second develops from the first and is subject 
to more stringent conditions. In the present work we investigate localized instabilities of a 
weakly inhomogeneous plasma characterized by a small temperature gradient \7T, a small 
density gradient \7p or, a fixed electric field E. A system of this kind exhibits unique oscil­
lation properties if v A « s ( v A is the Alfven speed and s is the velocity of sound) i.e., if 
p » H2 /81r; in this case we can write \7p = 0. The case \7T "' 0 and a uniform weak magnetic 
field H has been treated earlier.Ct] Here we consider the case rlT 5 1 (!J is the electron 
Larmor frequency and T is the electron relaxation time). The magnetic field associated 
with the thermomagnetic current j is neglected. The dispersion relation has six branches 
and an instability can be excited under certain conditions, that is to say, the oscillations can 
grow. When rlT « 1 the instability is convective and manifests itself in the amplification of 
waves entering the medium from the outside; when rlT > 1 the instability becomes absolute. 
The growth rate depends on the relative orientation of the vectors k, H and \7T and is a 
maximum when these vectors are parallel. In the presence of the instability an external 
poloidal field can produce a toroidal field and vice versa. This mechanism may be of impor­
tance in the creation of magnetic fields of celestial bodies. 

1. WAVE PROPAGATION IN A WEAKLY 
INHOMOGENEOUS MEDIUM 

TWO kinds of instability are possible in an inhomo­
geneous system: a localized instability such as that 
considered for the case of a collisionless plasma 
by Rudakov and Sagdeev,C2J and a global instability 
characterized by the behavior of the system as a 
whole, which has been treated for the same case 
by Silin.C3J In this work we investigate an insta­
bility of the first kind for hydrothermomagnetic 
waves. Because of the complexity of the equations, 
we consider in Sec. 2 the relation between the two 
kinds of instability in the simplest case of a sys­
tem with a dielectric constant E that varies in one 
direction only and is nonvanishing throughout the 
region being considered. 

The electric field equation 

2 ( ) . 1 il2D ( z, t) v E z, t - grad dlV E (z, t) = C2 ot2 • 

t 

D (z, t) = ~ 8 (z, t - t') E (z, t') dt' ( 1.1) 
-00 

in the case of transverse waves in a bounded in­
homogeneous medium in which E = E ( z) can be 
reduced to the form 

~ ~ 1 
"'i.E (w, z) +---.-- 8 (ro, z) E (w, z) = - -.D (0, z) 
uz c c 

iw w2 w2 + -.D (0, z) - -.D<o) (ro, z) ==: - 2 8 (ro, z) F (w, z) 
c c c ( 1. 2) 

with the boundary conditions E ( w, z) = 0 at 
z = ± L 0• 

Here 
oo+ia 

E (z, t) = 2~ ~ E (w, z)e-i"'t dw (o > 0), 
-oo+icr 

00 00 

E (w, z) = ~ E (z, t) ei"'t dt, 8 (w, z) = ~ 8 (z, t) eiwt dt, 
0 0 

0 

n<o) (z, t) = ~ 8 (z, t - t') E (z, t') dt'. 
-00 

It is assumed that the field is given for t < 0. 
In the case of a weak inhomogeneity 

( aE ( w, z )/az « w£312 I c) the WKB method can be 
used and the electric field can be expanded in WKB 
modes l/Jn that satisfy the equation 

'ljJ: (w, z) + /..~ (w) k2 (w, z) 'IJJn (ro, z) = 0, (1.3) 

(where ~ ( w, z) = w2E ( w, z )/c2 ); in the present 
approximation these modes are of the form 

604 
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L, z 

'l'n (w, z) = i [ 2k ~ kdzr1' {exp( il.n ~ kdz) 
-Lo -Lo 

z 

- exp (- il.n ~ kdz)}. (1.4) 
-L, 

The WKB modes satisfy the boundary condition if 
J,, 

An ~ k (w, z) dz = :rtn. (1.5) 
-L, 

We then have 

E (w, z) = ~En (ro) 'l'n (w, z), 
n 

F (w, z) = ~ Fn (ro) 'l'n (ro, z). (1.6) 
n 

BAcause of the orthogonality of the modes for a 
given frequency (the orthogonality condition is 
written 

~· k2 (ro, z) '¢n (ro, z) '¢m (ro, z) dz = 1>mn), 
-Lo 

En (ro) = Fn (ro)/(1 -A~ (ro)), 
L0 co+ia 

E (z, t) = 1n ~ ~ dz' ~ dwe-iwt 
n -L0 -oo+io 

X 
F (z', w) k2 (z', w) IJln (z', w) IJln (z, w) 

(1. 7) 

Closing the contour of integration over w by an 
infinite semicircle in the lower half-plane we re­
duce the integral to a sum of residues at poles 
given by the relation ,\~ ( w) = 1. Then 

L, 

E (z, t) = i ~ e-i"'ni1 ~ dz' 
n,J -L. 

Here j is the number of the pole, that is to say, 
the number of the branch of the dispersion equa­
tion. 

The frequencies Wnj are determined by the 
condition 

t-· .\ k (z, Wni) dz = nn, 
-po 

( 1. 9) 

and agree with those given by Silin [ 3] if, as we 
have indicated, k ( z, w) does not vanish at any 
point within the system (if this condition is not 
satisfied the integral is taken between points for 
which k(z, w) = 0). The appearance of a positive 
imaginary part in the frequencies Wnj denotes the 
transition of the system into a state of global in-

stability. In what follows it will be found conve­
nient to replace the quantum number n by the mean 
wave vector 

L, 
- 1 \' ( d :rtn 
k = 2Lo .\ k Wn, z) z = 2Lo • 

-L, 

Suppose now that the dimensions of the system 
L0 increase without limit so that for a given k 
the number n also increases without limit. In the 
sum 

z z' z z' 

exp ( i ~ kdz + i ~ kdz) + exp (- i ~ kdz- i ~ kdz) 
-I..0 -Lo -Lo -Lo 

z' z' 

- exp (i ~ kdz) - exp (- i ~ kdz) 
z 

the first two terms oscillate rapidly so that the 
summation over n (1.8) can be approximated by 
an integral which vanishes in the limit. Thus, 
when L0 - oo 

z' z' 

x { exP( i ~ kdz) + exp (- i ~ kdz)} 
z z 

approaches 
co - 00 

- __i_ ~ \ d_k (' dz' 
4n . .l k J 

:J -oo -oo 

F (z', wi) k'j, (z', wi) 

k'l•(z, wi) (/..d/..jdw)"'i 

z' 

x exp [- iwi (k) t - i ~ kdz] . ( 1.10) 

(it should be noted that k ( z, k) = - k ( z, - K)). 
Now assume that at t = 0 at the point z = z 0 a 

fluctuation arises that can be written in the form 
Hx(z, O) = Ac-16 (z- z 0 ) whence Dy(z, 0) 
=Ao'(z -z0), E(z, t) = 0 when t< 0. 

Then, 

E (z t) = _ _ A_~ r dk [ k (zo, wi) ]'/,(A <0__)-r 
' 4nc2 . .\ k k (z, wi) dw "'i 

1 -oo 
z, 

x exp [- iros (k) t - i ~ kdz J . (1.11) 

In each of the terms of the summation over j we 
introduce the quantity K = k ( z 0 Wj) as the in de­
pendent variable. We then have 

E (z t)= _ __:i_ ~~~ dk -. / x 
' 4nc2 j .) k dx V k(z, wjl 

[ ~· ] . d/.. -1 
x exp - iwit - i .\ kdz (A do) L 

z 1 

( 1.12) 
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by virtue of (1.5) and the conditions A.2 ( w) = 1 at 
the poles. 

The integration is taken over a contour which 
coincides with the real axis in both integrals (1.12) 
at ± oo since k ( z 0, w) - w/ c and k- w/ c when 
w- ±oo. If there are no singularities between the 
contour and the real axis (i.e., dw/dk >" O) we can 
integrate over real values of w in Eq. (1.12). 
However, the condition dw/dk >" 0 also means 
that we integrate over real K in (1.12). We then 
arrive at the notion of a field with frequencies de­
pending on the coordinates of the points at which 
the fluctuations arise. These frequencies, which 
are analogous to those used in l 2J, are obtained 
from a dispersion equation which is written for­
mally in the same way as for a uniform medium 
but with coefficients depending on coordinates. 

When I z - z 0 I « L, where L = E/ I VE I is the 
scale length of the inhomogeneity, then 

z 

exp [ i ~ kdz- iwt] = exp [ik (z- z0)- iwtl, 
z, 

and we obtain the usual plane wave. 
Thus, for wavelengths satisfying the relation 

kL » 1 we can formally write the dispersion 
equation for an inhomogeneous medium in the 
same way as for a uniform medium but with coef­
ficients that depend on coordinates; this equation 
then yields frequencies that will also depend on 
coordinates. These frequencies Wj ( z 0 ) charac­
terize the time development of fluctuations arising 
at a point z 0 as long as its dimensions are much 
smaller than the dimensions of the inhomogeneity. 
The appearance of a positive imaginary part in the 
frequency Wj ( k, z 0 ) implies a localized instability 
which, as is well known, can be convective or ab­
solute.[4J The characteristic frequencies of an in­
homogeneous medium bounded in the z-direction 
are determined from the quantization condition 
( 1. 9); in this case the frequencies are obviously 
independent of coordinates and characterize the 
entire volume. The fact that (1.9) is an integral 
expression means that the localized instability 
appears before the global instability and that the 
second develops from the first. While the first 
can be either convective or absolute, the second 
is always an absolute instability. 

2. BASIC EQUATIONS FOR HYDROMAGNETIC 
AND THERMOMAGNETIC WAVES 

For the case of a magnetic field of arbitrary 
magnitude and hydrodynamic motions of v ( r, t) 
the electric current density is given by the ex­
pression 

= uE* + G1 [E*Hl + G2 (E*H) H- a'\lT 

- a 1 [VTH]- a 2H (HVT), 

E* = E + _!__ [vH] + .'!_ Vp . 
c e p 

whence 

(2 .1)* 

E = - _!__ [vH] - .!'___ Vp + Y]j + '11 1 [jH] + r] 2H(jH) 
c e p 

(2 .2) 

where 

() CJt 
Y]= cr2 + (crtH)2 ' 'Ill=- cr 2 + (crtH)2 ' 

A= 
Cicr+CitCJtH2 

A1= 
C!t1-CJtC! 

cr2 + (crtH)2 ' cr2 + (crtH)2 ' 

The energy flow expression which we shall need 
below is of the form 

q =(A - 3/2e) Tj + A 1T [jH] + A 2TH (jH) 

- pCp [xVT + x1 [VTHl + x2H (HVT)], (2. 3) 

where K is the thermal conductivity and Cp is the 
specific heat. We have made use of the Onsager 
relations; the thermal conductivity is assumed to 
be due to the electrons (K = Ke). However, if 
radiative thermal effects predominate ( Kr » Ke) 
then Kt = K2 = 0. 

We consider waves of frequency w « ck, 
w « 1/ T in which the electric field is not purely 
longitudinal; the displacement current ( 47f )- 1aE/ at 
can be neglected. In this case the equations 
assume the form 

8H/8t = - c rot E, (2.4)t 

pd:e = _ Vp + + [jH] + pv(V2v +-}grad divv), 

(2 .5) 

1 dT ( 1 ) T dp 1 . --+- -1--=--dlvq 
1 dt 1 p dt pC P ' 

(2.6) 

rot H = 4nj/c, div H = 0, 8p/8t + div (pv) = 0, 
(2 0 7) 

where y = Cp /Cv; v is the kinematic viscosity. 
We now separate the quantities p, T, v, H into 

fixed and varying parts, for example p = p 0 

+ p' ei(k · r-wt) ( v0 = 0) (the subscript zero will 
henceforth be omitted) and linearize the equations 

*[E*H] = E* X H, (E*H) = E* . H. 
trot= curl. 
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in the primed quantities; in this case it is neces­
sary to take account of the dependence of the 
kinetic coefficients on p. T, and H2 • We limit 
ourselves to the case kL » 1, where L = T/IVT 1. 
Under these conditions v'\7p « p and these and 
similar terms can be omitted. 

Hydrothermomagnetic waves will exist only if 
the thermomagnetic terms in Eq. (2 .4) [taking 
account of Eq. (2.2) l are larger than the galvano­
magnetic terms. When ~ T « 1 the largest ther­
momagnetic term cA 1H' ( k'\7T) = - wTH', while 
the largest galvanomagnetic terms vmk2H', where 
vm = c2/4ncr is the magnetic viscosity. The cri­
terion for predominance of the thermomagnetic 
terms is then wT » vmk2• Carrying out an esti­
mate for a fully ionized plasma WT ~ kTT/mL, 
cr~ne2 T/m wefind kL«(w0 1/c)2 where l isthe 
electron mean free path and w0 = ./ 4nne2/m is the 
electron plasma frequency. When ~T » 1 the 
largest thermomagnetic terms in Eq. (2 .4) are of 
order cA2 ( HVT) k x H' while the largest galvano­
magnetic terms are of order c277 1 ( k ·H) k x H' and 
for estimates A2H2 ~ e-1, 77 1H ~ ~T/cr0 ( cr0 is the 
electrical conductivity for H = 0) our condition 
assumes the form kL << s2/v).. In arbitrary fields 

82 (Q-r)2 
kL < --:;? 1 + (~21:)2 • 

A 

(2 .8) 

If these inequalities are reversed, in which 
case the thermomagnetic terms can be neglected, 
we obtain the dispersion relations considered by 
GinzburgCsJ and Piddinfon.C7J 

It has been shown in 1] that when the plasma 
thermal conductivity is neglected the thermomag­
netic frequency in a weak magnetic field is WT. 
We now show that taking account of the thermal 
conductivity does not change this result. Because 
of the inequality kL » 1, the frequency WT « Kl2. 
It then follows from Eqs. (2.3), (2.5) and (2.7) that 

T' H'Q,; II' 
T~ H kL<HkL' 

Thus, in Eq. (2 .4) it is permissible to neglect 
terms containing T', that is to say, the thermo­
magnetic oscillations are isothermal. 

3. INVESTIGATIONS OF STABILITY WHEN k, H 
AND '\7T ARE PARALLEL 

Assume that at time t = 0 a fluctuation arises 
for which the magnetic field 

n I' 

H' (z, 0) = ~ j H~ (k) eikzdk, 

n 

~ Hj (k) = H' (k), (3.1) 
i=l i=l 

where is the number of the branch; then, at time 
t 

n 

H' (z, t) = ~ ~ H~ (k) eikz-iwj(k)t dk. (3.2) 
J=l 

The initial fluctuation is bounded in space and 
hence the integral in Eq. (3.2) converges when 
z - ± oo. If the frequency is complex w = wr + iwi 
an instability arises when Wi > 0. In Eq. (3.2) we 
go from an integration over real k to an integra­
tion in the plane of the complex variable k = kr 
+ iki for which w is real. If this is possible then 

H' (z, t) = ~ ~ H~ (k) eik(wj)z-iwjt :k dwj (3.3) 
j =1 • wi 

and H' ( z, t)- 0 as t- oc for finite z. In this 
case the instability is of the convective type; if the 
transition in the opposite case from (3.2) to (3.3) 
cannot be made the instability is absolute.C 4, 5J 

We now consider the case in which the vectors 
k, H and \7T are parallel (or anti parallel). We 
show below that the growth rate is a maximum in 
this case. We take the vector u1 = cA 1'\7T along 
the z axis. The dispersion relation for the two 
pairs of branches is then of the form 

W1,2 = - !- k {i (v + Vm) k + u1 + 8 (iu2 + Vmka1H/a) 

± [(i (vm- v) k + u1 + 8 (iu2 + Vmka1H/a))2 

+ 4v1J'h}, 

where u2 = cA2 ( H · '\7T) ~ u 1~T, E = ± 1. When 
I k I - co we get branches of two kinds: 

In the branch of the first kind when Wi = 0, 

(3.4) 

kr = ± ki> that is to say the curve showing ki as a 
function of kr or Wi = 0 is approximated by two 
lines that divide the quadrants in half. For the 
branch of the second kind with Wi = 0 

k; = kr [ea1Hia ± Y 1 + (a1H/a)2 ], 

i.e., the asymptotes are also lines. 
An instability arises at small values of k; it is 

convenient to consider two li:miting cases in this 
region: 

1) VA< max (u1, u2), 2) vA > max (u1, U 2). 

In the first case, expanding the roots in powers of 
v~ we obtain two pair of branches 

kv 2 

W2 (k) = - ivk2 + u1 + i (vm- v) k + ~ (iu2 + vmkcr,Hjcr) • 

(3. 7) 

For the first pair of branches (3.6) the contour 
equation is of the form 
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( + (cr1~ )2)]'/'}. + 4v;,k~ 1 ~ (3. 8) 

When 

which is satisfied when 

Q-r <;; QcrT ~ 0.2-7- 0.5 [8), 

this is the equation of a hyperbola for which the 
asymptotes of one branch are located in the first 
and second quadrants; the other asymptotes are in 
the third and fourth quadrants. The ± signs in 
front of radical correspond to the upper and lower 
branches. In the integral in Eq. (3.2) we can con­
vert from the real axis to the upper or the lower 
branch depending on the sign of z. 

When Q = i2cr the approaching vertices come 
together and the hyperbola is transformed into 
two intersecting lines (in which case p. = 0); it 
then separates again [shifting to the right or the 
left depending on the sign of u2 in Eq. (3.8)] be­
coming a new hyperbola for which the asymptotes 
of one branch lie in the first and fourth quadrants 
and for the other in the second and third quadrants 
(in this case /J. < 0). It is impossible to go from 
integration over this branch to the integration 
over the real axis for any value of z; hence when 
Q > Ucr the instability is absolute. The transition 
point satisfies the condition dw/dk = o[ 5J and is 
independent of VT. 

If at t = 0 a fluctuation arises corresponding to 
the first pair of branches 

H' (z, 0) = Ab (z) = ~ ~ eikzdk, (3 · 9) 

then at the time t 

H' (z, t) = :n ~ eikz-iw(k)tdk. 

Using Eq. (3.6) we have 

H' (z, t) = cy~t 

exp f- t . [~tu~ + 2 + ( U1 - U2 cr~H) J} l 2vm [ 1 +(crlH/cr) 2] 

{ t [( z )2 . (2 + cr1H 
X exp - 2vm (1 + (crlH/cr)Z] t + ~e u1u2 -cr-

X ( u~ - u~ + 2u1 T + ~: ) ) ]} . (3.10) 

When z- ±oo, H' ( z, t)- 0 for finite t; when 
t- 00 

x [11u~ + 2 -T ( U 1 - U2 cr1: ) ]} , (3.11) 

that is to say, in the region of the convective 
instability (f-t > 0) the quantity H' ( z, t) - 0 when 
t - oo and in the region of the absolute instability 
(f-t < 0) H' ( z, t) increases without limit. Under 
conditions of the absolute instability the field 
H' ( z, t) increases with time in the region between 
two points z 1 and z2 located on opposite sides of 
z = 0 with coordinates given by the relation 

z1,2 = - [ U1 - u 2 cr~H ± u 2 -v 1 - ( cr~Hr J t, (3.12) 

and decays in time outside of this region. As time 
increases the growth region of the field expands 
while the damping region moves away from the 
point at which the fluctuation grows ( z = 0). For 
a convective instability the coordinates of the 
points are negative and the region of growth 
located between them moves out to infinity in the 
course of time. 

This same result can be obtained from the form 
of the Wi = 0 curves in the k = kr + iki plane. In 
the region of the convective instability with z > 0 
the transition from the real axis in Eq. (3.2) is 
possible only for the upper branch of the hyperbola 
which is located entirely in the upper half plane 
( ki > 0). Hence the integrand, which is propor­
tional to e-kiz, approaches zero when z-oo and 
consequently the integral in Eq. (3.2) approaches 
zero when z - oo with finite t in the same way as 
t- oo with finite z. 

On the other hand, when z < 0 the transition 
from the real axis in Eq. (3.2) is possible only for 
the lower branch of the hyperbola so that the inte­
grand is proportional to ekilzl. But the maximum 
of the lower branch is located in the upper half­
plane in the region I kr I < I u2l/vm, ki > 0. In this 
region the integrand, which is proportional to 
elkizl, approaches infinity when z- - 00 • Conse­
quently the convective instability grows and moves 
in the direction z < 0. The instability will occur 
if the smallest wave vector k satisfying the condi­
tion kL » 1 lies in the region in which ki > 0; 
thus, the existence of a convective instability re­
quires that the parameters of the medium satisfy 
the inequality udvm » 271'/L, i.e., 

zn (o~zY (Q-r+ ~-r)~1. 
where U < Ucr· 

The maximum of the lower branch of the hyper­
bola lies at 
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(3.13) 

If the wave packet given below is incident on the 
boundary ( z = 0) of a convectively unstable 
medium 

H' (0, t) = ~ H' (ro) e-iootdo:J, (3.14) 

inside the medium ( at z < 0) at a distance z the 
field will be 

(3.15) 

Expanding in powers of w - wm around the maxi­
mum of the lower branch of the hyperbola at large 
distances we have 

H' (z, t) = H' (rom) exp { i (krmZ - Wmt) - kimZ} 

X exp [ r::: (z + tul Vii)2 J 
00~ [ (w-w )• -] 

X exp - m dro. 
2 (~w)2 

-oo 

(3.16) 

This formula holds only at distances such that 
the width of the packet in the medium 

becomes smaller than the width of the packet en­
tering the medium H' ( w). The relative width of 
the transmission poles 

v(~w)• yzvmul '/ 
--'------'--- = -- !l • 

Wm u~ I z I 

approach zero as the transition point from the 
convective instability to the absolute instability is 
approached. The maximum wave growth occurs at 
z ~ L [ Eq. (3.16) holds when z « L] at a time 
t ~ L/u1 -!;; and is given by the factor 

[ 1 (w0/)2] ~exp 2 -c- • 

The amplification can be appreciable when 
(wol/c) 2 » 1. 

For the second pair of branches of (3. 7) the 
curve ki as a function of kr with wi = 0 has two 
branches similar to a hyperbola which are located 
in approximately the same way as in the preceding 
case; however, in the region of the convective 
instability the minimum of the upper branch and 

the maximum of the lower branch lie at ki < 0. 
Hence the upper branch corresponds to a wave 
that is amplified in the direction z > 0. 

At small k, including the region ki < 0 for the 
upper branch, the equation for the contour can be 
written 

A convective instability arises when 

and an absolute instability arises when 

u~ > u; 
and the transition is again independent of the tem­
perature gradient. At the transition point dw/dk 
= 0. We find ki < 0 for the upper branch when 

I kr I < v~ I U2 1/v (u~ + u~) (for Q < Qcr). (3.18) 

The convective instability will occur when Q < ncr 
if the parameters of the medium satisfy the in­
equality 

v~ I U2 1/v (ui+ u~) > 2n/L, 

which is equivalent to .../m/M ( VA/s) 2 ( L/Z) 2 fh 
« 1. The minimum of the upper branch occurs at 

/ -
V Aul U;j 

2 ( ') k· = -1 + 1--
tm 2v (ui + u~) V ui ' 

eu2 v~ 
krm =- , 

2v (u~ + u~) 

As for the case of the first branch (3.6) the rela­
tive width of the transmission poles 

V~ = ( 1 _ u~ )'! ... 1 vu, <ui + u;) 
Wm u~ V zv~u; 

approaches zero as the transition point from the 
convective instability to the absolute instability is 
approached. 

The maximum growth of a wave packet incident 
on the medium (z > O) at z ~ L is given by the 
factor 

[ 2 ( ,-2)] L v Au1L u2 
e-k;m ~ exp , 1-v 1-- .. 

2v (ui + u~) ui-

The growth can be large when 

(in this case Q <Ocr ~ 1/ T, v A/u1 

~ ( vAL/ s l ) ..J m/M « 1 ) . 
We have investigated the case in which the 
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thermomagnetic terms dominate the Alfven terms. 
We now consider the other limiting case v A 
» max ( ut, u2). For small values of k, in which 
case the 4v~ term is larger than the other terms 
under the radical in Eq. (3.4), the radical can be 
expanded 

w = ± kvA - ~ k [u1 + i (v + vm) k 

(3.19) 

It will be shown below that the instability arises at 
precisely those values of k for which the radical 
can be expanded. From Eq. (3.19) with wi = 0 we 
have 

(3 .2 0) 

The general analytic expression ki ( kr) is com­
plicated and is not needed to investigate the kind of 
instability. The asymptote of the curve Wi = 0 is 
known (3.5). We also know the behavior of the 
curve at small k (3.20). It then is easy to get an 
idea of the behavior of the ki curve as a function 
of kr for arbitrary k. The curve comprises two 
branches similar to the branches of a hyperbola. 
The asymptotes of the upper branch lie in the first 
and second quadrants while the asymptotes of the 
lower branch lie in the third and fourth quadrants. 
The upper sign in Eq. (3.19) and (3.20) corresponds 
to the case in which the minimum of the upper 
branch lies at ki < 0 while the lower branch is 
located entirely in the lower half-plane. Conse­
quently, in this case the wave propagates in the 
direction z > 0. For the lower sign (-) the max­
imum of the lower branch is located at ki > 0, and 
the upper branch lies in the upper half-plane. The 
wave propagates in the direction z < 0. 

When VA» max ( u 1, u2) only the convective 
instability is possible. This instability will occur 
if the smallest wave vector k » 2rr/L lies in the 
region I kr I < I u2 I/ ( v + vm); thus, for an insta­
bility to occur we require 

lu2 l/(v + Vm) ~ 2n/L, 

which is equivalent to 

2n ( 1 + v; ) ( QT + ~,}J/ ~ ~ 1. 

The minimum of the upper branch of ki ( kr) for 
wi = 0 with the ( +) sign in Eq. (3.19) and (3.20) is 
located at 

krm = - ~~eu_•----,-
2(v+ vm) ' 

u2 

k;m =- 4vA(v~Vm)' 

Wm = krmVA• (3.21) 

The maximum of the lower branch for the ( -) 

sign in Eqs. (3.19) and (3.20) is located at 

The relative width of the transmission poles 

v~ = ,. ((v+vm)VA 

I wml V 2u~z 

can be smaller than unity if 

The maximum wave growth is given by the factor 

Up to this point we have investigated various 
limiting cases of the parameters of the medium. 
We have shown that in the case v A » max ( lit, u2) 
there can only be an instability of the convective 
type; in the case VA« max (ut, u2) with fields 
Q < Qcr ~ T-J.[s] there can only be a convective 
instability and for fields Q > Qcr only an absolute 
instability. The transition from the convective to 
the absolute instabilities is independent of 'V'T so 
long as the limiting condition VA« max (lit, u2) 
is satisfied. 

In the general case, however, the transition 
points depend on the magnetic field as well as 'V'T. 
The transition points can be found by using the 
general dispersion relation (3.4) rather than the 
asymptotic expressions. The transition point 
must satisfy two conditions dw/dk = 0, Wi = 0. 
Furthermore, beyond the transition point the 
asymptote of the curve Wi = 0 must change to 
make the transition from Eq. (3.2) to Eq. (3.3) 
impossible. Using Eq. (3.4) we find two transition 
points from convective to absolute instabilities 
corresponding to the two signs in front of the radi­
cal in Eq. (3.4). For the upper sign ( +) with 

(3.22) 

where A > 0 is a function of the temperature, 
density, and magnetic field, the instability is 
convective; in the opposite case the instability 
is absolute 

A = 4 for Vm ~ v, 

(3 .23) 
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For the lower sign ( -) in front of the radical with 

u; - u~ + Bv'i > 0, (3.24) 

where B > 0, the instability is of the convective 
type; if the quantity in (3.24) is negative, the in­
stability is absolute. The quantity B assumes 
the values 1. 75 > B > 1.66 when v » vm, 

B = ;~ v: [ 1 + C'1:
1 n for Vm ~ v. (3.25) 

The actual transition from the convective to the 
absolute instability arises at the lowest values of 
the magnetic field and V'T given by Eqs. (3.22) 
and (3.24). 

4. INSTABILITY OF HYDRO- AND THERMO­
MAGNETIC WAVES IN A WEAK MAGNETIC 
FIELD 

In [t] the oscillation frequencies were calcu­
lated for various relative values of the character­
istic frequencies (the acoustic frequency Ws = ks, 
the Alfven frequency WA, the thermomagnetic fre­
quency WT = - cA 1kV'T) neglecting a number of 
terms that are small in weak fields. We shall 
see that the neglected terms can lead to an insta­
bility that leads to growth of hydro- and thermo­
magnetic waves. 

First of all we take WT « wK = Kk2, WA « Ws· 
The relative values of Ws and wK are unimpor­
tant for the excitation of the unstable Alfven wave 
(when WA » WT) or the thermomagnetic wave 
(when WT » wA). We now consider the remaining 
possible cases. 

1. When WA » wK the Alfven wave is stable; 
2. When wK » WA » WT we write w = WA 

+ !:!..wA where l:!..wA « WA· Eliminating v and T' 
from Eqs. (2.4)-(2.7) and making use of (2.8) we 
have 

[2!1w A- wT + i (v + vm) k2 ] H' - 2c ::. (HH') (kVT) 

- cA2{[kH'l(HVT) + [kH] (H'VT)} 

-[k(kH)-k2H]c~k~([kH']VT) + wAUzk(kH)- H] 
x {x~~~ ([kH'] VT)- 4n~s2 (H'H)} = 0. (4.1) 

In the case in which the electron thermal con­
ductivity K 1H/K ~ ~T « 1, using (4.1) we have 

2!1wA = 2 (l1w1 ± l1w2) = wT -i(v+vm)k2 

- c ( ;~. -A 2 + A1: 1 ) (k [HVTI) 

± cH (Az + A~l + 2 :;. r (k [HVT])2 

- [z :;. (k2HVT - (kH) (HVT)) 

+ A 2 (2k2HVT - (kH) (kVT))] 

x [A2HVT- ~~~1 (k2HVT- (kH) (kVT)) Jr'. (4.2) 

An instability arises when the expression in 
front of the radical is negative. The growth rate 
is a maximum when the vectors k, H and Y'T lie 
in one plane and the first term under the radical 
in Eq. (4.2) vanishes. We denote the angle between 
the vectors k and H by a and the angle between 
H and V'T by (3 and take account of the fact, as 
follows from the relation A + A2H2 = Ao (where 
Ao is the value of A for H = o) that aA/ilH2 

= - A2 (when ~ T « 1). Then 

(!1w2) 2 = -f-(cA2VT) 2k2H 2 cos a cos(~- a) {cos~ 

+ (A1x1/A 2x) [cos a cos(~- a)- cos~]}. (4.3) 

According to [B] A1 > 0, A2 < 0, K > 0, and Kt < 0 

and for singly charged ions KtAtfKA2 = 1.1. For 
a Lorentz gas K1 AtfKA2 = 1.95, that is to say, it 
is always true that 1 < K1AtfKA2 < 2. For a fixed 
(3 the maximum growth rate obtains when 2a - (3 
= 0, rr, 2rr, 2rr. When the angle (3 varies the maxi­
mum growth rate, given by (% )Ymax 
= ( 'l'4 ) ck HI A2Y'T I, is obtained when (3 = 0 if 
2a - (3 = 0, and 2rr and (3 = rr, if 2a - (3 = rr and 
3rr. Growth occurs if Ymax > ( v + vm) k2, which 
is equivalent to 

Y m/M kL (1 + Vm/v) < Q-r. 

In the other limiting case Kr » Ke (~h/kL) 

( s2/v~) 

2!1wA = wT- i (v + Vm) k2 

- ~rw: [kv)2 + c (z :~. -A2) 
l w. 

X (k [HVT])}±{f[':;[kvA]2 + c(z:;. +A 2 ) 

x (k [HVTJ)r- (cAz) 2 (kH) (kVT) (HVT)r-. (4.4) 

An instability arises if 

(4.5) 

If Eq. (4.5) is satisfied, the growth rate is a maxi­
mum when kH x V'T = 0, 2a - (3 = 0, rr, 2n, 3rr for 
a fixed value of (3. If the angle (3 is changed the 
maximum growth rate ( 'l'2 >Ymax obtains at (3 = 0 
if 2a -{3 = 0, 2rr, and at (3 = rr, if 2a -{3 = rr, 3n. 

3. We now consider unstable thermomagnetic 
waves. When Ws » WT » WA the stability does 
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not arise if the terms containing A= pBA/Bp + e-1 

predominate in Eq. (2.4), [taking account of Eq. 
(2.2) l as is possible when w;, » w~kUh, in 
which case terms containing A are negligible, the 
maximum growth rate Ymax = ckH I A2Y'T I obtains 
for the same directions of the vectors k, H and 
Y'T as in case (2) in which the electro thermal con­
ductivity predominates. Growth will occur when 

Ymax > ~'m~· 
In the case of radiative thermal conductivity 

K r » Ke ( s2 /vi) ( ~ T/kL) the maximum growth 
rate is the same as in the analogous case in (2) 
with the same orientation of the vectors. 

4. When wK » WT » ws » WA terms containing 
A are negligible and the results are the same as 
in the p'receding case. 

5. HYDROTHERMOMAGNETIC WAVES IN A 
STRONG MAGNETIC FIELD 

For strong magnetic fields characterized by 
VA« s, we need consider only the kinetic coeffi­
cients A, A2, and K2 and their derivatives with 
respect to H2, p and T in Eqs. (2.4) and (2.6) in 
the case of electron thermal conductivity. If the 
radiative thermal conductivity predominates in 
Eq. (2.6) only K will remain. 

In the first case the dispersion equation is 

W7 + iywx2W6 - (w~ + w}) W5 - iWx2W4 (w~ + YWh} 

+ w;w3 (2w~ - w}) + iwx2w~w2 (2w~ + wh) 

- ww;w~ - iwx2w;w~ = 0. ( 5 .1) 

Here we have introduced the following characteris­
tic frequencies: 

Wx2 = x 2 (kH) 2 , 

wh = - (ckA2} 2 (HVT)2 [ 1 + 2 [k!J 2 a~2 In ~:], 

w =- 2 erA ax, (kH) (HVT) (k [HVTl) 
n TaW ' 

w;,1, w;,2, w;.3 can be negative. For frequencies 

satisfying the relation wT « 1 the following 
ordering applies: 

The frequency WTt appears only in the form of a 
product WTtWK 2 ; evidently the frequencies wT2 and 
WT3 can be neglected in all cases of interest here. 
Inasmuch as the relations Ws » wA, wK2 » WTt 

hold the effect of Y'T on the spectrum is deter­
mined primarily by the ratio WTtiWA· 

We first consider the case in which wK 2 » ws 
»max (wA, WT 1). Then, retaining the 
w7 + iy wK2w6 terms in Eq. (5.1) we obtain the 

damped branch w = - iywK2• To find the other 
roots we must consider terms 

iywx2W6 - iwx2w;w4, 

which give isothermal sound waves w2 = w~ /y. 
For the remaining terms, by virtue of the relation 
wK2wT 1 » w?r2 ~ w~3 we neglect terms containing 
w and w3 and obtain an equation for the four hydro­
or thermomagnetic branches: 

(5.2) 

whence 

(5 .3) 

When wA » WTt we obtain the Alfven wave. 
When 

the most important correction to the Alfven wave 
is given by Eq. (5.3) and 

(5.4) 

When ~T » 1 we have a ln(AdK2 )/8H2 "'0. Thus 
the maximum growth rate for the Alfven wave 
ckH I A2Y'T I, obtains when H II Y'T. 

When WTt » WA, Eq. (5.2) gives four thermo­
magnetic branches 

These frequencies correspond to exponentially 
growing and damped waves. The maximum growth 
obtains when Y'T II H. 

We consider briefly other possible relations 
between the characteristic frequencies. If wK 2 

» WTt » Ws » WA, we obtain the damped branch 
with frequency w = - iywK2 as before, two thermo­
magnetic branches w2 = w?r 1, two isothermal 
acoustic branches w2 = w~ /y and two branches 
w2 = wA_ /w~ 1 . For another configuration of the 
frequencies Ws » wK 2 »max ( WA, WT 1) the spec­
trum separates into the two branches w2 = w~, 
w = - iwK 2; and four hydro- and thermomagnetic 
branches as in the first case. Finally, when ws 
» WA » wK 2 » WTt the spectrum does not contain 
thermomagnetic waves (terms containing Y'T 
only cause splitting) and the spectrum exhibits 
the usual form .[6 ' 7] 

We now consider in detail the case in which 
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the magnetic field is perpendicular to V'T and 
WTt = 0. In this case, if the thermomagnetic 
waves are to predominate over the galvanomag­
netic terms Eq. (2.8) must be replaced by the 
more stringent requirement 

(5.5) 

If this requirement is satisfied we obtain the equa­
tion 

W7 + irrox2 W6 - (ro~ + iyw}s) ro5 - iwx2W4 (ro~ + rroh) 

+ ro;w3 (2ro~ + iro}s) + iro;ro2w"2 (2w~ + w}4) 

- w~w~w (w~ +iro}s) - iwx2w~w~ = 0, 

where 

(5.6) 

wh = - c2 A1A2 (kVT) (k [HVT]) ( 1 + 2H2 0~2 ln A1), 

w}s = yc (kH)2 (kVT) [x1A2 - 3A1x2 - 2x2H 2 :~~]; 

w~4 and w~ 5 can be negative and of order 

Considering the same case as in the Eq. (5.1) 
and making use of the inequality w~ 5 « wTtwK2• 
we again obtain the acoustic branches and the four 
branches which are damped by thermal conduc­
tivity; when (ws, wK 2) »max (wn. WA) these 
satisfy the equation 

Whence 

When WA » WT4, we can limit ourselves to 
Eq. (5. 7) if 

Then we have 

Since A1 > 0, A2 < 0 and if one of the angles 

(5.7) 

(5. 8) 

(5. 9) 

/"'-. /"'-. 

( k, V'T ), ( k, [H x V'T]) is acute and the other is 
obtuse the frequency in Eq. (5.9) is real; however, 
if both angles are acute or obtuse an instability 
arises. The maximum growth rate occurs when 
the plane containing the vectors k and Y'T is per­
pendicular to H and the angle I ( k.V'T) I = 1r I 4. 

In the other limiting case the frequencies are 
given by 

w2 = w4 fw2 . 
3,4 A T4 ·' (5.10) 

The conditions for instability and maximum growth 
rate are the same as before. When wT4 » Ws we 
obtain the same four frequencies (5.10). 

6. CASE IN WHICH RADIATIVE THERMAL 
CONDUCTIVITY PREDOMINATES 

If Eq. (2 .8) is satisfied we obtain the dispersion 
relation 

w1 + iyw><2w6 - (w; - iywxw1'6) w5 - iwl<w4 (w;- rw}7) 

+ w;ro3 (2w~ - iw,wT6) + iwxwzw2 (2w~- wh) 

- f•'~W~Ctl {w~- iwxwT6)- iwxw;w1 = 0, (6.1) 

where 
wT6 = - cA2 (k [HVT]), 

wh = (ckA2) 2 (HVT) [2(HVT) - k-2 (kll) (kVT) 

+ 2k-2 [HVTJ2 (HVT) fJ In A2/fJH2 ]; 

wn ~ WT7 ~ wK/kU2T in order of magnitude and 
w~1 can be negative. 

If ( ws, wK) » max ( WA, WTs) the hydrothermo­
magnetic branches can be separated 

w4 + (1)3(J)T6- (2w~- Wh) w2- (J)(J)~WT6 + (J)~ = 0. (6.2) 

In the limiting case w A » WTs we obtain the 
Alfven waves. The correction to the frequency 
w = WA can be computed from Eq. (6.2) when 

The frequency is given by 

W=±wA-7(wT6 ±Yw}s-4wh)· (6.3) 

Since Im WTs = 0, the case most favorable for 
instability is that in which V'T is in the same 
plane as the vectors k and H. Introducing the 
same angles as in Sec. 4 we have 

(!) = ± W A ± + Y max Jf- COS ex COS ~ COS (~ + ex), ( 6 .4) 

where 

For a given {3 the growth rate is a maximum 
when {3 + 2a = 0, 27!" for I {3 I < rr/2 and for 
{3 + 2a = 1r, 3n when I {3 I > rr/2. If the angle {3 is 
changed the maximum growth rate, ( 1/ 2) 'Ymax• is 
obtained when {3 = 0, 1r (in this case we also have 
a = 0, 1r ). If WTs ~ wT 1 » WA then 

w3,4 = (w~/2wh) (wT 6 ± Y ffi}s- 4roh). (6.5) 

Growth occurs under the same conditions as in the 
preceding case, differing from that considered in 
Sec. 5 in that growth occurs for the traveling wave 
when WTs"' 0 

H' = H~eyt sin (kr- wt), 
rather than 
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Finally, when WTs » ws the hydrothermomagnetic 
waves are again obtained in the form in Eq. (6.5). 

The general result is that when 1"27 » 1 thermo­
magnetic waves exist when WTt ~ wn ~ WT7 
» w A; this condition is equivalent to 

s2 M 
L~-Q-. 
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