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The relation between the Fermi energy and number of particles is extended to the case of a 
gas in a potential well with a diffuse edge. The results are employed to calculate the bound
ary Fermi energy of neutrons in heavy nuclei accurate to ~ 1 MeV. The mean distance be
tween the levels and the nuclear surface energy are calculated, using the optical-model po
tential, for the last elements of the periodic table. 

1. INTRODUCTION 

THE boundary energy Eo of a Fermi gas in a 
potential well can be connected with the number 
of its particles N. In order to obtain this depend
ence for a spherically-symmetrical potential in the 
form 

U = U 0 j [1 + e-a(r-Rl], (1.1) 

we shall derive in Sec. 2 a quasiclassical condition 
for quantization and use it in Sec. 3 to obtain the 
first two terms of the expansion of N( Eo) in the 
dimensions of the system for this potential. 

It can be shown ll that the coefficient preceding 
the value of the surface S in the second term of 
the expansion of N( Eo) is connected with the sur
face energy and does not depend on the form of 
the system, provided the curvature is proportional 
to v-113 or to S - 112 , where V is the volume of the 
system. The method presented makes it possible 
to carry out similar calculations for any potential 
well with a diffuse edge. 

Specific calculations of the neutron Fermi en
ergy for heavy nuclei are given in Sec. 4. The 
corrections obtained to the fundamental formula 

(1. 2) 

increase the energy of the Fermi boundary of the 
nuclei by 25% and decrease by 10% the average 
distance between the nucleon levels of the nuclei 
at the end of the periodic table, in agreement with 
experiment. 

An expansion of N( Eo) was obtained previously 
[ 1] for a well with infinite walls, and our formula 

l)We are grateful to Academician Ya. B. Zel'dovich for sup
plying us with this unpublished result. 

(3.8) goes over into this expansion as a- oo and 
Uo- oo. 

2. EFFECTIVE BOUNDARY CONDITION 

We shall seek the quantization condition in the 
potential (1. 2) for aR » 1. In the region 

(2.1) 

the quasiclassical radial functions of free motion 
should coincide with the asymptotic expression for 
the exact solution near the discontinuity of the 
potential. 

We neglect the variation of the centrifugal po
tential in the radial Schrodinger equation, ( intro
ducingthereby a relative error~ (R-r)/R): 

--- + ki- x(1l (r) = 0. { d' • p' } 
dr' 1 + e a(r R) 

Here 

ki = 2Me- l (l+ 1)/R2 :::::::: 2Me- 'ANR 2 , 

Its solution is (see, for example, [ 2]), 

(2.2) 

X(ll(r) = Ae-><(r-R) F ( x + ikl x- ikl 1 -1- 2x 
C(. ' ex. ' j ct.' 

_ e-a(r-R)) , 

(2.3) 

where K = -J p2 + kz , and has an asymptotic value 

x(ll(r) ___. B sin [kz (r - R) + cp ('A.)}, (2 .4) 

k1 (x + ik1 \ cp ('A.)=- arc sin- + 2 arg l1 -- 1- arg IT 
P cr ' 

( 2i~l ) 

J[ (z) = r (z + 1). (2.5) 

On the other hand, the quasiclassical solution is 

c ( ;\·--.; 1.2 :rr) 
x(2l(r) = 17 sin .l v :2i1Je- ;;2 dr + 4 ' 

To 

(2.6) 
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r 0 = A/ .J 2ME . Writing in (2.6) 
r R 

~ l '2ille- 'A2 jr2 dr ~ ~ V 2llle- 'A2/r2 dr + (r- R) k, 

r, 'o (2. 7) 

and comparing (2.5) with (2.6) we get 

V z;l-- 'A2 - 'A arc cos ('A!zn1,) = n(n- ~) + <p ('A), (2.8) 

where 

n = 1, 2, ... , 

'A= lf2, 3f2, 5f2, ..• 

As will be shown below, the inaccuracy of condi
tion (2. 8) does not affect the corrections of inter
est to us. 

3. CALCULATION OF € 0(N) AND OF THE SUR
FACE ENERGY 

With the aid of the obtained quantization condi
tion we now determine the number of states with 
energy below the Fermi boundary 

),=Amax 

N = 2 ~ 2'A = 2 ~ '2'An('A), Zn/, < z0 ==: k0R. (3.1) 
n,l. ),=If~ 

Here n( i\.) is the number of levels with given i\.; 

in our notation n ( i\.) is the number of the last 
level below the Fermi boundary. 

Taking into account the monotonicity of the left 
half of (2. 8) with respect to Zni\.. we find that n( i\.) 
= E [ x ( i\.)] -the integer part of x ( i\.), determined 
by the expression 

, v--Jt [x ('A)- 4l = z~- 'A~- 'A arc cos ('A/z0)- <p ('A). (3.2) 

The same equation determines also the inverse 
function i\. ( x ) . 

The summation in (3 .1) is carried out up to a 
i\.max such that there still exists one level below 
the Fermi boundary, i.e., n(i\.max) = 1. Obviously, 

A max = A ( 1) + 0 ( 1) · 

In calculating the sum (3 .1) by the Euler
Maclaurin formula (see [3]) 

m m 

(3.3) 

~f(k)=~ f(t)dt +i[f(m)+f(O)l+···· (3.4) 
k~o o 

which in this case gives series in powers of z01, 

it is sufficient to confine oneself to the integral 
),max 

N = ~ 4'AE[x ('A)] d'A. 
ij2 

(3.5) 

To calculate the integral in (3.5) we make use of 
a formula that can be derived by induction: 

": ": E(x) n 

~ \jl(t) E(t) dt = E(x) ~ \jl(t) dt - ~ ~ \jl(t) dt. (3. 6) 
0 0 n=l 0 

Then (3.6) transforms to 
m=E[x(o)] 

N = L; 2'A2 (m), (3. 7) 
ffi=l 

and using (3.2), (3.3), and (3.4) we obtain for the 
number of particles 

k~ V k~S k~S C ('A )2 d<:p ( 'A ' 
N = 3n2 - ---slt + 2n2 ,\ z; d ('A/:0) d z;) · (3. 8) 

0 

(Formula (3. 8) can be obtained in a different man
ner, by noting in (3. 5) that x - E ( x) oscillates 
rapidly with an average value %. and replacing 
E ( x) by x - %. Integration by parts again yields 
(3.8).) 

It is seen from (3. 8) that to obtain the "surface" 
corrections it is sufficient to know rp ( i\.) in the 
zeroth approximation in 1/z0. We can now esti
mate the influence of the errors in the quantiza
tion condition. We begin with the error of the 
quasiclassical approximation: 

1-(1) /,(1) 

bN ~ \ (. dli.nl-) 'Ad'A - \' f.. 3d f.. •;, 
""".) dr ,r=R J (z~-";..2)3/2-Zo • (3.9) 

0 0 

Here itni\. is the de Broglie wavelength and i\.( 1) is 
determined from (3.2) with x = 1 in the form 

'A (1) = z0 - + (9n/4)'1• zci' +· .. (3 .10) 

Expanding in (2.2) the centrifugal potential to 
the next term, and introducing the corresponding 
corrections in condition (2. 8), we see that in the 
optimal case, when the "joining together" is in 
the region R- r ~ cv-1 ln cvR, the error in the 
number of particles is smaller in order of mag
nitude than z~/4 . The same can be said concern
ing the errors due to the use of the asymptotic 
expression (2.5) and due to the next terms in the 
expansion (2. 7). Thus, the next term in the ex
pansion (3.8) has an order of magnitude not higher 
than z6 13 . 

From (3.8) with rp(i\.) from (2.5) we obtain for 
the boundary energy E 0 and for the total kinetic 
energy E the asymptotic formulas 

ko 

E - li.2 (' k2 dN dk - 3 N + S 
- 2M.\ dk - o eoo a ' 

where 

£ 00 k~ { \ [ k00x o = - 16 2 1 + 16 \. (x3 - x) arc sin --
n . .. P 

0 

(3 .12) 
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The distance between the levels dE 0 /dN is ex
pressed directly in terms of the phase cp ( k0 ) in 
the form (y = k00 /p). 

de0 2n2eo [ S ( n . 
dN = - 3 - 1 + kV 4 arcsmr + arg 

k0V oo 

n2 ( 6eiarc siny) ) J . 
n (2i6r) 

(3 .13) 

The integrals in (3 .11) and (3 .12) can be calcu
lated in the limiting cases of large and small 
o = p/ a, using the known expansion (see [ 4] ). 

The first of these expansions (the Stirling for
mula) yields even for o ~ 1 a relative error 
~ 0.1% in (3.14). We obtain here 

4S 1 (1- 2)'/, } 
_ll<l_ == 1 _L -{--In (2r)- 1 arc sin r 
e00 

1 32V ~ 13 

(3.14) 

4eook~ [ 6 (1- r•)'l•'arc sin r 
0 = 15n2 r• 

r 5 76 6 l 
- r In (Zr) -- 126 + 486r + 3r - rs J · 

Formulas (3.14) and (3.15) do not hold for a rec
tangular well. 

Going to the limit in (3 .11) and (3 .12) as a - oo , 

we then get 

Eo S [n ( 1 ) . V 1 - r'J Eoo = 1 + k,x,V 4 - 1 - 2r• arc Slll y - _2_1_ ' 

(3 .15) 

4. CONCLUSION 

Regarding nucleons as a Fermi gas in a poten
tial (1.1), we can apply the results obtained to the 
calculation of the energy of the Fermi boundary of 
nuclei. The universality indicated in the introduc
tion enables us to compare with experiment the 
Fermi energy and the average distance between 
levels also for deformed nuclei. 

The formula (3.14) for the Fermi energy can 

be represented in the form (we assume U0 

(80-56)N/A MeV and a= 1.55 x 1013 cm-1C5J) 

eofeoo = 1 + k'/, j (NIA), (4.1) 

where f(x) is given by the following table: 

X= 0.50 0.52 0. 54 0. 56 0,58 0.60 0.62 
j(x)=1.74 1.71 1.51 1.50 1.40 1.34 1.20 

X= 0.64 0.66 0.68 
f (.x~) = 1. 13 1. 00 0. 90 

For the end of the periodic table the distance 
between levels dE 0 /dN is of the order of 0.17 MeV, 
which is 10% smaller than the distance between the 
levels in the infinite system. The Nilsson scheme 
gives dEo /dN ~ 0.13 MeV. The surface tension as 
obtained from (3.14) is uS/N ~ 6 MeV for a per
unit "volume" energy Evol/N =% E00 ~ 21 MeV. 

For A.<: 200 the error of (4.1) can be assumed 
to be 1-2 MeV. Within the limits of such accuracy, 
the order of magnitude of Eb(N,A) = U0(N,A) 
-E(N,A) for the chosen type of U0(N,A), as 
given by (4.1), agrees with experiment. For ex
ample, for N/ A~ 0.6 and A ~ 200 we obtain 
from (4.1) Eb ~ 4 MeV, whereas the experimen
tal value is ~5-6 MeV. 
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