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Processes determining the conductivity of strongly compressed matter are considered for 
various temperatures and densities. It is shown that in: the solid modification of strongly 
compressed hydrogen, which possesses a closed Fermi surface, the conductivity is much 
greater than that of solid modifications of other elements. The conductivity of various 
liquid modifications of strongly compressed matter is also considered, as well as the 
conductivity under conditions when the electrons are ultrarelativistic. 

IT was shown earlier[1, 2] that at high degrees of 
compression, when the interatomic distances are 
much smaller than the Bohr radius, matter should 
be in the solid state, provided that the temperature 
is not too high. An exception is hydrogen (and pos­
sibly helium), which at very high compressions can 
experience a transition into a quantum liquid remi­
niscent of superfluid helium [2]. The transition to 
the liquid phase occurs also at temperatures which 
exceed the lattice binding energy per atom (of the 
order of e2p0, where Po is the Fermi limiting 
momentum); with different cases may be realiz­
able here, since both the electrons and the nuclei 
may be in degenerate and nondegenerate states. 

If we recognize that the conductivity in the solid 
phase and in different temperature intervals is de­
termined by different electron scattering processes, 
it becomes clear that the conductivity of strongly 
compressed matter can change quite appreciably 
with temperature and with density. The present 
article is devoted to a study of these processes. 
We confine ourselves to a determination of the 
order of magnitude of the conductivity, and con­
sider for simplicity light elements · ( Z - 1 ) . 

1. SOLID PHASE 

A. Scattering by impurities. As always, at the 
lowest temperature the most significant is the 
scattering of electrons by impurities and lattice 
defects. In the case considered here, such defects 
are charged. Consequently, the scattering proba­
bility has an order of magnitude 

Wimp~Nimp~ (p! p )• (1 -cos fl) {) (e- e') cflp', 

A 
where e = (p, p') and Nimp is the number of de-
fects per unit volume. 

The limits of the resultant logarithmic integral 
are the reciprocal De bye radius K - epfl m 112 and 
Po = ( 37r2NZ ) 113, the Fermi limiting momentum 1). 

Taking the integral, we get 

(1) 

Substituting in the equation for the conductivity 

(2) 

we obtain 

(3) 

The lower limit <Timp is attained when Nimp - N. 
We thus obtain 

(4) 

B. Scattering of electrons by electrons. As the 
temperature increases, other electron scattering 
mechanisms come into play, primarily scattering 
of electrons by electrons. Here, however, we must 
recognize that, as is well known (see [3]) contribu­
tions to scattering are made only by collisions with 
Umklapp. On the other hand, if we assume in the 
zeroth approximation a plane wave function for 
the electron, then the Coulomb interaction of the 
electrons will not lead to any Umklapp. 

In view of this, we must consider the next ap­
proximation of the wave functions, namely 

,,(o) 
- <o> 4 2ZN '5: 1 "'P-K 

'ilp - 'ilp + Jle ..:...1 i(2 e (p)- s {p- K) ' 
K,to 

(5) 

where K is the reciprocal lattice vector. It is nec­
essary that the second term of one of the wave 
functions (5) contribute to the matrix element of 
the electron Coulomb interaction energy. 

11iere and throughout we use units for which fl = 1. 
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Recognizing that processes with different Um­
klapps do not interfere, we have 

W- \ ~ [ e• ~ e•N ]2 F n .) f (Pl- p~- K)• 7 K" (e (p)- B (p, ± K))• ( ) 

x 6 (81 + 8 2 - 8~- 8~) d3p~d3p2 , 

where Pi denotes all four momenta participating 
in the process, and the sign in front of K is taken 
with allowance for the conservation law p1 + p2 -Pi 
- P2 - K = 0. The function F ( n) is a known form 
of Fermi equilibrium functions. 

The presence of F ( n) together with o ( E 1 + E 2 
- Ei - E2) causes all the integrations to be over 
vicinities of the Fermi surfaces. We can separate 
from the integrals with respect to d3pJ. and d3p2 
the integrals with respect to the energies, which 
yield the factor (T/EF)2, where EF = pV2m. The 
remaining three integrations pertain to the possible 
angles between the momenta Pi with allowance for 
the fact that each has an absolute value Po and that 
they satisfy the conservation laws P1 + P2 -Pi - P2 
= K. 

In the case of hydrogen none of the denominators 
E(pi)- E(pi -K) can vanish if the Pi lie on the 
Fermi surface (see [4J). In view of this we have 

Substituting (6) in (2) we get 

The lower limit of ae,H is obtained at a tem­
perature corresponding to destruction of the lat­
tice, T "' e2 /r "' e2p0• We therefore have 

(6) 

(7) 

(8) 

Comparing with (3), we find that if the defect 
concentration in hydrogen is 

Nimp/N ~ (e2m!N'1')4 - (e2/v) 4 (9) 

( v = Po /m), then the electron scattering does not 
play any role in the conductivity. We recall that 
the condition e2/v « 1 is precisely the starting 
point of all the calculations (see [2 J). 

Starting with helium, the Fermi sphere can 
cross the boundaries of the Brillouin zone. Con­
sequently, the differences E (Pi ) - E (Pi ± K) can 
vanish. The most "dangerous" case is when for 
some K we have E(pJ.) = E(pi + K), in other words, 
I Pi + K I =Po· In the case of a common direction 
p1, the other denominator p1 - pJ. - K cannot vanish 
here. 

The scattering probability acquires an integral 
of the type 

~ (I P~ + K I- Pot2 d I P~ + K 1-

This integral diverges, and to estimate it correctly 
it is necessary to recognize that the form of the 
energy changes in the vicinity of E( p) = E(p + K). 
This leads to cutoff of the integral at E ( p) 
- E(p+K)"' e2N/K2. Taking these remarks into 
account we obtain for Z ~ 2 

Substituting the upper temperature limit, we 
obtain 

(12) 

The electron scattering will be insignificant if the 
defect concentration is 

Nimp ( e•m )3 ( e• )3 -~- -·-N N~ v • 

C. Scattering by phonons; high temperatures. 
As is well known [12], the De bye frequency is of 
the order of 

- "1 /4nNe2Z2 N'I'!M'/, Wn ~wo - V M ~e . (13) 

when T » w0, the principal role is assumed by ab­
sorption and emission of phonons with momenta on 
the order of the reciprocal lattice period, and the 
corresponding Bose function yields a factor 
[ exp ( w0 /T) - 1]-1 ~ T I w0• 

In an earlier paper [4], the author obtained the 
matrix element for the emission or absorption of 
a phonon. Its order of magnitude is 

e2 (k + K)a "1 j-N­
V - (k + K)2 + x2 Jl Mw (k) . 

Consequently, the probability of phonon emission 
or absorption is of the form 

w. ~',,2 T "( ')d3k e• N T P~ e2m T 
phT;>co ~ v -u 8 1 -8 ~------- , 

• • Wo p~ Mwo Wo p~/m Po 

hence 

Substituting the upper temperature limit T 
"' e2p0, we obtain -

N apv e2m2 • 

(14) 

(15) 

(16) 

Comparing with (3), we see that when the defect 
concentration is Nimp /N « 1 and the temperature 
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is sufficiently high, the principal role is assumed 
by the scattering of electrons by phonons. 

D. Scattering by phonons; low temperatures. At 
low temperatures T « w0 the situation for hydro­
gen is again radically different from that for all 
other elements. As is well known (see [3J), to 
obtain a finite resistance in the case of scattering 
of electrons by phonons, it is necessary to take 
Umklapp into account. But at phonon momenta k 
~ T/u « p0, where u is the velocity of sound, the 
condition p + k - p' = K cannot be satisfied if p 
and p' lie on the Fermi surface and this surface 
is closed. This is precisely the situation in hy­
drogen. Thus it is necessary that k not be small, 
or else that either of the vectors p or p' not lie 
on the Fermi surface. This leads to the appear­
ance of exponentially small factors. Since for a 
given momentum the phonon energy is smaller 
than the electron energy, phonons with large mo­
menta are more likely and this gives an exponen­
tial factor in the form exp [ - aw0 /T] (a ~ 1). 

The complete expression for Wph,H, T«wo and 
Uph,H, T«wo is obtained from (12) and (13) by sub­
stituting exp ( - aw0 /T ) for T I w0• As a result we 
have 

W ph, H. T<w, ~Olo (e2fv) e-a.wofT' 

a ph, H, T<w, ~(M'1'N'1•Jem2) ea.w,;r, (17) 

Here, however, we must bear in mind the follow­
ing. The calculation performed applies to the case 
when there are no processes other than Umklapp 
to disturb the momentum conservation law. Actu­
ally this is not so. The presence of lattice defects 
leads to phonon scattering in which the momentum 
is not conserved. This question deserves a 
more detailed analysis. 

As is well known [3], the absence of resistance 
with momentum conservation is connected with the 
fact that there exists in this case for the additions 
to the distribution function a solution which causes 
both collision integrals to vanish, in the form 

where 

/'me= ne (1 - ne) fe, 

~nph= nph(l +npl!) {ph, 

( c is a constant). 
We now take into account the scattering of the 

phonons by impurities. Then the equation nph = 0 
can be arbitrarily written in the form 

Wph, e (/ph+ fe- /~) + Wph, imp /ph= 0, (18) 

where Wph,e and Wph,imp are the probability of 

the scattering of a phonon by the electrons and by 
the defects, and fe and fph are unknown functions. 

The collision integral in the electron equation is 
written in the form 

We,ph(/e- f~ + f pb)· 

Substituting fph from the preceding equation, we 
find that the collision integral of the electron equa­
tion assumes the form 

It follows therefore that as Wph,imp/Wph,e- 0 
this collisivn integral vanishes, while in the op­
posite limiting case it assumes the same form as 
for equilibrium phonon distribution. 

Let us find the probabilities Wph,e and Wph,imp· 
The former is obtained from the same matrix 
element that was used to derive formula (14) (in 
this case K = 0 and k « K ). We thus have 

\\7, e~ e4k --.!i_ ~ ~ T VmM Pg ~ e2T VmM 
pb,1 X 2 p~/m e'pom Po p~m Po (20) 

(we have substituted here k ~ T/u, u ~ p0 // Mm ). 
To find Wph,imp we expand the interaction en­

ergy of the nuclei with charged defects in powers 
of the displacements of the nuclei, up to second 
order terms. The corresponding matrix element 
will take the form 

exp { i (k1- k,) R1 }(k1- k,)" (k1- k2)~ N 

(k1- k,)2 + x• [N Mw (k1)]';, [N Mw (k2)j'i• 

( Ri is the coordinate of the impurity atom ) . From 
this we obtain without difficulty the phonon-impurity 
scattering probability 

. e4k4 k3 , e4T 4 1 (mM)'/, 4 
~h. imp- x•M'w• (k) w (k) Aimp'~ u?x•M• Aimp~ Nimp-----;;r- T . 

(21) 
We now find Wph,e /Wph,imp· According to (20) 

and (21) we have 

(22) 

The smallest value of this ratio occurs when Nimp 
~ N and T ~ w0• Therefore 

Thus, according to (19), we find that the role of 
the electron-phonon scattering probability can be 
assumed by the quantity We,ph (Wph,imp /Wph,e) 
provided it is larger than the probability of scat­
tering with Umklapp (17). 

The quantity W e,ph is the probability of the 
scattering of an electron by equilibrium phonons. 



1402 A. A. ABRIKOSOV 

Using the matrix element V, we can write for the 
collision integral 

Choosing fe in the form Cpz ( z is along the field 
direction), we obtain 

Thus, recognizing that k « K, we get 

e'Nk2 k2 ka rsm2M2 w h~-----~ (23) 
e.p Mrox4 p2 kpofm p~ 

The sought-for scattering probability takes the 
form 

W TBm3M 3N· W ·ph. imp Imp 
e,ph--- ~ 16 2 

~h.e Po e 

This value reaches its maximum when T "' w0, 

hence 

A comparison of this quantity with (1) shows 
that it amounts to (e2m/vM)Wimp «Wimp· This 
means that the account of relaxation of phonons on 
the impurities in hydrogen certainly does not make 
any noticeable contribution to the conductivity. 

Let us make one more comparison, of (17) with 
(6) for T "' w0. We have 

This means that in the temperature region T "' w0, 

the phonon scattering mechanism prevails over the 
electron mechanism 2>. Thus, when T « w0 the 
conductivity is determined by the smallest of the 
quantities (3), (7), or (17). 

E. Scattering by phonons; low temperatures; 
Z =::: 2. The situation is different when Z =::: 2. In­
asmuch as the Fermi surface crosses the borders 
of the Brillouin zone, Umklapp is no longer forbid­
den at low temperatures. To estimate the conduc­
tivity we assume that the additions to the distribu­
tion functions are of the form [3] 

c'lnph= nph(l + '\>~ fph, c'lne = ne(l - ne) fe, 

where fph= ckz and fe = c1mve.z ( c and c1 are 
constants ) . The function fe is chosen in this form 
because it must be periodic in the reciprocal lat-

2)It is easy to see that this conclusion remains valid also 
when Z:) 2. 

tice and continuous. If we were to use the phonon 
kinetic equation to express fph in terms of fe, 
then this equation would be satisfied for c = c 1, 

were it not for the vicinity of the border of the 
Brillouin zone. 

Two cases are possible. If the phonon momen­
tum k"' T/u exceeds the interval of e2p0 /v in 
which the form of the electron energy varies no­
ticeably near the Brillouin zone, then we can neg­
lect the variation of the energy. In such a case the 
electron velocity changes at the point of inter sec­
tion of the Fermi surface with the Brillouin zone 
from p/m to (p -K)/m, that is, by an amount of 
the order of p0 /m. Thus, if the electron crosses 
the border of the Brillouin zone on absorbing a 
phonon, then fe - fe "' c 1p0. 

Since the intersection of the Fermi sphere with 
the border of the zone is a circle with a radius of 
the order of p0, the effective section of the area 
at which the electron passes through the border 
has a relative dimension k/p0• 

In the case when T/u « e2p0 /3, it is necessary 
to take into account the change in the electron en­
ergy near the intersection. As is well known, in 
this case 

81,2 = + [8 (p) + e (p - k)J 

=F{-~[8 (p)- 8 (p- k)P + U2}'1•, 
(24) 

where U is in this case equal to 47TZ 2e2N/K2• The 
normal component of the velocity obtained from 
this, in the momentum region about e2p0 /3 from 
the border of the Brillouin zone, is of the order of 
sp~ /m2U, where s is the distance to the border. 
Consequently, fe - fe "' c1k/ ( e2 /v). But since rela­
tive order of the corresponding section of the sur­
face is "' e2 /v, we again find after integrating over 
the electron momenta that the vicinity of the inter­
section makes a contribution of the order of c 1k. 

Thus, the near vicinity of the intersection of 
the Fermi surface with the border of the Brillouin 
zone makes in both cases an addition to the func­
tion fph which is of the same order as the far part. 
It follows therefore that the constants c and c 1 in 
the functions fph and fe are of the same order but 
not equal. As already noted, if we substitute these 
functions into the electron collision integral with­
out account of Umklapp, then the integral vanishes 
if c and c1 are equal. 

On the other hand, if these constants are differ­
ent, then a situation close to that for equilibrium 
phonons arises, that is, close to that for fph = 0. In 
this case the collision probability is given by (23), 
and the corresponding value of the conductivity is 
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(25) 

It must be noted that as T- w0 formula (25) 
gives a limiting value 

whereas formula (15) gives as T- w0 the larger 
value 

This seemingly surprising circumstance is con­
nected with the form of the spectrum of the longi­
tudinal phonons, which reaches the limiting value 
w0 not for k ~Po but for k ~ K (see [2J). 

In the derivation of (25) we considered phonons 
with w « w0, that is, k « K. Thus, in the limit as 
T - w0 we obtain the contribution from scattering 
by phonons with k ~ K. At the same time, (15) 
takes into account the contribution of phonons with 
k ~ p0• It follows therefore that even below the 
Debye temperature the scattering of the electrons 
by the phonons with k ~ Po will be appreciable in 
some interval. The corresponding value of the 
conductivity is given by (18). Only at these tem­
peratures, when the conductivity exceeds the value 
given by (15), do phonons with k « K begin to play 
the principal role. 

F. Total resistivity. The complete expression 
for the temperature dependence of the resistivity 
is of the form 

p = Az (N) Nimp+ Bz (N) T, T ~wo, 

P = A1 (N) Nimp+ C1 (N) e-"-•"'•1r + £ 1 (N) T2 , 

Z = 1, T<w 0, 

p = Az (N) Nimp+ Cz (N) e-a.zwofT + D z CN) ys + Ez (N) T2 , 

where w0 = -./ Ne2z2/M and az ~ 1. The density 
dependence of the coefficients A, B, C, D, and E 
is given by formulas (3), (7), (11), (15), (18), and 
(25). 

According to the foregoing, when Z ~ 1 all the 
coefficients Az, Bz, Cz, Dz, and Ez are of the 
same order when Z ~ 2, but for hydrogen the co­
efficient E1 is of the order of e2 Ez~ 2 /v, and the 
coefficient D1 vanishes. 

2. LIQUID PHASE 

As noted in the beginning of the article, strongly 
compressed matter can be in the liquid state either 
at sufficiently high temperatures and large binding 
energies per atom, that is, when 

(26) 

or as a result of very large compressions, when 
the zero-point energy exceeds the binding energy, 
that is, 

(27) 

Incidentally, as explained in [2 J, the latter occurs 
only for hydrogen and possibly for helium. 

The liquid phase is a mixture of two liquids, 
electronic and nuclear, each of which can be de­
generate. The degeneracy occurs at temperatures 
which are lower than p5fm and pij/M, respec­
tively. 

A. Electrons and nuclei degenerate. We assume 
that condition (26) is satisfied and at the same time 
the nuclear liquid is degenerate, that is, 

p~jM~T~e2Po· 

From this it follows directly that condition (27) is 
satisfied, something which we shall assume can be 
realized only in hydrogen. Consequently, it is suf­
ficient to consider only one case of degenerate nu­
clei, that of Fermi nuclei. 

Let us find the probability of electron scatter­
ing in this case. The degeneracy of the nuclei 
leads to a limitation of the phase space for the nu­
clear recoil momenta and gives a factor ( TM/p~ )2• 

In all other respects the situation does not differ 
from the case considered above, that of scattering 
by defects (if we assume Nimp ~ N). Thus, we 
have 

Wdd ~ Ne"m (_I_-)2 ln ~ ~ e"mM• PIn.!!.! , 
pg p~/M X p~ x (28) 

N'f, 
add~ , . (29) 

M 2m2e2P In (N 1•(me2 ) 

B. Electrons degenerate, Boltzmann nuclei. At 
higher temperatures we get Boltzmann nuclei but 
the electron may remain degenerate. For this pur­
pose we need 

In this case the scattering of the electrons does 
not differ at all from the scattering by impurities, 
and as a result we have 

W 4 1 Po 
db~e m n ;z-, (30) 

(31) 

C. Boltzmann electrons and nuclei. Finally, at 
temperatures T » pij /m, the electron degeneracy 
is also lifted. For nondegenerate electrons for­
mula (2) remains in force, as before. The scatter­
ing probability is in this case equal to 
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wbb~ _e'_N _ __ p3-ln _P_~ -~e'_N~ I v mT 
P' p2Jm X r'l•m'f, n -X- , 

(32) 

(33) 

(we have substituted here p ...... ,; m T and K 

...... e,; N/T . ) These results are well known and are 
cited here for completeness. 

3. RELATIVISTIC ELECTRONS 

In conclusion we note the following circum­
stance. In the entire calculation we have assumed 
that the electrons are nonrelativistic, that is, 
p »me. This condition does not correspond very 
well to formula (27) [ and consequently casts a 
shadow on (28) and (29)]. Indeed, according to (27), 

Po';;;;;> e2 M = (e2 Mfem) em;;;: em. 

It is therefore of interest to ascertain the changes 
for the ultrarelativistic case, when momenta p 
» me are significant. 

If the relativistic situation is due to large com­
pression, then the corresponding momenta are ob­
viously limited by the nuclear dimensions p < 103 

em - 1• This corresponds to energies E/mc2 ...... p/mc 
< 103• But at these energies, processes like brems­
strahlung or pair production by electrons have rel­
atively low probability. In view of this, the conduc­
tivity will be determined by the same collision 
processes which were considered previously. The 
only difference will be the replacement of the elec­
tron energy p2/2m by cp. Of course, all this may 
become incorrect at very high temperatures, but 
we shall not consider this case. 

The general formula (2) for the conductivity re­
mains the same, provided we write it in the form 

cr .-Ne2 llp, (2') 

where l ...... CT is the range and p ...... Po in the degen-

erate case or T/c in the Boltzmann case. In addi­
tion, we must take into consideration the fact that 
the velocity of sound is u ...... ,; cp0 /M and K ...... p0e/ 
rc '.so that UK ...... Wo. As a result we find that the 
entire change in the formulas reduces to replace­
ment of the electron mass by p/c . 

In the solid phase which, as before, is realized 
when T < e 2/p0, we haye 3> 

a~mp e2N'1'/e2NimrJn (e/e2), 

a:. H .-Ne6le6T2, 

a~,z;;.2 --Ne5/e4T2 , 

' N'1• 2/T <Jph.T~ooo ,_ e ' 
· -- (N'1• M'1'e2 /e)erJ."'ofT C!ph, H, T<ooo ' 

, N''• a 2fM2T5 Clph,Z;;;,2, T-<:oo0 ~ e e · 

for the liquid phase we get 

(3') 

(7') 

(11') 

(15') 

(18') 

(25') 

a~d-- N'1'c2/M?T2 In (c/e2), T < p~fM, (29') 

o~b~N'1• c2/e2 ln (c/e2), p~IM<T<ep0 , (31') 

a'bb--cT/e2 ln (P/e2eW), T';;;;>cp0• (33') 

3lAs in the nonrelativistic case, (25') is valid only at the 
lowest temperatures. The complete formula for the conductivity 
in the case when Z ~ 2 and T << w0 is of the form a= (a"1

8, 
-1 )-1 ( 1 ) 

+ a(2S'J • 
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