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Magnetoplasma electromagnetic waves with frequencies 9.5 and 25 Gc propagating in bismuth 
at helium temperature and in a magnetic field of 0.5-10 kOe are investigated experimentally 
and theoretically. The qualitative characteristics of the waves are related to the energy spec
trum of the current carriers in bismuth. 

THE possibility of the propagation of electromag
netic waves inside a metal situated in a constant 
magnetic field has been the subject of many recent 
papers [1-1 1] • In examining this question a distinc
tion must be made between metals having equal 
and unequal densities of oppositely charged car
riers. In the case of inequality, an electromagnetic 
wave with dispersion w ""' k2H can propagate in the 
metal, attenuating slightly if nT » 1 (n = eH/mc
cyclotron frequency) [1, 2]. There are several re
ports of experimental investigations of waves of 
this type [2-sJ. 

In the case of equal carrier densities, the situa
tion is different. As shown by Kaner and Skobov [TJ, 

the dispersion of electromagnetic waves propagat
ing in such a metal takes the form w ~ kH, and 
their attenuation is small when wT » 1 (w -fre
quency of the wave). These conditions are satis
fied by pure bismuth at low temperature. Observa
tion of such waves in bismuth is facilitated by the 
high value of their velocity v ~ c n/wpl (this rela
tion will be derived below); the bismuth plasma 
frequency, on the other hand, is Wpl ""' 1013 , which 
is two orders of magnitude smaller than Wpl for 
ordinary metals. Indirect confirmation of the exis
tence of such waves is contained in [8-to~. Direct 
experimental observations of standing electromag
netic waves in plane-parallel bismuth crystals have 
also been reported [ 11- 13 J. 

Notice must be taken of the essential difference 
between the considered waves (in the case of equal 
carrier density) and magnetohydrodynamic Alfven 
waves, in spite of the outward similarity of their 
spectra. The former, being collective excitations 
of electrons, propagate only if WT » 1, and are 
damped as a result of viscosity, whereas the latter 
call for the opposite condition WT « 1, i.e., they 
exist when hydrodynamics are applicable. We shall 
therefore call them magnetoplasma waves [13 ] 

(many workers ls- 11 ] consider them to be Alfven 
waves). 

The present paper contains a theoretical calcu
lation and an experimental investigation of mag
netoplasma waves in bismuth. 

THEORY 

1. Since we are interested in the connection be
tween the constants that determine wave dispersion 
and the parameters of the energy spectrum, we 
present the corresponding calculations. 

We use the following coordinates in momentum 
space: E -energy, pz-projection of the momentum 
on the magnetic field (H II oz); cp = eHt/mc-angle 
determined by the equations of motion 

dp/dq;=m[vn], (1)* 

where n-unit vector directed along H 
1 as 1 A:. dt 

m= 2n re=Tn'j'v_l_' 

dl-element of the curve E = const, pz = const in 
p-space. The electric field, as usual, is consid
ered to be small and we confine ourselves in the 
kinetic equation to the non-equilibrium increment 
to the distribution function, which is linear in the 
field and which we write in the form 

f ~ e' (kr-oot). 

The kinetic equation 

i(kv-w)f+ Q:~ =-evE~; 

( Q - eH V ( E) = !!-__) -me' q>, P,, ap 

has the following solution that is periodic in cp: . "' 
f=- ~ dJ; ~ Ev(<p')dql'exp(i~dq;"w"/Q), 

-co •• 

w" = w-kv(<p"). 

*[vn] = v x n. 
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The conductivity tensor assumes after integration 
with respect to E, since -df0/dE = o (E -E F) 1l , 

the form 

2e2 dpzm op , , 

Cltk = (Znli)3 ~ ----g- ~d<pv1 (<p) ~ dcp vk(cp) 
-co 

cp 

x exp (i~dcp"w"!Q). (2) 
cp' 

All the quantities are taken here on the Fermi sur
face. 

We represent w - k · v in the form w - k · v 
= w- kzVz - (k · v- kzvz). The bar denotes aver
aging over cp for specified Pz . The average values 
vx = vy = 0 on the closed trajectories, the only 
ones present in bismuth. We then obtain 

cp 

~ w" dcp" = (w- kzvz) (cp- cp')- 'ljl (cp) + 'ljl (cp'), 
cp' 

where 
cp 

'ljl (cp) = ~ (kv"- kzvz) dcp", 

and the integration constant can be set here equal 
to zero, since it cancels out when the difference 
I{! (cp) -I{! (cp') is determined. 

We now expand the periodic function Vk (</!) 
'= Vk ( cp') x exp [i I{! ( cp') /Q] in a Fourier series 
in cp' : 

n 

and we substitute this expansion in a ik. We get 

e2 \ dp2m vjn (- 1jl) vk (1Jl) 
Cltk = zn•lia .) ----g-~ in- i (ffi- k v )jQ • 

n z z 
(3) 

In strong magnetic fields it is necessary to ex
pand a ik in powers of w /Q and kv jQ . We expand 
both the denominator of (3) and the numerator in 
powers of 1/! /Q ~ kv /Q. We thus obtain for a zz 

e2 ~ dp2mv~ 
Ci ---zz - 2n2Ji3 i (kzvz- ffi) ' 

(4) 

We shall henceforth not write out the argument of 
Vk (</!) when 1/! = 0 . The function Vk (</!) with I{! = 0 
coincides with the true velocity. 

In the calculation of az a(ll' = x, y) it is neces
sary to find the next term of the expansion, for the 
preceeding term (of the type azz) vanishes, since 
v a = 0 . We have 

(5) 

We now consider the components a af3 . Their 
terms which are of the order of those written out 

l)This is true for sufficiently low temperatures, and is en
sured by the stronger condition w r >> 1. On the other hand, 
the possible quantum effects are disregarded. 

in (4) and (5) vanish. Indeed, the term similar to 
the first member in (5) vanishes, again because 
v a = 0. The term similar to the second com
ponent in (5) vanishes when a = {3 because it is 
odd inn, and axy is proportional to the difference 
of the number of electrons and holes, as can be 
readily verified by using the definition of cp, and 
therefore yields zero for sufficiently pure bismuth. 
Thus, we must calculate the following term of the 
expansion in 1/Q. Account must be taken of the 
facts here that E (p) = E (- p), so that the integra
tion with respect to pz causes the sum 

k - ~ 1 -n n 
zVz LJ in2 Vet Vil 

n+o 

to vanish, as well as the first-order term in I{! jQ 
in the expansion 

~ i~ v;n(-'ljl)vg('ljl). 
n+O 

Ultimately we get 

_ _ e• ('dpzm[ ~·~ v;,.vg·] 
a,.~- C![Jct- 2n2Ji3 .) Q2 i (- (i) + kzvz) + <il ~ ~ • (6) 

n+O 

2. We consider the case of practical importance 
w » kz VF (VF-Fermi velocity). Using again the 
condition E (p) = E (-p) and Eq. (1), we obtain 

cx=l3=x ] 

ex.·= 13'.= y . 

CI.=X, /3=y 

Maxwell's equations without the displacement 
currents (w « Wpl) 

j = (ic2/4mo) [k IkE]] 

together with j i = aikEk lead to the dispersion 
equation 

11 a,k + 4~: (k26,k - k,kk) 11 = o. 

Expanding the determinant and omitting terms of 
the order (kv /Q) 2 , (w /Q) 2 , (kv /rl) 2 tan 2 e , and 
(w /Q) 2 tan 2 e ' we obtain 

llatkll + (ic2/4mo) lk;(CixxClzz +a;)+ k2 {cryyClzz + az,)l 
( 8) 

The coordinate axes are chosen such that k lies in 
the yz plane. 



MAGNETOPLASMA WAVES IN BISMUTH SINGLE CRYSTALS 1169 

Noting that 1/J ....., k, we immediately find the 
form of the solution of ( 8) ( e-angle between k 
and H) 

w = kv (H, 8), (9) 

with 

v (H, 8) ~cQ/wp1 ( 10) 

being a function of the directions of k and h rela
tive to the crystallographic axes, and to the value 
of H. We see therefore that a wave excited by an 
external electromagnetic wave propagates in the 
metal in a direction normal to the surface 
(v (H, e) /c ....., Q/"-'pl « 1 in feasible magnetic 
fields). The component Ez of the electric field 
is in this wave much smaller than the two others: 

IEzfEx.ul ~ Q-l max {kvF, w} ~ 1. (11) 

An explicit form of v(H, e) can be obtained for 
large magnetic fields where w » kvF . In this case 
it is necessary to retain in expression (7) for 
a z a and a a{3 only the second term. In place of 
(8) we now have 

Av4 -H2v2 (B cosZS + C)/4n + H4 (4n)-2F cos28 = 0. (12) 

The real constants A, B, C , and F, which depend 
only on the directions of the magnetic field and the 
wave vector, and which are determined in all other 
respects by the energy spectrum of the carriers in 
the bismuth, are expressed in terms of aik: 

(the primes indicate that only the second terms of 
az a and a a{3 of ( 7) have been retained). 

It is seen from (12) that v (H, e) ""' H. One of 
the solutions of (12) vanishes together with cos e. 
For small values of cos 2 e it takes the form 

v~ = H 2 cos2 8F/4nC. (13) 

For the velocity of the second, faster wave we ob
tain in this case 

( 14) 

In specific calculations it is necessary to bear 
in mind that when H and k lie on symmetry ele
ments, some aik vanish. Thus, for example, if 
the yz plane in which H and k lie coincides with 
the symmetry plane, then ayz = ayx = 0. In this 
case, for example, F /C ....., 1/ayy· 

3. We still have to consider the case w « kz VF· 
Using ( 4) -( 6) it is easy to obtain the asymptotic 
values of a ik : 

e• [ 2nmv,_1jl·vfl1jl 
0 "-/3 = 2n21i3 Q2 1 k 1 (av ;ap )-

z Z Z Vz=O 

Thus, a af3 has both imaginary and real parts, 
leading in general to the absence of undamped 
waves. 

4. We consider a magnetoplasma wave of length 
,\ and frequency w, propagating with velocity v(H) 
inside a plane-parallel plate of bismuth of thick
ness D along a normal to its surface. If the damp
ing of the wave is small and the wave is reflected 
from the metal surface, then a standing wave is 
produced in the plate whenever 

n'A/2 = nv (H)j2f = D. (15) 

Equation (15) is satisfied for selected values of 
H = Hn, consequently the surface impedance of the 
metal oscillates as the field is varied. If v(H) 
= K(J)H, where K(J) is the coefficient that de
pends only on the angle J and the crystallographic 
orientation of the plate, then nHn = 2Df/K( J) and 
as a result the oscillations are periodic in the re
ciprocal field with a period 

( 16) 

EXPERIMENT 

The samples were single crystals of bismuth in 
the for:tn of discs 18 mm in diameter and ~ 0.2-1.7 
mm thick, grown from the melt in dismountable 
polished glass and quartz molds. No subsequent 
surface treatment was used. The material was 
bismuth characterized by a resistivity ratio 
p(300°K)/p(4°K) ....., 100. Some of the specimens 
were used previously in investigations of cyclo
tron resonance 112 J. 

During the course of the experiment we con tin
uously measured the parameters of the cavity, one 
wall of which was the investigated sample. Experi
ments at 9.5 Gc were carried out with strip resona
tors, in which a linearly polarized (TEM) wave 
was excited, so that rectilinear high-frequency 
currents flowed over the sample surface [14J. The 
experiments at 24 Gc were carried out with a 
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log (T(H)/T(O)), dB 

FJ 
~ 

4.5 

~ "' 
I ~ v~ I I 
I 

3.5 

• cz 

\._,. 

~~ 

R(H)/R(O) 
85 I. 

1. 68 

l .50 

FIG. 1. Plot of the coefficient t = T(H)/T(O) 
of power transmission through the resonator, 
demonstrating the simultaneous excitation of 
magnetoplasma waves of two types: larger period 
-S waves, smaller period-P waves. The ar
rangement of the field vector H and the axes C3 

and C2 in the plane perpendicular to the surface 
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of the sample (Bi-9), which in turn is shown by a 
solid line, is indicated at the top. On the right is 
shown part of the curve with greater amplification. 

i I i~ 
_i 

51 0. 

0 

I 
0 

0 

0,125 

I 

0.25 0.50 

0.5 1.0 

cylindrical cavity with the sample as the bottom, 
operated in the H011 or E 111 mode, so that the cur
rents on the sample surface were respectively cir
cular or curvilinear. 

The first observations and the investigations of 
standing magnetoplasma waves were made by the 
frequency modulation method [ 14 ~; however, when 
the surface-impedance oscillations caused by them 
reached a large amplitude, the use of a sensitive 
measurement procedure became not only unneces
sary, but also impossible. In such cases the meas
urements were made by recording the coefficient 
of power transfer through the resonator containing 
the sample [ 15 ]. The sample temperature was usu
ally 1.8°K. The magnetic field was rotated in the 
experiments at 9.5 and 25 Gc in the plane of the 

1.06 

-

FIG. 2. Plot of periodic S-oscillations for H II C2 II j. 
The peak on the right is cyclotron resonance. 

specimen, and could be inclined to the latter by 
± 1.5-2°. In experiments at 9.5 Gc, using the Bi-9 
sample, the magnetic field was also rotated in a 
plane perpendicular to the sample surface. The 
high-frequency current was in the same plane. 

Typical records of oscillations obtained during 
the course of the experiments for the logarithmic 
derivative of the surface impedance of bismuth 
and its surface resistance, as functions of the re
ciprocal of the magnetic field, are presented in [13 ] 

and also in Figs. 1-4. In all cases when the mag
netic field was parallel to the sample surface, os
cillations of one period, called S-oscillations, were 
observed. If the field was inclined to the surface 
of the sample, then oscillations with a smaller 
period were observed, having different properties 
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FIG. 3. Plot of aperiodic S-oscillations 
for H II C, II J. The numbers on the top de
note the serial numbers n of the oscillations, 
counting from H-1 = 0. 

log (T(H)/T(O)), dB R(H)/R(O) 

~r---r-~r-------r-----------=-~~-===~~~ 

FIG. 4. Plot of aperiodic P-oscillations for 
H II N, in the Bi-9 sample (1 N, C3 "' 4"). Lower 

-20 f----llt+t-JHf-----+-------t~rt-t------i!O curve-same plot with greater amplification. 

0 O}Z5 O,Z5 

and called P-oscillations. Figure 1 shows a case 
of simultaneous observation of oscillations of both 
types. The corresponding magnetoplasma waves 
are called S waves or P waves. 

PROPERTIES OF MAGNETOPLASMA S WAVES 

A characteristic feature of S-oscillations, ob
served in all experiments for any crystallographic 
sample orientation, is the dependence of their am
plitude on the angle between the field H and the 
high frequency current J. When H II J, the ampli
tude of the oscillations is minimal and increases 
rapidly with increasing angle between H and J . 
Additional minima of smaller amplitude, which are 
always seen in the intervals between the principal 

minima (Fig. 2 of[ 13 J), disappear almost com
pletely when H II J (Figs. 2 and 3). The amplitude 
of the oscillations increases approximately as 
T- <1-1.5>. 

The S-oscillations of surface impedance of sam
ples having an orientation N II C3 are periodic 
within the limits of measurement accuracy, as is 
seen, for example, from Fig. 2. The measured 
anisotropy t.W1 of the field H as it is rotated in 
the plane of the surface of the single crystal is 
shown in Fig. 5, where the interpolation curve 
corresponds to the equation 

1/ !'1H-1 = (27.3 + cos 6a) 3.14 kOe. 

For samples whose surface plane contains the 
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Table I 

Field I Sample I ..e-N C I D. mm f G /!lH-1 , 10-'0e-1 !,· vlf-l = 2Dft>H-I, 
direct_io_n_,, ____ __.l,___""-_'__._' ----~--· _c _ ___.,_ ____ .,--_w_•_c_m_. _se_c_-•.oe-1 

I f I 1.74±0.01 1 

I 
Bi-1 87° 9.51±0.01 1.41±0.02! 4.65±0.1 

II 
Bi-4 goo l. 74±0.01 9.47±0.01 1.39±0.02 4.60±0.1 
Bi-4 goo 1.74±0.01 25.0 ±0.01 0.56±0.02 4.8 ±0.2 
Bi-2 10 1. 74±0.01 9.55±0.01 1.13±0.02 3.7!J±0.1 

'i Bi-3 20 i 1.74±0.01 9.50±0.01 1.1:3±0.02 3.75±0.1 H II C2 ~ : Bi-6 oo 1.73±0.01 9.53±0.01 1.13+0.02 3.70±0.1 

1\ 
Bi-7 38° 0.98±0.01 ' 9.51±0.01 2.13±o.o3 I 4.0 ±0.1 
Bi-9 30 0.47±0.01 I 9.53±0.01 4.06±0.06 3.65±0.1.5 

I' Bi-9 30 0.47±0.01 24.85±0.01 1.38±0.02 3.20±0.15 
I Bi-16 oo 0.19±0.005 9.43±0.01 10,7±0.1 3.83±0.15 

Bi-11 goo O.\J8±0.01 9.52±0.01 6.40±0.1 11.95±0.2 
H iiCt Bi-11 goo 0.98±0.01 21,10±0.01 2.90±0.05 12,0 ±0.2 { Bi-11 goo 0.98+0.01 ,27 .07+0.01 2.22+0.05 11.8 +0.2 

') :o 
-t~ 

• • 0 

• I __ ).__ 

FIG. 5. Anisotropy of S-oscillations in the bismuth crystal 
basal plane. Circles-measurements with Bi-2 sample with 
the field rotation limited to 120°; black dots-Bi-3 with 65° 
limit. All data are reduced to the angle interval a_:::; 30°, 
measured from the C2 axis. The bars at some points denote 
measurement errors. 

FIG. 6. Anisotropy of S-oscillations in the plane contain
ing the axes C2 and C, of Bi-4 sample. The period ~W' is 
calculated as the average over the interval H-1 ; curve 1-H-1 

in the interval (0 - 0.5) X 10-3 Oe-1 ; 2-(0.5 - 1) X 10-3 Qe-1 ; 

3-(1- 1.5) X 10-' oe-•; 4-(1.5- 2) X 10-3 Oe-•. 

axes C2 and C3 , the period of the S-oscillations 
turns out to be dependent on the field, but to a dif
ferent extent for different field directions. The 
case H II C3 is illustrated in Fig. 3. The aniso
tropy of the period can be judged from Fig. 6, 

from which we can see, in particular, that the 
aperiodicity of the S-oscillations is most notice
able at field directions H close to the C3 axis. 

In order to clarify the nature of the observed 
oscillations, experiments were carried out with 
samples of different thickness and at different fre
quencies. It has been established as a result that 
~H- 1 VJ (Df)- 1 or, as can be seen from Table I, 
Df~H-1 = const, within measurement accuracy, 
for thicknesses that differ by a factor of 9, and for 
frequencies that differ by a factor 2.5. 21 This con
firms the correctness of relationship (16), derived 
on the basis of the notion of standing waves in the 
sample. It must be noted that the fact that samples 
differing in normal orientation have S-oscillation 
periods that differ by ~ 20 per cent when H II C2 

(see Table I) also confirms that the observed effect 
is due to formation of standing magnetoplasma 
waves. 

If the magnetic field is inclined to the surface 
of the sample, then the amplitude of the S-oscilla
tions decreases, but to a different degree depend
ing on the crystallographic orientation of the plane 
in which the field H is rotated. The change in per
iods which occurs in this case is indicated in Fig. 7. 

PROPERTIES OF MAGNETOPLASMA P WAVES 

Magnetoplasma P-oscillations were investigated 
with the Bi-9 sample. Figure 2 of[ 13 ~ shows a plot 
of the power transfer coefficient t = T (H) /T (0) at 
the field direction causing the strongest P-oscilla
tions. The magnetic field lies in this case in the 
diagonal crystallographic plane act. 

An analogous plot, but with the field vector lying 
in the plane containing the axis c2 and c3 is shown 
in Fig. 1. The losses in the resonator are deter-

2) A discrepancy exceeding the experimental error occurs 
in one case: when H II C2 and N II C,, in the Bi-9 sample; 
the reason for it is not yet clear. 
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mined almost completely by the losses in the bis
muth sample, so that the experiment yields directly 
the relative increase in the surface resistance of 
the bismuth R (H)/R (0) at resonant values of the 
field. 

When the direction of the vector H lies in some 
region close to the direction of the c3 axis, then 
the P-oscillations are strongly aperiodic, as is 
seen, for example, in Fig. 4. However, in other 
cases the period of the P-oscillations depends little 
on the field, as is illustrated, in particular, by 
Figs. 1 and 2 of [ 13 J . 

The most distinguishing feature of the P-oscilla
tions is the dependence of their period, calculated 
from the formula llH - 1 = Hfi1 /n , on the angle J 
between the direction of the magnetic field H and 
the normal N to the sample surface. In Fig. 7 this 
dependence is shown for two crystallographic 
planes. With the exception of a small interval of 
directions close to the c3 axis (J :;, 30°)' the 
experimental points on the diagrams of Fig. 7 fall 
on straight lines. (When H has nearly the same 
direction as C3 , the S-oscillations also display 
maximum anisotropy and aperiodicity-see above). 

Using this fact, we can separate the dependence 
of the period of the P-oscillations llpH-1 on the 
angle between H and N into two parts: 1) aniso
tropy determined by the orientation of the vector 
H relative to the crystal axes, and 2) dependence 
on the angle between the vectors of the field H and 
the velocity v. Inasmuch as v II N, we obtain for 
the experimental lines of Fig. 5 llpH -1 ( J) 

= ll~H- 1 cos J. 
In the case of Fig. 7b, in the interval J ~ 20°, 

we see simultaneously two types of oscillations; 
the character of their anisotropy is the same in 
this angle interval. (We note the similarity be
tween the anisotropy of the periods of the S- and 
P-oscillations, shown in Fig. 7b and Fig. 6.) From 
considerations which will be advanced during the 
discussion of the results, and also by using the 
extrapolation of which Fig. 7 admits, we shall as
sume the oscillations with the large period in Fig. 

a 

7 to be S-oscillations, while the others, which show 
a dependence of the type llH - 1 ( J) = ll 0H -1 cos J , 
will be regarded as P-oscillations. 

The difference in the periods llH- 1 for P-os
cillations when H II N (Fig. 7a and 7b) can be at
tributed to error in the orientation of the normal 
to the sample relative to the plane in which the 
magnetic field is rotated. It is seen from Fig. 7a 
that an error of 1.5-2° can cause such a differ
ence in the periods. 

DISCUSSION OF RESULTS 

From the experimental data shown in the figures 
and in Table I, we obtain from (15) and (16) the 
numerical characteristics of S-waves: 

Vs = (2 -50) ·107 em/sec, 

1-.s = 0.02-0.5 mm; n = 2- 100. (17) 

We note that the maximum value of vs is deter
mined by the magnitude of the field of the electro
magnet used in the experiments (H < 10 kOe). The 
velocity vp of the P waves is always smaller 
than vs. Thus, the greatest velocity of magneto
plasma waves in the above experiments is two or
ders of magnitude smaller than the velocity of 
light, in agreement with the estimate resulting 
from Eq. (10): v (10 kOe) ""' c/30. This causes the 
magnetoplasma waves to propagate normally to 
the surface of the metal (this was used in the deri
vation of (15)) independently of the angle of inci
dence of the exciting electromagnetic wave. 

A consequence of the theory is the smallness of 
the component of the electric field EH in the mag
netoplasma wave compared with the other com
ponents of E . This means that the worst excitation 
conditions occur when H II J, which is fully con
firmed by the experiments. 

To confirm the correctness of the linear dis
persion law (9), which follows from the theory, it 
is sufficient to verify that the velocity v does not 
depend on f. In the case of periodic oscillations 
this reduces to a verification of the relationship 

N GO f/tJ.H,-1kOe 
FIG. 7. Dependence of the periods of the S-and 

P-oscillations on the angle e for the Bi-9 sample: a
plane ad; b-plane containing the axes C2 and C,. 

b-~-tf?} 
ZO 40 GO BO 100 120 t/t..H;1k0e 
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~H -t f = const, as can be seen from ( 16). The re
sults of the experiments given in Table I confirmed 
the correctness of this relationship. 

We have compared above the experimental re
sults with theoretical deductions that are valid if 
kHVF « w. At large values of the magnetic fields, 
a more stringent condition kvF « w is satisfied, 
but taking into account the estimates of (17) given 
for A., even this condition is satisfied for the grea
ter part of the field interval in which oscillations 
are observed. As follows from (12), we have here 
v (/) H and the oscillations are periodic. It follows 
from the experiment that the S- and P-osci!lations 
are as a rule periodic (Figs. 1 and 2 and lt3 J) . 

Aperiodicity appears only when the direction of 
H is close to that of the C3 axis. Incidentally, as is 
seen from Figs. 3 and 4, the periodicity improves 
towards larger fields, which agrees with the deduc
tions of the theory. 

It follows from (12) that two waves can propa
gate in bismuth when J ?! 90° , and only one when 
J = 90°. This is fully confirmed by experiment 
(Figs. 1-3), and has served as a basis for separ
ating the experimentally observed oscillations into 
two types, called S- and P-oscillations. These 
considerations were taken into account above in 
the description of the results of the experiments 
for H II C3 (Fig. 7). 

The theoretical dependence of the velocities of 
the S and P waves on the angle J for small values 
of cos J is represented by (13) and (14). The cor
rectness of these relationships follows from the 
experimental results shown in Fig. 7. The in
terval of values in which (13) and (14) are con
firmed is determined by the anisotropy of the wave 
velocity in the plane of rotation of the magnetic 
field H. 

Let us calculate from (13) and (14) the values of 
the velocities of the S and P waves for some 
orientations of k and H . When k II C3 and H II C 1 

or H II C2 , we obtain for the ratio C/ A contained in 
the expression for vs, respectively, 

C wc2 cr~1 (1) --w, , '2 
A 1 cr22 (1) cr11 (1) + cr21 (1) 

(H II C1 , a~; (1) = a~3 (1) = 0), (18) 

(19) 

The coordinate axes are connected with the crys
tallographic directions: the subscripts 3 , 2 , and 1 
denote the directions c3 and c2 ' and the direc
tion c 1 which is perpendicular to them. 

Estimating the contributions of the electrons 
and the holes in a fk on the basis of the experi
mental data relating to the effective masses m lt2J 
and the cross sections Sextr of the Fermi sur
face [tsJ, we find that the major role is played in 
this case by the holes, with a 15 (2) « a tt (2) a h (2) 
and a~~(1) « a22 (1) a1 1 (1). The quantities a11 (2) 
and ah(l) remaining in (18) and (19) take the form 

Taking into account the axial symmetry of the 
hole Fermi surface[12 •16J we get a11 (1) = a~2 (2). 
This leads to an equality of the corresponding 
velocities, as does occur experimentally (Table II, 
Fig. 5) with accuracy ~ 10 per cent, corresponding 
to the computational accuracy. 

In the case when H II C 1 and k II C3 we obtain 
for a~3 (1), which determines vp, 

, 4nc2w \ -
aa3(1) = i(2nh)"H2 Jdpl·p~m(1 ), 

where the main contribution is again made by in
tegration over the hole Fermi surface. 

An estimate shows that [tsJ 

a~3 (1)/a~2 (1) = ISextr (3)/Sextr (2)12 = 9: 

Table II 

S waves 
I 

P waves 

vH-t, 10" em• sec-1.0e- 1 

I 

vH-1/cos 6, 104 cm•sec- 1·0e-1 

Experiment I 
Theory* Experiment I Theory* 

H II C2, k II Cs 3.7±0.1 2.2 5.2±0.1 2.7 
H II c., k II C1 4.6±0.1 2.7 - -
H II C1, k II Cs 4.0±0.1 2.2 11.1±0.2 6.7 
H II C1, k II c. 12,0±0.2 6.7 - -

*Calculated on the ellipsoidal model. 
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in which case the corresponding velocities vpcosJ 
and vs should differ by (a~3 (1)/o-~2 (1) 112 = 3 times. 
Experiment, on the other hand, gives a velocity 
ratio of 2.8 (Table m. 

For the velocity vs when H II C 1 and k II C2 

we obtain a value coinciding with vp/cos J. for 
H II C1 and k II C3 • 

We now consider the cases H II c 2 , k II C3 and 
k II C 1 • An estimate shows that the corresponding 
velocities vp/cos J. and VS' are determined by the 
electrons and are equal, in agreement with experi
ment (Table II). 

Table II gives the results of calculations of the 
velocities vs and vp under the assumption that 
the spectrum of the holes and of the electrons is 
quadratic (the reciprocal of the electron mass 
tensor was taken from the artie le by Weiner [ 17 J ) . 
The considerable discrepancy between the results 
obtained and the experimental data can be attribu
ted to the essential difference between the two en
ergy spectra of bismuth and the model employed. 

It must be noted that the effect under considera
tion is integral and, in an analogy with specific 
heat, calculation of vs and vp using the ellipsoidal 
model gives results that differ noticeably from the 
measured quantities. At the same time, a calcula
tion of the ratio of the velocities, which is not based 
on the model, leads to results that almost coincide 
with the experimental values. 

The authors are grateful to P. L. Kapitza for 
interest and collaboration, to A. A. Abrikosov for 
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