
SOVIET PHYSICS JETP VOLUME 18, NUMBER 4 APRIL, 1964 

SCATTERING THEORY IN THE IMPULSE APPROXIMATION 

G. K. IVANOV and Yu. S. SAYASOV 

Institute of Chemical Physics, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor April 8, 1963 

J. Exptl. Theoret. Phys. (U.S.S.R.) 45, 1456-1466 (November, 1963) 

A new formulation of the impulse approximation method is presented which differs from the 
original one by greater simplicity (the cross section for the scattering of an incident particle 
by a complex system is represented in the form of a certain average over its initial state; the 
cross section for the transition of the system to a given final state is described under certain 
additional assumptions by a formula which is a generalization of the Fermi pseudopotential 
method to the case of arbitrary pair interactions ) . The general method is used to calculate 
the resonance ( Breit-Wigner) scattering of neutrons by chemically bound atoms in the case 
of sufficiently broad resonances. 

1. INTRODUCTION 

THE impulse approximation which was first in­
troduced in the papers by Chew et al[1- 2J, who ap­
plied it to the problem of the collision of fast nu­
cleons with nuclei, is based on the following as­
sumptions about the nature of the interaction be­
tween the incident particle (treated as structure­
less) with a complex system of bound particles. 

First, it is assumed that the effective radius of 
interaction of the incident particle with the par­
ticles of the scattering system A is much smaller 
than the average distance R between them: A « R, 
while the interaction itself between the incident 
particle and one of the particles of the system in 
the region A is considerably stronger than the in­
teraction between the particles of the system, i.e., 
the potential V for the interaction between the 
scattered particle and the complex system may be 
regarded as a pair interaction, i.e., V = 6 ~= 1 
Vv(rv-r) (N is the number of particles in the 
system, rv are their coordinates, r are the co­
ordinates of the incident particle). Such a situa­
tion, obviously, occurs, in particular, if the en­
ergy of the incident particle is so great that the 
latter can approach the particles of the system so 
that the separation distances become very small. 

The second assumption consists of supposing 
that the time characterizing the pair interaction 
T is so small that the interaction between the bound 
particles does not have time to manifest itself sig­
nificantly, i.e., T « 1/w (1/w is the time needed 
for a significant change in the state of the system). 

These considerations enable us to represent the 
probability amplitude An for the transition of the 

scattering system from the state <I>i into the state 
<llf in the following manner 1>: 

where m is the mass of the incident particle, k' 
is the wave number for the incident particle in the 
final state, ~ are the coordinates of the scattering 
system; 

1/Jkq is the wave function describing the scattering 
of the incident particle with momentum hk by a 
free particle of the system having momentum hq, 
G ( q) is the wave function of the scattering system 
in the impulse approximation. The superiority of 
the impulse approximation over the Born approxi­
mation consists, evidently, in rigorously taking 
into account the form of the pair interaction V v 
(in the sense that no assumption is made about it 
having to be small ) . 

The present paper consists of a further devel­
opment of the method of impulse approximation in 
two directions. 

1. An expression is obtained for the differential 
cross section for the scattering of an incident par­
ticle into a certain angular range do and a certain 
energy range de: in terms of an average over the 
initial state of the scattering system <I>i: 

d2ojdEdo = (<f>;, Timp<f>;), 

where Timp is a certain combination of operators 

llFor the sake of simplicity we consider scattering by only 
a single particle of the system. 
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SCATTERING THEORY IN THE IMPULSE APPROXIMATION 1007 

which involves the Hamiltonian of the system H and 
the amplitudes for the pair scattering. This result 
is obtained by summing over all the states of the 
system by means of a method analogous to that 
utilized by Zemach and Glauber[3J. Thus, in order 
to obtain d2a/dE do it turns out to be possible to 
avoid explicit use of the wave functions for the 
final states ci>f. 

2. For the case when the amplitudes for pair 
scattering vary but little within the limits of the 
momentum spread of the particles of the scatter­
ing system it turns out to be possible to represent 
the quantities A!flP in an even simpler form than 
(1), viz., in the form of the Born approximation 
with a certain altered potential defined in terms 
of the amplitudes for pair scattering. Thus, the 
Fermi pseudopotential method can be generalized, 
provided the conditions for the applicability of the 
impulse approximation are satisfied, to pair inter­
actions of arbitrary type. 

2. GENERAL FORMULATION OF THE IMPULSE­
APPROXIMATION METHOD 

In subsequent discussion we shall employ the 
apparatus of the formal scattering theory in ac­
cordance with which the probability for the tran­
sition of a scattering system per unit time is given 
by the following expression (in subsequent devel­
opment we use the system of units in which h = 1 ) : 

Pti = 2n I Tti 12 o (ef - Bf + k212m- k' 212m), (2) 

where 

and the scattering operator T is defined by the 
equation 

T = V + V (E- H' + iYJt1 V, H' = K + U + V, (4) 

K is the operator for the kinetic energy of all the 
N + 1 particles, U is the energy of interaction of 
N particles of the system, 11 is an adiabatic pa­
rameter which is made to go to zero in all the 
final formulas. 

In accordance with the basic assumptions of the 
impulse approximation the operator T may be rep­
resented in the form of the following expansion: 

V=l 

N 

T1 = ~tv (ek- K + iYJt1 (ek- Bi + U) (ek- K + iYJt1 tv, 
V-=1 

N 

T2 = ~ tv (ek- K + iY])-l fv,, (5) 

where 

The impulse approximation corresponds to the 
replacement of T by ~fj= 1 tv; the second and the 
third terms in the expansion (5) characterize in the 
lowest order approximation respectively the effect 
of binding between particles of the scattering sys­
tem and multiple (double ) scattering of the incident 
particle by the particles of the system. 

We substitute (5) into (3). After integration over 
r the operators in (3) acquire the meaning of quan­
tities related to the amplitudes for the scattering 
of free particles and corrections to these ampli­
tudes. Indeed, the matrix element (3), after T is 
replaced in it by .L;v tv contains integrals of the 
form 

~ <<Dt, e-ik'r tveikr <Di) dr 

= ~ (' ... (' dp~, .. · , dp:V<Dt (p~ , ... , P:V) (Xk'p'tvXkp) 
(2n) J J 

X <Di (pl, · · · , pN) dpl, · · · , dpN, (7) 

where p 1, ••• , PN are the momenta of the bound 
particles, Xkp = Xk,p1, ... ,p are the eigenfunctions 
of the kinetic energy opera~or for all the particles; 
by definition 

(2n)-aN (Xk'p', tvXkp) = 0 (p~- p1) ••• 0 (k' + P:- k - p) 

X F (k:, kv) · • • 0 (p:V- PN) 2Jt/flv• 

where kv and kv are the relative momenta of the 
colliding particles before and after scattering, JJ.v 

is their reduced mass; F ( k!J, kv) is the amplitude 
for the elastic scattering of free colliding particles 
in the center of mass system. 

Thus, as a result of integration over r in (7) we 
have 

tfi (' (<D -ik'r t ;kr<D) d - 2n (<D ixrv F (k' k) <D \ 
v = J f, e ve- i r - 1-Lv f, e ,,, v l/' 

(8) 

where K = k- k' = kv - kv is the momentum trans­
ferred to the scattering system during the colli­
sion, 

kv = (mk- mp)/(mv + m), 

k: = (mvk' - m (x - p))/(mv + m). (9) 

Taking (8) into account we now represent the ex­
pression for the probability of process (2) in the 
following form 

Pti = 2n ~ (<Di, F:.e-ixrv'<Dt) (<Dt.ixrv Fv<Dt) 0 (e + ef- Bt)· 
vv' 

(10) 

Further, by utilizing the well known representation 
for the 6-function: 
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00 

6 (r) = 2~ ~ e-i"1 dt, 

by taking into account the fact that exp (- iHt )<Iii 
= exp (- iqt )<Iii, and by summing over all the sys­
tem states forming the complete set of wave func­
tions <lif, we obtain the following expression for 
the differential cross section 

d2aldedo = <eDt, yimp$1), 

00 

ytmp = !' 2J---.!!!!____ ~ e-iEI F:. e-ixr,. eiHt e"xrv Fve-iHI dt. 
vv' fLvflv• ( ) 

-00 11 

Thus, in the impulse approximation in addition 
to the representation (1), in which states of the 
system before and after scattering are given, one 
can also introduce the representation (11) in which, 
in addition to the initial state of the system only 
the characteristics of pair scattering are given. 
Expression (11) does not require an explicit defi­
nition of the wave functions of the final state. More­
over, writing the cross section d2o/dEdo in the 
form of an average over the state presents a num­
ber of mathematical conveniences. Formula (11) 
will be utilized later (Sec. 4) for investigating the 
interaction of neutrons with chemically bound nu­
clei in the case when the pair scattering amplitudes 
F v are of a Breit-Wigner resonance character. 

The conditions for the applicability of (11) can 
be established by substituting into (3) the correc­
tion operators T1 and T2 [ cf., (5)] and by repeat­
ing the same arguments as were used in deriving 
(7) and (8). Thus, it turns out to be possible to 
represent the corrections to the formulas of the 
impulse approximation by taking binding into ac­
count in the scattering system (the operator T 1 ) 

in a simpler form than in the papers by Chew et 
al. [2] Specifically, they are determined directly 
by the pair scattering amplitudes F,., and are of 
the order of .6-Evd ln FvldE, where .6-Ev is a cer­
tain effective energy difference between the levels 
of the scattering system manifested in a collision 
with its v-th particle (for example, the energy 
difference between vibrational levels of the mole­
cule). 

The condition for the applicability of the im­
pulse approximation associated with neglecting 
the binding of the particles of the system can, 
consequently, be represented in the form 

1'1ev I dlnFjdE 1 ~I. (12) 

Under quasiclassical conditions F,., = Bv x 
exp iS(k,.,, k,.,, ), where S r::; A,.,k » 1, A,., is the 
effective radius of interaction between the collid­
ing particle; therefore in this case d ln F,., I dk 
r::; A,.,. In a similar manner, in the case of scat-

tering of slow particles ( S-scattering) we obtain 
d ln F vI dk r::; A,.,. Therefore, we can also rewrite 
(12) in the form 

(13) 

where Vnv is the relative velocity of the colliding 
particles. It is essential to note that in the case 
when the effective speed of a bound particle ex­
ceeds significantly the speed of the incident par­
ticle vn, the quantities .6-E,., turn out themselves 
to depend on Vn, and in such a way that condition 
(13) is satisfied only for sufficiently large vn. 

As an investigation shows, corrections tor 
double scattering of the incident particle (the op­
erator T2 ) are of the order of F,.,IR(kR)[2J; i.e., 
the condition for the applicability of the impulse 
approximation in which multiple scattering is not 
taken into account has the form 

FJR(kR) ~I, (14) 

where R is the average distance between the scat­
tering particles. This condition is always satisfied 
under quasiclassical conditions, i.e., for kR » 1. 

3. THE IMPULSE APPROXIMATION AS A GEN­
ERALIZED PSEUDOPOTENTIAL METHOD 

If the scattering amplitudes F,., change by only 
a small amount within the limits of the momentum 
spread of the scattering particles in the initial 
state, then they can be taken as constant in (11) 
F v = a,.,, and then d2aldE do goes over into 

00 

d'::; k' '' m2 ~ • 'HI' · 'fft ~- =- 7 --a a* e-iEI <<D· e-'xrv'e' e'xrv -l Q}.\ df 
dsdo k ~ fL fL ' v v' l' ' e l / ' 

vv' v v -oo (15) 

as a result of which (11) agrees exactly with the 
formula of Zemach-Glauber [3] for the doubly dif­
ferential cross section for the scattering of neu­
trons by chemically bound nuclei, derived by means 
of the Fermi pseudopotential method (i.e., by 
means of writing the matrix elements Tfi (3) in 
the form of the Born approximation with an inter­
action potential of the delta function type ) . 

This circumstance is not accidental. As can be 
easily shown, under the conditions of applicability 
of the impulse approximation and of the constancy 
of F,., within the limits of the momentum spread 
of the scattering system the matrix elements for 
the transitions (8) can be represented in the form 
of a Born approximation with·a certain altered po­
tential V. Indeed, in the case when the pair scat­
tering amplitude F v does not depend on the mo­
menta of the scattering system (this is equivalent 
to neglecting Pv in comparison with k and K in 
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(9)), the expression for the matrix element (8) has 
the form 

f~1 = 2n[t;1 F (k:o, kv0) (lllti"r•<Di), (16) 

where kvo = mvkl(mv + m) and kvo = kv0 -K, and 
can be obtained by introducing an effective poten­
tial V v• such that 

F, (k~JO• k,0) = ~~ ~eixPV,(p)dp, (17) 

and by subsequently applying the Born approxima­
tion in evaluating the matrix element, i.e., 

t~1 ~ ~ QJ;e1" V,ID1 dr d£. 

In the case F v = const (which is the case in the 
scattering of slow neutrons by some nuclei) it fol­
lows from (17) that Vv = (27riJ.£v)Fvo(r-rv), i.e., 
(16) reduces to the usual Fermi pseudopotential 
approximation. 

The conditions for the applicability of (15) and 
(16) can be derived by expanding F ( kj,., kv) in a 
series in powers of Pv and by restricting our­
selves to the first term of the expansion. On sub­
stituting this expansion into (11) we easily find 
that the corrections associated with replacing 
F v by av are of order of magnitude Pv d ln F vI dk 
"' ptAv for pair scattering of slow particles ( S­
scattering), i.e., the aforementioned condition co­
incides with the well known criterion for the ap­
plicability of the Fermi pseudopotential method 
to the scattering of neutrons by molecules Av 
« a"' 1lpt where a is the amplitude of the vi­
bration of the atoms in the molecule. 

But in the case of pair scattering of quasiclas­
sical type Fv ~ Bv exp (iSv), S » 1, when it is 
possible to neglect the rapidly oscillating interfer­
ence terms, the condition for the applicability of 
(15), (16) turns out to be less restrictive, and re­
duces specifically to the inequality Pt d ln I F v 12 I dk 
« 1, which is always fulfilled if the classical dif­
ferential cross section changes by only a small 
amount within the limits of the momentum spread 
pt, i.e., if the speed of the incident particle is 
large in comparison with the effective speed of 
the bound particle V p~ lmv • 

It should be noted that the quantity Pt in the 
inequalities quoted above has the meaning of an 
effective momentum spread in the system ( Pt 
"' v mvw) only in the range of energy E and of 
scattering angles corresponding to the maximum 
of the cross section determined by (15), i.e., for 
I E- R I ~ v Rw ( R = K212mv is the recoil energy). 
As can be shown, outside this region the quantity 
Pt is of order of magnitude ( E - R )mv IV Ea 
( Ea = k212m ), i.e., the conditions for the applica­
bility of the approximation (15) turn out to be more 

restrictive. This circumstance manifests itself, 
in particular, in the investigation of resonance 
scattering of neutrons by chemically bound nuclei 
(Sec. 4 ). Formulas (15) and (16) can be used to 
describe a wide range of phenomena occurring in 
the collisions of fast atoms with molecules ( exci­
tation, dissociation and other processes of molec­
ular rearrangement). 

4. SCATTERING OF NEUTRONS BY CHEMICALLY 
BOUND ATOMS IN THE PRESENCE OF BROAD 
NEUTRON -NUCLEAR RESONANCES 

The expression (11) obtained earlier for the dif­
ferential scattering cross section in the impulse 
approximation as applied to the scattering of neu­
trons by bound atoms enables us to discuss anum­
ber of peculiarities which arise in the presence of 
broad neutron-nuclear resonances, 2> and, in partic­
ular, such that the width of the resonance level r 
is much greater than a certain characteristic en­
ergy of the scattering system w: r » w. In this 
case the amplitudes F v appearing in (11) have the 
form 

where the quantities Av can be taken as constant 
(Av"' r ). 

Restricting ourselves to the case k~ 121-'v 
= k212(mv + m) - k·Pvlmv which holds for 
mwlmvr « 1, we substitute the scattering am­
plitudes (18) expressed in terms of the integrals 

into (11); we obtain 

d2r:; k' m2 
-=-'V-AvAv' 
de do k .::.l flvflv• 

v·/ 

x (' e-ist exp {ia (~Ea- E0 + _.!:____ r) 
~ mv + m 2 

- ia' (~Ea- E 0 - +f)} W (a, a', t) dada' dt, 
mv+m 

(19) 

where W( a, a', t) in the Heisenberg representa­
tion for the coordinates and the momenta has the 
form 

2>In the general case this problem has been discussed in 
the papers of Dzyub and Lubchenko[4 ] and of Kazarnovskii 
and Stepanov[5] with the aid of quadruple time correlation 
functions. However, the use of this method to obtain quantita­
tive results is in practice extremely difficult. 
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W (a, a', t) 

= < exp (- ia' kpv,(O) )e-ixrv'(o)eiuv (I) exp (ia kpv (t) )) . 
mv, mv 

(20) 
We now investigate on the basis of the general 

formula (20) the resonance scattering of neutrons 
by molecules and crystals. We treat the oscilla­
tions in these systems in the approximation of in­
dependent oscillators. We first of all discuss the 
scattering of neutrons by molecules. We shall rep­
resent the displacement of an atom from a fixed 
equilibrium position bv and the corresponding 
momentum as usual in the form 

Pv = mv (V M + [Qbvl + ~c~qs), 
s 

(21)* 

where utr and u~ot are displacements describing 
the translational and the rotational parts of the mo­
tion, c~ is the amplitude vector associated with 
the nucleus v corresponding to a vibration of fre­
quency Ws, qs are normal coordinates which in the 
representation of the operators a+ for the creation 
and of a for the annihilation of oscillations have 
the form qs = i( 2ws )- 112 [as exp ( -iwst) 
-a~exp(iwst)], VM, 0 are respectively the ve­
locity of the molecule as a whole and its angular 
velocity. 

In future we shall restrict ourselves to the case 
of greatest interest for applications when E, R, kT 
» b..Erot (b-E rot is the average energy difference 
between the rotational energy levels of the mole­
cule). We recall that while the vibrational energy 
is of order of tenths of eV, the value of b..Erot 
amounts to hundredths or even thousandths of eV. 
Therefore, the assumptions under consideration 
are satisfied over a very wide range of variables 
E and R. 

Under the condition E, R, kT » b-E rot the inter­
ference terms are negligibly small ( cf. [3, 6]) and, 
moreover, it is possible to take the rotational tran­
sitions into account classically, which significantly 
simplifies the calculations. Indeed, on substituting 
(21) into expression (20), and utilizing the independ­
ence of the different degrees of freedom, we break 
up W(a, a', t) for a fixed orientation of the mole­
cule into a product of factors describing the differ­
ent transitions in the molecule:3> 

*[llb11] = 0 x h11• 

3lWe employ a system of units in which the Boltzmann con­
stant k = 1. The symbol < ... >-r in future will denote not only 
quantum mechanical but also statistical averaging. 

\ { 11-lJ} Wrot=.) exp - 2T exp {- i (a- a') k [Qbvl} 

where 1 is the angular momentum vector of the 
molecule, Rv is a tensor related to the moment 

(22) 

of inertia tensor of the molecule I and to the posi­
tion of the scattering nucleus with respect to its 
center of mass [S] bv, 

( { MoV! ') ( x2 \} =.) exp - ----zr- i (a~ a kVm + it 2Mo + xVm; dVm. 

For the vibrational part of the motion the ex­
pression wvib can be represented in the following 
manner: 

wvib =IT< exp (- ia' kp~~O)) exp (- ixu~ (0)) exp (ixu~ (t)) 
s 

( . kp~ (t) )> xexp w-- . 
mv T 

On taking into account the fact that eAeB 
= exp {A+ B +% [A, B l}, if (as is true in our 
case) [A, B] commutes with A and B ( cf., for 
example, [3]) expression (23) can be written in 
the form 

wvib = IT <exp <Q~,)>T' 

(23) 

Q~v = i (xc~) (q~ (t) - q~ (0)) + i (kc~) (aq~ (t) -a' q~ (0)) 

- f (a -a') (x~~) (kc~) [q~ (0), q~ (0) l 

+ f (xc~) (kc~) {a [q! (0), q~ (t)l 

+ a' [q~ (0), q~ (t)]} + f (xc~)2 [q~ (0), q! (t)] 

+ + aa' (kc!) 2 [q~ (0), q~ (t) ]. 

We now use the well known theorem relating to the 
average for a system of oscillators ( cf. [3]) 

(eQ~v)T = exp{+<(Q~)2>r}• 
and then obtain 

W vib (a, a', t) = eF(e<, "'· 1), (24) 

where for the index of the exponential on the right 
hand side we obtain after fairly simple calculations 

F (a, a', t) = ~{(xc~)2 [(q~ (0) q~ (t)>r- (q~ (0) q~ (O)>rl 
s 

+(a -a') (xc~) (kc~) [(q~ (O)q~ (t)>r- (q~ (0) q~ (O)>rl 
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--%- (kc~) 2 ((a2 + a' 2) (q~ (0) q~ (0)) 

- 2aa' (q~ (0) q~ (t)>rl}; 

(q~ (0) q~ (t)>r = w-; (q~ (0) q~ (t)>r=-%- w;1 ((nr + 1) /"'' 1 

(q~ (0) q~ (t)>r =-%- i ((nr + 1) /"'s 1 - nre-1"'' 1 l, (25) 

where nT = [ exp( Ws /T) - 1]-1 is the index of the 
thermal exponential. 

The substitution of (24) into (22) is followed by 
integration over a and a'. The result depends in 
an essential manner on the ratio of the parameters 
Rv = K2/2mv, w and r. It can be seen that the 
terms quadratic in a and a' are of order Rw/r 2 

compared to unity, while the linear terms are of 
order R/r. Under the conditions Rw/r 2 « 1 the 
parameter R/r is arbitrary and has a strong ef­
feet on the final results. 

On retaining only the terms linear in a and a' 
we have 

(Y-<)2 ioo I -iw I 2 1] F.,( a, a', t) = ~ 2w, [(nr + 1) e ' + nre ' - nr -
s 

+ i (a- a') (xc~) (kc~) [(nr + 1) /"'s 1 - nre-1"'' 1 - 1l. 
(26) 

On substituting wrot, wtr, and wvib into ex­
pression (22), where the symbol ( ... )Qmol de­
notes averaging over the angular orientations of 
the molecule, we obtain after further transforma­
tions the following formula for the scattering cross 
section: 

. , ( mv if )} < 1 {- £2
} -ta mv+m Ea -Eo--z Vna2 exp a2 

{ 
kRY.+h/Mo~) 

X exp - i (a -a') Y-R:Y. + Y-2 / MoE f 

x exp {F.(a, a', t)}) e-i(s-s)tdada' dt; 
Omol 

a2 = 2T (xRvx + x2/M0), 

( d•cr )2 ±nw). k' ( m )2 ~2 <~1~ {·- E2} -Wr ~~ = ~ - Av ~ exp 2 e 
de do v k f-lv y .rta2 a 

f 1. [ ]}n [ k ), ]n 1 ( Y.C ) 2 1 1 Cv d 
X~)_v_ IT +~2(1±1) 1±-~Wt.dm 
· n! ~ 2wl. , e "'I. _ 1 Y.Cv "' 

p -1 > 
X ( cp2 + T )'i'='Po .a mol' 

·:1 (Y.c~) 2 w, . 
Wr = ~ 2w, cthw, 

s 

(28)* 

The calculation of the resonance scattering of 
neutrons by crystals is carried out in a similar 
manner. We expand the operator for the displace­
ment of the nucleus from the position of equilib­
rium r~. uv = rv- r~, in terms of normal coordi­
nates (mv = mv' = M ): 

Uv (t) = ~ e,u~ (t); 

where es is the unit polarization vector for a 
phonon of type s (the index s includes the propa­
gation vector k1 and the nature of the phonon po­
larization), as, a; are the phonon annihilation and 
creation operators, N is the number of atoms in 
the crystal. 

The derivation of W(a, a', t) in formula (19) 
for crystals is fundamentally analogous to the 
derivation of (24), (25). We reproduce the final 
result which in addition also includes the coherent 
(interference ) part of the scattering: 

F (a, a', t) = ~{(xe,)2 [(u~, (0) u~ (t)>r- (u~ (0) u~ (O))r] 

+ (a- a') (xe,) (ke,) [(u~' (0) u~ (t))r 

- (U~ (0) U~ (O))T]}, (29) 

where 

( U~' (0) U~ (f)) T = w:;-2 ( U~' (0) U~ (f)) 

= (2MNw,t1 [(nr + I) i.J; + nre-'"'], 

B = 8 + Bvib. (27) (Uv' (0) u~ (t)>r = i (2MN)-1 [(nr + I) e'"'- nre-'"' ], 

and for the cross section corresponding to a speci­
fied change in the vibrational state of the molecule 
we have ( Evib = ± nw/\.) *cth = coth. 
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Considering for the sake of simplicity a cubic 
crystal we obtain from (19) and (29) for the reso­
nance scattering of neutrons (evaluated per atom 
of the crystal) accompanied by the creation (upper 
sign ) and absorption (lower sign) of n phonons of 
type A. in the incoherent approximation (inelastic 
scattering is basically incoherent; for the elastic 
scattering the coherent part is included in the for­
mula given below by adding for n = 0 the factor 

I ~exp {ix (r~- r~·)} I) : ( ~~ tn"'" 
= ~ (M ~my IPe-wT :, 

{ x2 
[ 1 1 ]}n 

X g(roA)2MwA e"'"iT_1+z(l±1) 

{ h d }n ( f2 )-1 
X 1 ± X2 (J)A dcp ljl2 + T ~=~.' (30) 

where g( w) is the phonon distribution function in 
the crystal, 

wmax 
x2 \' 1 w 

WT =2M .\ g (ro) wcth 2T dro, 
0 

Wmax is the maximum frequency. 
For elastic scattering we have from (12) ( n = 0, 

k · IC = K2/2 ) a formula which coincides with the re­
sult of Kazarnovskil and Stepanov [s] obtained for 
w « r by a different method. 

If the transferred energy E is much smaller 
than E0, then the quantity k • IC/ K2 can be replaced 
by %. while the quantity k · IC/2M can be replaced 
by R/2. 

We now discuss the formulas (28) and (30) ob­
tained above. As can be easily seen, for suffi­
ciently broad resonances satisfying the condition 
E, R « r, we can neglect in (28) and (30) terms 
containing derivatives with respect to cp, and set 
cp 0 equal to MEa/(M+m)- E0• Then (28) and 
(30) coincide with the result which is obtained by 
the Fermi pseudopotential method if we set in it 
the pseudopotential V equal to 

where the amplitudes F 11 are not constant, but de­
pend on the energy of the incident particle. Thus, 
all the results obtained by the pseudopotential 
method admit in the case E, R, w « r a simple 
generalization to the case of resonance neutron­
nuclear scattering by means of the replacement 
of the constant amplitudes a 11 by the amplitudes 
F 11 defined in accordance with (18). 

If at least one of the quantities E: or R is com­
parable to r, then the situation is of a more com­
plicated nature, and in this case it is necessary to 
utilize the general formulas (28) and (30) which 
lead, in particular, to the following conclusions. 
We consider the elastic scattering (n = 0, E: = 0) 
of neutrons through a given angle ( K given). Then, 
for example, it follows from (30) that the depend­
ence of the scattering cross section on the neutron 
energy has a Breit-Wigner ·character with a max­
imum shifted by an amount - R/2, i.e., at most by 
an amount 2mE0 /M. For example, in the case of 
Cs55 this shift is approximately equal to 0.1 eV 
(for E0 = 5.7 eV and r = 0.25 eV). 

The chemical binding manifests itself in an even 
more significant manner when a large amount of 
vibrational energy is transferred. In particular, 
if E "' r, while R « r, then we can obtain from 
(30) the total cross section for the excitation of 
n phonons in the following form: 

c;n = 0~ {1 + ~ (J)A d~} n(cp2 + f2j4)~MEai<Mtm)-E,, (30a) 

where 4 is the total cross section for the excita­
tion of n phonons obtained by the Fermi pseudo­
potential method with constant scattering ampli­
tudes. 

The differential operator in (30a) yields in the 
case nw < r a function with a maximum shifted by 
approximately -nw/2 in comparison with E0, and, 
in contrast to the Breit-Wigner case, not symmet­
ric with respect to MEa I ( M + m) - E0• Analogous 
phenomena occur also in the case of the scattering 
of neutrons by molecules. 

These phenomena must be taken into account in 
the study of the passage of neutrons through mod­
erating substances; they must also be taken into 
account in the investigation of the structure and of 
the physico-chemical properties of different media 
by the methods of neutron spectroscopy which are 
being developed at present. 

We express our gratitude for the discussion of 
results and for useful advice to V. I. Gol'danskil, 
A. S. Kompaneets, and L. P. Pitaevskil. 
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