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The penetration of a longitudinal field having a frequency close to the Langmuir frequency 
into a plasma is examined by taking into account nonlinear effects. It is demonstrated that 
hysteresis of the field amplitude in the plasma occurs, that is, two values of the field in the 
plasma may correspond to a single value of the field strength at the boundary. An equation 
defining the field distribution in the plasma and resembling the Ginzburg-Landau equation 
in superconductivity theory is obtained. 

1. DISTRIBUTION OF PARTICLES IN THE FIELD 

THIS paper is devoted to a theoretical investiga
tion of the nonlinear phenomena which occur, in 
the absence of collisions, in a plasma situated in 
a high-frequency magnetic field. We consider in 
greater detail the case when the field frequency is 
close to the plasma resonance frequency w0• 

We first calculate the time average of the per
turbation of the charged-particle density under the 
influence of a specified high frequency field 0 . The 
field distribution will be discussed later. 

In order to find the perturbation, it is necessary 
to know the average force acting on the particle in 
the field. To this end it is simplest to use the re
suits of one of the a ahors [2], who has shown that 
a unit volume of the g1edium situated in an inhomo
geneous alternating magnetic field of frequency w 

E = E(r) e-iwt, 

is acted upon, in the absence of absorption, by a 
force 

(1) 

where Eik is the dielectric constant of the me
dium 2>. The derivative BEik /an can be trans
formed by recognizing that the tensor ( E ik - oik) I 47r 

l)Such a problem was considered by Getmantsev and 
Denisov[']. The authors were interested in it in connection 
with the question of perturbations of the ionsphere near an
tennas mounted on artificial earth satellites. No account was 
taken in [1] however, of the influence of the external magnetic 
field. 

2)We are considering here the general case of a plasma in 
a constant magnetic field. 

is the polarizability tensor, which in the case of a 
plasma is proportional to the electron concentra
tion n. 

Thus, in the absence of a magnetic field we have 

so that 

In a magnetic field the tensor components Eik 
are, as is well known (the x axis is along the mag
netic field), 

Exx = 1 - 4:rte2nl mro2 , Eyy = Eyz = 1 - 4:rte2n I m (ro2 - ro~), 

Byz = - Ezy = - i (4:rte2 I m) nroH I ro(ro2 - ro~). 

Exy = Eyx = Exz = Ezx = 0, 

(roH = eH I me). 

In this case aik can be represented in the form 

a;k = - e2n~ik I mro2 , (3) 

( 

1 ~. :Hw 
0 2 i-----

~ik = w•-wH w2-w~ 

WHW w2 
0 -i -----

w2- w~ w2 -w~ 

It is seen from (3) that 

Substituting (4) in (1) we get 

f ={ a;k grad E;Ek. 

In an unmagnetized plasma 

855 
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Dividing f by the electron concentration, we ob
tain the force acting on a single electron 

f 1 ctik "' e?. * 
F =- = -4 -grad E,Ek = --4 2 ~k grad E,Ek. (5) 

n n mw ' 

(This formula was previously obtained by Miller [3J.) 
In an unmagnetized plasma ( l3ik = oik) 

(6) 

The force acting on the ion is M/m times 
smaller and can be neglected ( M is the ion mass). 
This statement does not apply, however, if w is 
close to the Larmor frequency eH/Mc of the ions. 
In this case the formulas which we have used for 
Eik are likewise incorrect. We are not interested 
in this case. 

We note also that the expression (5) for the av
erage force is valid only under the assumption that 
the field amplitude changes little over the distance 
covered by the electron during the oscillation pe
riod. This leads to the conditions 

R ~ Velw, R ~ (e IE llmw) w-1 (7) 

(ve = V2T/m -thermal velocity of the electrons, 
e I E 1/mw -ordered velocity of the electrons, 
R -characteristic distance over which the field 
amplitude changes noticeably). The condition (7) 

leads, in particular, to a limitation on the value of 
the field intensity: 

jEJ<mw2 Rje. 

If the plasma contains, in addition to the alter
nating field, also a constant field with potential cp, 
then the total average force acting on the electron 
will be 

F =grad (ecp- e2~tkE;Ek14mw2 ). (8) 

From this formula we see that the expression in 
the bracket is equal to - U ( U is the average po
tential energy of the electron). 

To obtain the time-averaged perturbation in the 
electron concentration, we must substitute the 
force (8) into the kinetic equation for the electron 
distribution function and solve this equation. On 
the other hand, if, as is customary, the rate of 
change of the field amplitude is sufficiently small, 
so that the following inequality is satisfied 

(9) 

where t0 is the characteristic variation time of the 
field amplitude, then it can be stated beforehand 
that the electrons will have a Boltzmann distribu
tion with a potential energy given by (8), so that 

n (r) = n0 exp [(ecp - (e2 I 4mw2) ~ikE;Ek) IT], (10) 

where n0 is the unperturbed electron concentration 
and T is the plasma temperature in energy units. 

The potential cp is given by the Poisson equation 

Acp = - 4ne (n,- 11e) 
. • (11) 

= -4ne {n1 - n0 exp [(ecp- (e2 I 4mw2) ~tkE,Ek) IT]}. 

In the case when the characteristic distance R 
over which the fields vary noticeably is much 
larger than the Debye radius in the plasma a, 

(12) 

the term with t::..cp in the left half of (11) is small 
and can be neglected. In this case (11) reduces to 
the condition for the quasi -neutrality of the plasma: 

Solving this equation with respect to cp, we obtain 

ecp = (e2/4mw2) ~tkE;Ek + T In (n;/ n0). (13) 

To obtain ni it is necessary to solve (13) and 
the kinetic equation for the ion distribution function 
simultaneously. The force acting on each ion is 
simply 

F1 = - e grad cp. (14) 

If, in addition to the inequality (9), there is satis
fied also the stronger inequality 

Vt = V2T I M ~R I f0 , 

then the ions have a Boltzmann distribution so that 

(15) 

Solving (13) and (15) simultaneously we obtain for 
this case 

ecp = (e2 I 8mw2) ~tkE;Ek. (16) 

n = n1 = n0 exp (- e2~1kE;Ek/ 8mw2T). {17) 

In the absence of a magnetic field we obtain the 
formula derived in [l] 

n = n0 exp (- e2 J E j 2/8mw2T). (18) 

We see therefore that at sufficiently large values 
of E, i.e., when 

IE I d: VBTm w / e = 2·10-8w VT"IlOOO VI em, (19) 

the perturbations produced by the field in the 
plasma are large. 

Using the explicit expression for the tensor 
l3ik· we can rewrite (17) in the form 

n = 11 exp {-..!:____ (~ + ~ + i wH , [E'E] H)\, 
0 'dmT W2 w'-w~ w(w2 -w~) J 

(20)* 
*[E*E] = E* X E , 
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where E11 is the projection of E on the H direc
tion, and E1 is the projection of E on the plane 
perpendicular to H. 

So far we have dealt with a determination of 
n ( r ) for a specified field distribution E ( r ) . Let 
us now proceed to determine E ( r ) . This problem 
can be solved independently of the determination 
of n( r) only if the field frequency is much larger 
than the plasma Langmuir frequency w0: 

(21) 

In this case we can assume in the determination of 
E(r ), that the dielectric constant of the plasma is 
equal to unity, i.e., we can calculate E(r) using 
the same formulas as for the vacuum. 

On the other hand, if condition (21) is not sat
isfied, then the perturbation n ( r) changes the di
electric constant of the plasma. Since n ( r) itself 
depends on E, the problem determining E becomes 
nonlinear. As is well !mown, in any nonlinear prob
lem it is possible for harmonics of the fundamental 
frequency to appear, i.e., oscillations with frequen
cies 2w, 3w, etc. An account of these harmonics 
would complicate the solution of the problem. We 
shall show, however, that under condition (12) the 
amplitude of the harmonics is small and they can 
be disregarded. 

To prove this, we write out the equation for the 
alternating component of the electron distribution 
function. This is precisely the equation which be
comes nonlinear in a strong field. We take account 
of the fact that under condition (12) it is possible to 
neglect the term with derivatives with respect to 
the coordinates in this equation. The equation then 
assumes the form 

~L ?l~_.o cit+ rJvm · 
(22) 

Multiplying this equation by ev and integrating with 
respect to d3v, we reduce it to the form 3l 

c}j/at- e~n (r) Eim ~· 0, (23) 

where j = e J vfd3v is the current density. 
Under condition (12) we have n ( r) = ni ( r). How

ever, owing to the large mass of the ions, the alter
nating field hardly influences their motion. There
fore ni (r) is equal to its time-averaged value and 
does not contain a high-frequency component. Thus, 
the equation relating j with E has a time-inde
pendent coefficient (which does depend, however, 
on the amplitude E), so that no higher harmonics 
arise. It also follows from (23) that under condi
tion (12) j is connected with E by the usual for-

3lFor simplicity we present the proof without the magnetic 
field. 

mula, in which n is taken to mean the average 
value of n(r ). This means that we can use for E 
the usual macroscopic material field equations in 
which the dielectric constant is expressed in terms 
of the average concentration n(r ), defined in turn 
by (10) or (17). 

In the latter case we have 

e1k (r) = 61k- (w0 / w) 2 exp (- e2[3 1rnE;Em / 8mw2T) [3ik' 

(24) 

If there is no magnetic field, then 

e(r) = I - (w0 I w) 2 exp (- e2 1 E j2 I 8mw2T). (25) 

2. NONLINEAR EFFECTS NEAR THE PLASMA 
RESONANCE FREQUENCY 

An interesting example of the application of the 
formulas obtained in the preceding section is the 
question of the occurrence in a plasma of a weak 
longitudinal field, with a frequency close to the 
plasma frequency w0• Specifically, we may deal 
with a plasma layer between plates of a capacitor 
or with a plasma near the surface of a metallic 
antenna, etc. 

Assume that an electric field E0 is situated 
outside a semi-infinite layer of plasma and is 
normal to the latter. In this case the electric 
induction D inside the plasma will be equal to 
E0, in accordance to the condition div D = 0, 

D = £ 0 • (26) 

If we neglect the influence of E on E, i.e., if 
we solve the problem in the linear approximation, 
then the field intensity in the plasma will be 

where 

is the dielectric constant of the unperturbed 
plasma. 

If w- w0, then 

e0 ;::::::- 2 ( w - w0) / w0 ~ 0 

(27) 

and E increases without limit for constant E0• Of 
course, the true value of E will be finite. To de
termine this finite value we must take into account 
the nonlinear corrections, i.e., the dependence of 
Eon E. 

If the field E is weak, then the exponential in 
(2 5) can be expanded and we obtain (for w - w0 ) 

e ~ e0 +e2 jEj 2 j8mwcT ~ e0 -1-xl£1 2 , 

x = e2 . 8mw~T. 

(28) 

(29) 
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Substituting (29) in (26) we obtain the equation for 
E: 

(30) 

The equation for the amplitude I E I has the form 

(eo +xl£12)21£12 = ]£0 12• (31) 

It is interesting to note that this equation has the 
same form as the equation for the amplitude of the 
forced oscillations of an anharmonic oscillator 
without friction near resonanceC4J. 

Equation (31) is cubic in IE 12 and has, in the 
general case, three roots: I E1 12, I E2 12, I E3 12. 
The dependence of these roots on Eo is shown 
schematically in the figure. We see that if Eo 
exceeds a certain value Ek, then one value of I Eo 12 

corresponds to one value of IE 12. On the other 
hand, if E < Ek, then to each value of the field am
plitude outside the plasma I E0 12 there correspond 
three values of the field inside the plasma, i.e., 
hysteresis sets in. It can be shown, however, that 
the states corresponding to the middle root I E3 12 
are unstable and cannot be realized. 

kl 

To determine the critical value Ek we note that 
when E = Ek, we have 

de0 I d IE 12 = 0. 

Differentiating (31) with respect to I E 12 we obtain 

(eo +xI E 12) + 2 IE ]2 (de 0 I dIE ]2 + x) = 0. (32) 

Putting dE 0 /dl E 12 = 0 and simultaneously solving 
(31) and (32), we get 

(33) 

At this value of E0, I E 12 can assume two values: 
I E1k 12 and I E2k 12: 

It is easy to show that the root I E2 12 increases 
without limit as Eo decreases. This, however, is 
connected with the neglect of damping, i.e., energy 
dissipation. If dissipation is taken into account, 
the third and second branches merge together 

for some negative value of E0, as shown in the fig
ure by the dashed line. 

So far we have considered the corrections to E 
due to nonlinearity. There exist, however, correc
tions of a different kind, connected with the depend
ence of E on the coordinates, i.e., with spatial dis
persion. The spatial dispersion is also expressed 
in the dependence of E not only on the frequency 
w, but also on the wave vector k. For small k, 
when 

ka~ 1, (34) 

we can expand E in powers of k. This expansion 
has the form 

e (w, k) :::::: e (w) - 3 (ka) 2 (w0 I w) 4 • (35) 

So long as the nonlinear corrections and the 
corrections in k are small, they can be consid
ered separately. The final expression for E has 
therefore, in the case when w ~ w0, the form 

e (w, k) ~ e0 +x IE ]2 - 3 (ka) 2 • (36) 

Formula (36) means that D(r) is connected with 
E ( r ) by the relation 

D = e0E +xI E ]2E + 3a2~E, 

or, in the one-dimensional case 4> 

D = e0E + x IE 12 E + 3a2d2E 1 dx2 

(37) 

(the x axis is in the E direction, i.e., normal to 
the surface of the plasma layer). Substituting the 
last expression for D in (26), we obtain an equa
tion for the field distribution in the plasma: 

Equation (38) must be solved with the boundary 
condition E = E0 for x = 0 (i.e., on the plasma 
boundary). 

(38) 

However, since the value of E inside the plasma 
is much larger than E0 when Eo« 1, we can as
sume with sufficient accuracy that the boundary 
value of E is equal to 0: 

E = 0, X= 0. (39) 

If we neglect the nonlinear term in (38), the solu
tion under condition (39) assumes the form 

E _ En r 1 ( x ·1 jif;;T) J - e !_ - exp -a v ::\ ' 
E _ Eo [I r· ix "~ j£;; ') J - s -- exp 'a v 3 , e0 > 0. (40) 

4lStrictly speaking, in order to be able to assume that the 
plasma particles have a Boltzmann distribution, it is neces
sary that the electric field approach zero at infinity. There
fore, the one-dimensional case considered here must be 
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Expressions (40) coincide, as they should, with 
those obtained by Landau for this case directly 
with the aid of the kinetic equation [SJ. 

We note, however, that the small Landau
damping term is missing from the second formula 
of (40). Equation (38) does not describe this damp
ing. It is negligibly small for small E0• It is seen 
from (40) that when Eo « 1 the values of impor
tance in (38) are k"' IE';/ a« 1/a. This justifies 
the use of the expansion (35) and consequently of 
Eq. (38). 

In order to ascertain when the nonlinear term 
can be neglected in (38), i.e., when solutions of the 
type (40) are correct, we rewrite (38) in dimension
less variables. To this end we put 

E = E0y I (x£~)'1', x = aV3 tl(x£~)'1•, (41) 

after which (38) assumes the form 

d2y I dt2 +ttY + Y3 = 1, fl = 8 0 I (x£5)'''. (42) 

It is clear from (42) that the term with y3 can 
be neglected if p. » 1, i.e., if 

e0 ~ (x£~)'1' = (e2E~ I 8mw~T)'h. 
In the opposite limiting case, when p. « 1, i.e., 

in the direct vicinity of the plasma frequency, we 
can put in (42) p. = 0. In this case the distribution 
of the field in the plasma is determined by the 
universal equation 

(43) 

It is seen from (43) that the field intensity in the 
plasma has the order of magnitude 

(44) 

and the characteristic dimension x0, over which 
the field varies, is 

(45) 

From the statements made earlier it is clear 
that (38) is valid under the following conditions: 

x£2 < 1 and x0 ~a. (46) 

[ The first of these equations insures the possibil
ity of expanding the exponential in (25), while the 
second ensures the possibility of confining oneself 
to the term with ( ka )2 in (35)]. It is seen from 
(44) and (45) that both conditions are satisfied if 

(47) 

The solution of the nonlinear equation (42) with 
boundary condition (39) can be obtained for the case 

regarded as the limiting case of a cylindrical one (see below). 
The cylindrical case goes over into the one dimensional case 
if x « Po (p0-radius of the antenna). 

for real y. We shall not deal here with these cal
culations 5 >. 

It is curious that the left half of (38) has the 
same form as the Ginzburg-Landau equation in 
the theory of superconductivity near the transition 
point [7], that of the equation for the theory of 
superfluidity near the A. point [8], and that of the 
equation describing vortex filaments in a non-ideal 
Bose gas [9]. This similarity is not an accident. 
In all cases the need for taking into account the 
nonlinear terms and the possibility of retaining 
the second derivatives is connected with the small
ness of the coefficient of the linear term. In [7 •8] 

this smallness is ensured by closeness to the tran
sition point, while in [9] by the weakness of the in
teraction, and in the present work, it is ensured by 
closeness to the resonant frequency. Analogous 
equations are also encountered in nonlinear theory 
of the propagation of radio waves in a plasma. [to] 

So far we have considered only the one-dimen
sional problem of field penetration in a plasma. 
Let us consider now the axially-symmetrical case, 
for example, a field at a short distance from a 
cylindrical antenna of radius Po situated in a 
plasma. In this case the field is directed from 
the antenna along the radius and depends only on 
the distance to the antenna axis p. The equation 
div D = 0 has in this case the form 

p-ld (pD) I dp = 0. 

Integrating, we obtain an equation which replaces 
(26) in the cylindrical case: 

D = PoEoiP, (48) 

where E0 is the field on the antenna surface itself. 
Substituting in (48) the previously obtained re

lation (37) between D and E, we obtain for E, the 
equation 

3 2 -I d dE + E J E /2 E - Po E a p d- p d- eo +x - - u· p p p 
(49) 

At short distances from the antenna surface, i.e., 
when p -Po » p0, this equation, as it should, goes 
over into the one-dimensional equation (38). 

If we neglect the spatial dispersion, i.e., the 
first term in (48), we obtain an algebraic equation 
for E: 

(50) 

which differs from (30) only in that E0 is replaced 
by p0E 0 I p. The entire investigation of (30) given 
above therefore applies fully to (50). It is seen 
from (50) that if w = w 0, i.e., Eo = 0, then E de-

5iEquation (38) has as its first integral 

:>a"\dEidx\2 + Eo\E\ 2 + x\E\';2- EoE* - £ 0*£ = const. 
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creases at great distances in accordance with 

IE I = (Po I Eo I/ x)'1'p-'1', 

and not like 1/ p as in the case of Eo ¢ 0. 

(51) 

It must be borne in mind, however, that owing 
to the influence of the spatial dispersion, formula 
(51) can apply only at a rather large p/a. 

The authors are grateful to V. P. Silin for a 
useful discussion. 
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