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A study is made of the low-frequency electromagnetic waves in a conducting gyrotropic aniso­
tropic medium characterized by a static specific resistivity tensor Pik· If gyrotropy predomi­
nates over anisotropy, i.e., if the diagonal components of the tensor Pik are smaller than the 
off-diagonal, weakly attenuated elliptically polarized waves propagate in the medium. In the 
opposite case, when the anisotropy is large, the waves are damped. The results are applied 
to a metal in a strong magnetic field. Weakly attenuated waves propagate in metals with closed 
carrier trajectories with unequal concentrations of electrons and holes. The reflection of an 
electromagnetic wave from a semi-infinite space and the resonance excitation of the weakly 
attenuated waves in a plate are considered. 

G ALVANOMAGNETIC phenomena in a constant 
strong magnetic field have been studied in two lim­
iting cases, the passage of a constant current 
through a metal, [1•2] and, the high frequency prop­
erties of metals (cyclotron resonance, etc. ) . 

There exists a range of frequencies in which, 
when describing the propagation of electromag­
netic waves, we can use the static electronic con­
ductivity tensor O"ik evaluated in [1•2] for infinite 
space. The applicability conditions for such an 
analysis are the following 

Here w and k are the frequency and wave vector 
of the electromagnetic wave, ~ is the cyclotron 
frequency, r is the radius of a Larmor orbit, and 
T and l are the time and mean free path of the 
electrons. 

1. INFINITE SPACE 

We consider the propagation of an electromag­
netic wave of frequency w in a conducting medium 
possessing a tensor resistivity Pik ( Pik = af~), 
where 

P;k = sik + aik' i, k = 1, 2, 3, (2) 

8;k = ski' aik = - aki" (3) 

Maxwell's equations can be written in the follow­
ing form when the displacement current is neg­
lected: 
rotH= (4:n/c) j; rotE= -c-1 aH!at, E; =pikjk. (4)* 

*rot= curl 
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Let the electromagnetic wave propagate along 
axis 3. It is easily seen that only components 
Pcax'• where a, a' = 1, 2, enter Maxwell's equa­
tions. The symmetrical part of the two-dimen­
sional tensor Paa' (Saa') can be diagonalized to 
define the axes 1 and 2. In this system of coordi­
nates the tensor Paa' has the form 

(5) 

and (4) can be rewritten as: 

aE±!ax3 =- (i<o/c~±) H±, aH±!ax3 = (4:rt~±/cp±) £±>(6) 
(7) 

P± = PI + ~1P21• (8) 

~± = (PI - P2)/2P12 ± [- 1 + (PI - P2) 214Pi2 )'/,. (9) 

As expected, two waves with different polariza­
tions propagate in the medium. Putting E, H 
~ exp { - i ( wt - kx3 ) } , we obtain from the system 
(6) the dispersion equation relating the wave vector 
k with the frequency w for each of the waves: 

(10) 

We omit the index ±. 
To begin with we consider the case when 

I P1 -p2 l/21 p 12 1 < 1. Here {3 =a± bi (a, b are real 
numbers; a 2 + b2 = 1 ). From equation (7) it is seen 
that each of the eigen waves is elliptically polar­
ized. The equation of the corresponding ellipse is: 

E~lb~ + E~lb~ = 1, (11) 

b~,v = E~/2 (1 ±a), a = (p 1 - p 2)/2p 12· (12) 
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where the amplitude Eo is related to the energy 
density of the electromagnetic field W by the usual 
relation 

w = £~/4:n:. (13) 

The axes J.l., v of the ellipse (11) are rotated with 
respect to the coordinate axes 1, 2, by an angle of 
7T/4. The natural waves of different polarization 
differ only in the direction of rotation of the field 
vector. 

Equations (8)-(10) show that the waves under 
consideration are in general strongly attenuated, 
and only when the strong inequality 

I Pl + P2 I /2 I Pl2 I ~ t (14) 

is satisfied is one of the waves almost unattenu­
ated. 1> 

For a real wave vector k, the real and imagi­
nary parts of the frequency w = w' + iw" are de­
termined by the equalities 

w'± = =t= (c2k2j4n) [Fj2 - (Pl- P2)2/4J'I,, 

w'~ = - c2k2 (P 1 + P2)/t6n. (15) 

The two signs for w' in (15) correspond to the two 
directions of propagation of the waves. The waves 
then differ in the direction of rotation of the polar­
ization vector. It is clear from (15) that when 
I p 1 + p2 l « I Pt2 I the attenuation is small (I w" I 
« I w' I). 

We give the dependence of the wave vector k on 
frequency only when condition (14) is satisfied: 

I P1+ P2~~ 1. 
ZP12 

(16) 

The attenuation of one of the waves is associated 

with the dissipative terms of the tensor Pa{3 and 
is small over one wavelength, but the attenuation 
of the other is not associated with dissipation. 

When I p1 + p2 l « p12 the gyrotropic-anisotropic 
medium can be considered as a medium with a real 
dielectric constant [ E = ±47T/wp12 ; see (8)-(10)]. 
For the unattenuated wave ( E > 0) the phase veloc­
ity is v cp = c ( wp 12 I 41T )112, and the group velocity 
is vg = 2vcp. 

Now let I Pt- P2l/2l P12l > 1. Then {3 = a ± I b I 
is a real quantity (a2 -b2 = 1), and, consequently, 
the natural waves [the solutions of (6)] are linearly 

'lA general analysis (taking into account temporal and 
spatial dispersion) of the unattenuated waves in metals in a 
strong magnetic field has been given by Kaner and Skobov.['] 
The work of Konstantinov and Perel' ,[4 ] in which the propaga­
tion of an electromagnetic wave along a magnetic field is 
treated with spatial dispersion taken into account, should be 
noted. 

polarized. The angle ljJ between the directions of 
polarization is given by the quantity 

tg'IJ = b, 

We note that when (p 1 -p2)2/4pi2 » 1 (strong 
anisotropy) the angle ljJ is close to 7T/2; when 
(Pt - p2)2/4pf2« 1 the angle ljJ is close to zero. 

2. SEMI-INFINITE SPACE 

To consider the reflection of an electromagnetic 
wave from a semi-infinite space, it is convenient 
to use the concept of surface impedance, which in 
this case is conveniently defined as follows: t 
= {3± ( E/H )0 (the index zero signifies that the quan­
tities E and H are evaluated when x3 = 0 ). Ac­
cording to equation (6) we obtain the usual expres­
sion for ?;;±: 

~± = V wp±i/4:n:, R.e ~± < 0. (18) 

Using the definition of impedance and also the 
first equation of system (6), we obtain an expres­
sion for the complex reflection coefficient R: 

(19) 

The choice of sign of the real part of t± can be 
made if we require that the modulus of the reflec­
tion coefficient R be smaller than unity ( I ~ I < 1). 
Under these conditions, when an unattenuated wave 
is propagating in the medium [i.e., when condition 
(14) is satisfied] the surface impedance is 

~=;::::; V ± wp 12/4n, R.e ~± < 0, (20) 

i.e., t+ is real and ?;;_ imaginary. Therefore 

IR+I ;::::;IY4n-V wp12I/IJ.i4;t + Ywp12l< 1, IR-1;::::; 1. 
(21) 

In the case of strong anisotropy (I Pt - p2 I 
> 2p 12 ), when an arbitrary plane polarized wave 
falls on the surface of the metal, the reflected 
wave is in general elliptically polarized. If the 
incident wave is polarized in one of the principal 
directions of which we spoke in the preceding sec­
tion, the polarization direction of the reflected 
wave is unchanged. We recall that the angle be­
tween these directions is determined by formula 
(17). 

3. THE EXCITATION OF ELECTROMAGNETIC 
WAVES IN A PLATE 

Maxwell's equations in a plate of thickness 2d 
( - d < z < d ) admits of two types of solution: 
1) symmetrical electric field, antisymmetrical 
magnetic field; 2) symmetrical magnetic field, 

*tg =tan 
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antisymmetrical electric field. We denote a so­
lution of the first type by the index s and of the 
second type by a. If it is assumed that the elec­
tric and magnetic field outside the plate are zero, 
then the plate is a resonator, and, consequently, 
the wave vector k assumes discrete values. 

Thus, the proper solutions in the cases con­
sidered have the following form: 

1) symmetrical solution ( kn = ( n + % ) 7T I d) 

£~' 1 = £),'1(0) cos k11 z, H~' 1 = E~\0) (~cknliw) sin knz; 

2) antisymmetrical solution ( kn = n7T I d) 
(22) 

E~al = £~~1 (0) sin knz, H~al ''= E~a'(O) (i~ cknlw) cos knz.(23) 

The choice of such solutions is associated with the 
assumption concerning the existence of surface 
currents (in the first case anti symmetrical, in the 
second case symmetrical ) . 

The frequency appearing in (22) and (23) is de­
termined by the dispersion equation (10), from 
which it is clear that when condition (14) is sat­
isfied the vibration with {3 "" +i [see formula (9)] 
is weakly attenuated, and 

Re w :::::o: c2k2p12/4:rt, Im w = - c2k2 (o 1 + p2)116:rt. (24) 

We now consider the question of the excitation 
of the weakly decaying vibrations in the plate by a 
field of frequency w. If the plate is placed in a 
symmetrical electric field, the field in the plate 
is described by: 

E, (z) = Es (d) cos kz!cos kd, 

Hs (z) = Es (d) (~ck/iw) sin kz/cos kd (25) 

[ k2 from (10)]. In the case of an antisymmetrical 
field 

Ea (z) = Ea (d) sin kz/sin kd, 

H (z) = Ea (d) (i~ck/w) cos/a /sin kd. (26) 

By placing the plate at an antinode of the electric 
field in a resonator we establish the symmetrical 
case, and by placing at an antinode of the magnetic 
field, the antisymmetrical one. Usually the quan­
tities measured in an experiment can be expressed 
in terms of the surface impedance of the plate. 

According to (25) and (26) we have 

~s '·~ (iw/ck) ctg kd, ~a = - (iw/ck) lg kd. (27) * 
The formulae obtained show that the surface 

impedance has a resonant character: neglecting 
attenuation, ts and ta tend to infinity when 

k = (n -~ ~)nld (~s) and k = n:rt!d 

*ctg = cot 

To describe the resonance of the excitation we in­
troduce an expression for the ratio r of the power 
absorbed in the plate to the energy density of the 
electromagnetic wave: 

where, for the symmetrical electric field, 

Wn = (c2p12/4n) [( n + ~) n/dj 2 , 

~Wn = (c2 /4:rt) (P 1 + P2) [(n-:-+) :rt/d]", 

and for the antisymmetrical 

(28) 

(29) 

(J)n = (C2Pl2/4rr) (n:rrld) 2 , ~Wn = (c2/4:rt) (p 1 + p2) (n:rt/d) 2• 

(30) 
It is obvious from the formulae obtained that the 

height of the resonance peak r n = r ( w = wn ) de­
creases with increasing harmonic number as n2• 

We note that a measurement of the resonance fre­
quency, the width of the resonance curve, and the 
polarization of the resonating wave, makes it pos­
sible to determine in a single experiment all the 
components of the tensor Paf3 [see (28)-(30) and 
also (12)]. 

4. METAL IN A STRONG MAGNETIC FIELD 

The results obtained in the preceding sections 
refer most naturally to a metal placed in a strong 
magnetic field. In the present section we consider 
the conditions placed on the magnetic field and the 
propagation direction for various metals. 

If the electron trajectories on the Fermi sur­
face are closed and the number of electrons n1 

is not equal to the number of holes n2, then, in 
the system of coordinates associated with the mag­
netic field, the tensor Pik ( i, k = x, y, z) has the 
following form (the z axis is directed along the 
magnetic field): 

(31) 

Pxu = H! (nl- n 2) ec + bxy, 

Pux = - H I (n 1 - n2) ec + byx, (32) 

and the elements of the matrix bik are of order of 
the resistance in the absence of a magnetic field, 
where lbikl « Hl(nt-n2 )ec I (this is a conse­
quence of the relation r « l). 

Choosing the y axis in the k, z plane and diag­
onalizing the "plane" tensor Pa{3 (a, {3 = 1, 2 ), 
we obtain 

}[ 
----cos{) 
(n1- n,) ec } (33) 
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where J. is the angle between the wave vector and 
the z axis and, respectively, 

C11 , c22 = ~ Pd ± ~ [ (bxy+ byx) COS{} + (bxz + bzx) sin{} J, 

Pd = Pxx + Pyy cos2 {} + Pzz sin2 {} + (Pyz + Pzy) sin{} cos{}, 

In the components p2i, Pi2 subsequent terms of 
order c11 and c22 are neglected. 

From this and from (10), (8), and (9), it is seen 
that in the case considered the dispersion equation 
for the unattenuated solutions is 

Re w ~ (ck2/4ne) [H/(n1 - n 2)1 cos 8, (34) 

and the small attenuation is determined by the fol­
lowing relation: 

Im w ~ - c2k2pdll6n. (35) 

We note that when the angle J. is close to rr/2 
all components of the tensor Pa{3 become of the 
same order of magnitude, and, consequently, the 
vibration is strongly attenuated. The unattenuated 
vibration can propagate if the angle between the 
wave vector and the magnetic field satisfies the 
following condition: 

tg {} < r! l. (36) 

Since the resonance frequency is inversely propor­
tional to the square of the thickness of the plate 
[see (29), (30)], to satisfy condition (1) it is neces­
sary that d be not too small. The strongest of the 
inequalities, as estimates indicate, has the form 

d ~ }/~h·I0-5 cm. 

Recently several experimental papers have ap­
peared in which unattenuated waves in metals in a 
strong magnetic field were observed. [5] These 
waves were called helicoidal. When open trajec-

tories play an important part, or there is volume 
compensation ( ni = n2 ) the diagonal elements of 
the matrix are always significantly greater than 
the off-diagonal. [i, 2] Therefore the propagation 
of unattenuated vibrations is impossible when con­
ditions (1) are satisfied. In metals of such a type 
effects occur associated with the predominance of 
anisotropy over gyrotropy [see formula (17) and 
the end of Sec. 2]. This circumstance will be dis­
played with especial clarity in metals with open 
surfaces, in which for certain directions of the 
magnetic field the elements Pi and p2 have dif­
ferent asymptotic dependences on the magnetic 
field (for example, Pi "' Po ( H/Ho )2, P2 "' Po; Ho 
is the magnetic field for which r = l; Po is the 
resistance when H = 0 ). 

We take the opportunity to thank V. M. Tsuker­
nik for valuable discussion of the results. 
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