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It is shown that the requirement of a nonvanishing total cross section for high energy scat­
tering, treated by the complex moment method, entails the necessity of introducing a third­
order pole at the point J = 1 with t = 0 for partial amplitudes combining with a P pole. For 
this case an arrangement of singularities of the indicated amplitudes is suggested which 
yields a maximal interaction force consistent with unitarity and analyticity [4] and which 
leads to total and elastic cross sections that increase at high energies. 

1. A new trend in the theory of strong interactions, 
connected with the concept of moving partial-am­
plitude poles-Regge poles-is being vigorously 
ct,eveloped of late. The asymptotic behavior of the 
elastic scattering of particles at high energies and 
small momentum transfers is determined in this 
case by the pole farthest to the right in the com­
plex plane of the total angular momentum J -the 
principal vacuum pole or the Pomeranchuk pole, 
which has the quantum numbers of vacuum and a 
positive signature[ 1• 2]. In order to ensure con­
stancy at high energies of the total scattering cross 
section, which is determined by the imaginary part 
of the forward elastic scattering amplitude (t = 0 ), 
it is postulated that the trajectory of this P-pole 
passes at t = 0 through the point J = 1, that is, 
ap ( 0) = 1. When t decreases, the pole moves 
to the left along the real J axis, and this causes 
a logarithmic fall-off of the elastic cross section 
at large s. 

It is natural to assume that at high energies the 
P-pole also determines the asymptotic behavior of 
the photon elastic scattering amplitude [3] • In 
order not to contradict the unitarity conditions in 
the s- and t-channels, it was necessary in this 
case that the residue of the partial amplitude for 
the transition from a pair of photons to any pair 
of particles with the quantum numbers of vacuum 
and positive signature become infinite at the P 
pole when t = 0. 

In the present paper we propose the simplest 
arrangement of singularities in the complex J 
plane, which does not cause the asymptotic van­
ishing of the total cross section for photon scat­
tering. By virtue of this the total cross section 
becomes smaller than the elastic cross section, 

thus contradicting unitarity in the s -channel. 
Namely, in addition to the P-pole there must ex­
ist two additional poles which, colliding at the point 
J = 1 when t = 0, go off to the complex J plane 
as t decreases. This leads to a constant total 
cross section for the scattering of photons on pho­
tons and to total and elastic cross sections of the 
strongly-interacting particles which increase as 
ln2 s at large s; this, according to Froissart [4], 

denotes the maximum possible strength of these 
interactions permitted by unitarity and analyticity. 

2. Let us consider yy scattering. The ampli­
tude of this process can be written in the formC3J 

where 

k1v• k2a and klJ.L• k:!p are the momenta of the pho­
tons before and after the scattering, respectively. 
The minus and plus signs indicate whether the in­
variant functions reverse or do not reverse sign 
following the substitution s ~ u. 

To find the asymptotic behavior of the invariant 
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functions it is necessary to represent them in the 
form of a series in partial waves in the t-channel. 
In this expansion it is convenient to use the par­
ticle states with definite helicity [S]. Two photons 
can be in the following state with specified total 
angular momentum J, parity P, signature or par­
ity J, ( -1 )J, and charge parity C = + 1: 

IJ, 0, +)=I J, + 1+ 1) + IJ, -1 -1),(-1Y P= t 1, 
(-l)!C=+1; 

IJ, 2, + > = [J, + 1-1) + 11. -1 + 1),(-1)! P=+ 1, 
(-l)JC=+1; 

[J, 0, -) = [J, + 1+ 1) -[J, -1 -1),(-1)! P=-1, 
(-JVC=+1; 

IJ, 2, -) = IJ, + 1-1) -IJ, -1 + 1),(-1)1 P=-1, 
(-l)!C=-1. 

The symbols 0 and 2 indicate the minimum value 
of J in these states. 

The yy scattering process is determined by 
five partial amplitudes of the transitions between 
the states with identical quap.tum numbers: 

fto (t) = <O, +I S 1 I 0, +)) 
I 

tt2 (t)=<O.+[S1 I2, +>i(-1)1 P=+1,(-JVC=+1; 

t!2 (t)= < 2, +I S1 12, + >} 

tt (t) =<0,-IS1 I0,~),(-1)JP = -1,(-1)1 C = + 1; 

tf (t) = <2, -I S1 J2, -), (- 1)1 P = - 1, (- 1)1 C = - 1. 

The first three partial amplitudes have the quan­
tum numbers of vacuum and a positive signature, 
and therefore can combine with the vacuum pole. 

Expansion of the invariant functions in helical 
partial waves with definite quantum numbers in 
the t-channel c.m.s. is as follows: 

00 

F; + F; + 2F; = * 2J (2J + l)fto (t) P1 (z), (1a) 
J~o 

00 

F;- F; = * 1~2 (2J + I) tt2 (t) V (J _ ~~ ~;: i) (J+ 2t~(z), 
(1b) 

00 

Fi + F;- 2F; = * 2J (2J + 1) ft2 (t) d~ (z) 
J~2 

00 

+ * 2J (2J + 1) ft (t) d~ (z), (1c) 
J~a 

00 

4F~ = * 2J (2J + 1) ff2 (t) d~ (z) 
J~2 

co 

+ _1_ 2J (2J + 1) ft (t) d~ (z), 
l't 

J=3 

(1d) 

co 

- 4F; = * 2J (2J + 1) ft (t) PJ (z), 
J=O 

(1e) 

where 

d ~(z) = [(J - 1) J (J + 1) (J + 2)]-1 {2 (1 + z2)P~ (z) 

+ 4z (z2-1)P~' (z) + (z2-l)2 P7' (z)}, 

d ~ (z) = [(J - 1) J (J + 1) (J + 2)]-1 { zP~ (z) 

+ (z2 - 1) p~' (z)}, 

z =- 1 -2s/t. 

From the expansions (1) we see that at high en­
ergies the poles with the quantum numbers of vac­
uum and with positive signatures, which include, 
in particular, the Pomeranchuk pole, will define 
the functions F;, F; and F;, and give an asym­
ptotically small contribution to the function F(, 
since d~(z)"" z_ 1d:l(z) as z-oo. 

The poles with negative signature, which com­
bine with the amplitude f~ (t ), will determine for 
large s the function F( and make a small contri­
bution to the functions F;, F;, and F;. The poles 
with negative parity, which combined with F~ ( t), 
contribute only to F;. 

To the contrary, it is easy to express the par­
tial waves in terms of the s-adsorption parts of 
the invariant functions. To this end it is necessary 
to use the orthonormality of the d-functions and to 
write down 'the dispersion relations for the func­
tion13 Fi ( s, t, u) in the t-channel with respect to 
the momentum transfer with no fewer subtractions 
at the points z = ± 1 than the minimum possible 
value of J for the sought partial wave, and to use 
the representation of the Jacobi functions of the 
second kind in terms of the functions of the first 
kindU (see [sJ). Thus, for example, 

co 

ffz (t) = 2 ~ A IFi (s, t) + F; (s, t) - 2F; (s, t)] q~ (z) dz 
z, 

co 

+ 2 ~ 4A [F~ (s, t)l q~ (z) dz; 
z, 

q~ (z) = ((J- 1) J (J + 1) (J + 2)]-1 {2 (1 + z2) Q~ (z) 

+ 4z (z2 - 1) Q~' (z) + (z2 - 1)2 Q7' (z)}, 

q~ (z) = [(J - 1) J (J + 1) (J + 2) ]-1 

x { zQ~ (z) + {.z 2 - 1) Q~' (z)}. (2) 

We note that by virtue of the optical theorem the 
total cross section for scattering is determined 
by the expression 

A lF; (s, t) + F; (s, t) - 2F; (s, t) - 4F~ (s, t)llt~o 

1lThe d-functions are expressed in terms of the Jacobi 
functions of the first kind. 
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in the scattering of quanta with identical circular 
polarizations, and by the expression 

A (F~ (s, t)-+ F; (s, t)- 2F; (s, t)-+ 4F~ (s, t)]J t=o 

in the scattering of quanta with different circular 
polarizations. 

At high energies, F4 drops out of the expres­
sion for the total cross sectionC3J, so that the lat­
ter is given by the combination 

A !Fr (s, t) + F; (s, t) - 2F; (s, t) II t=o· 

We see thus that the total cross section of yy scat­
tering at high energies is determined by that par­
tial wave in the t-channel, having the total angular 
momentum projection on the direction of the rela­
tive particle motion not equal to zero (in this case 
the projection is equal to 2 ), this being a conse­
quence of the photon mass being equal to zero. 

This can be readily verified by considering, 
for simplicity, the scattering of photons and vec­
tor mesons with nonzero mass by pions. In the 
case of 7r'Y scattering, as in yy scattering, the 
total cross sections in the case of large s is de­
termined by the partial wave having a total mo­
mentum projection on the relative-motion axis 
equal to 2, while in the case of the scattering of 
the vector meson by the pion it is determined by 
the partial wave with zero projection of the total 
angular momentum. Incidentally, the same situ­
ation occurs in the scattering of spin-1/ 2 particles. 
If the fermion mass is finite, then the total cross 
section is determined at high energies by the par­
tial wave with zero projection of the total momen­
tum, and in the case of zero mass it is determined 
by the partial wave with unity projection of the 
total angular momentum on the relative-motion 
axis. 

3. As is well known, to obtain the asymptotic 
values of the invariant functions it is necessary 
to represent the sum over the partial amplitudes 
in the form of a Watson-Sommerfeld integral, and, 
by shifting the contour of integration to the left, 
calculate the contribution from the P-pole. In order 
to pbtain the value of the invariant functions in the 
physical region of the s channel (t < 0 ), it is nec­
essary to be able to move the integration contour 
to the left of the point J = 1, since O'p ( 0 ) = 1. 
Obviously, the partial amplitude fi2 ( t) should have 
a root branch point at J = 1, in order for the inte­
grand function in the Watson-Sommerfeld integral, 
obtained from the expansion of (1b) not to have a 
standing branch point at this point. · 

Therefore, as J- 1 the function fi2(t) can be­
have in two alternative ways: either 

ttz (t) = v' J - 1 cp~2 (t)I(J - ap (t)) 
or 

!~2 (t) = cpt2 (t) IV J- I (J- ap(t)), 

where cp i2 ( t ) no longer has any standing singular­
ities near the point J = 1. In view of the fact that 
the partial~'waves fio ( t), #2 ( t), and fi2 ( t) are com­
bined with the vacuum pole, their residues at this 
pole factor out: 

res fto (t) · res ffz (t) = (res tt2 (t)) 2• 

Consequently, in order for the partial ampli­
tudes fi0(t) or fi2(t) not to have a standing pole 
at the point J = 1, which would contradict the uni­
tarity conditions in the t-channel, it is necessary 
to choose for f~2 ( t) near J = 1 a behavior of the 
first type, namely 

f62 (t) = V J- 1 cp~z (t)I(J - ap(t)). 

By virtue of the factorization relation between 
the residues of the considered amplitudes and the 
form of f~2 ( t ) near J = 1, one of the functions 
fi0 ( t) or fi2 ( t) should have near the point J = 1 
the form 

or 
fto (t) = (J - 1) Cjl~o(f)/(J - ap(t)) 

ffz (t) = (J- 1) cp.~z (t)/(J - Up(t)), 

where one of the functions cp~0 (t) or cp~2 (t) does 
not have any standing singularities near J = 1. 

A unique choice of the variant can be made by 
bringing into consideration 71"')' scattering. For the 
same reasons that have led to the choice of the be­
havior of f~2 (t) near J = 1, the partial amplitude 
g~2 ( t), which determines at high energies the total 
cross section of the 7r'Y scattering [a], should have 
near J = 1 the form 

J . /---- J 
g02 (t) = ~ J - 1 'lloz (t)/(J -- ap(/)), 

where the function lj;~2 ( t) does not have any stand­
ing singularities near this point. 

The residue gi2 ( t) on the trajectory of the prin­
cipal vacuum pole satisfies the relation 

res f~"(t) ·res ft2 (t) = (res gg2(t)) 2 , 

where f*7r ( t) is the partial wave which determines 
the asymptotic behavior of the n scattering at 
high energies. It is seen from this relation that 

f~ (t) = (J - 1) cp~2 (t)!(J - ap (t)) 

near J = 1, for otherwise a factor ap ( t) - 1 
would appear in the 71"71" scattering amplitude at 
high energies, and would cause the elastic scat­
tering cross section to be larger than the total 



------ ~-- ----~-- -

730 V. D. MUR 

cross section, which in turn would vanish. 
Thus, an account of the unitarity relations in 

the s- and t-channels yields for q2(t) near the 
point J = 1 a behavior of the type 

f~2 (t) = (J - 1) cp;2 (t)/(J - ap(t)). 

Taking into account such a behavior 4@f fi2 ( t ) , 
we can readily find the asymptotic behavior of the 
expression Ft + F;- 2F;, the imaginary part of 
which for t = 0 determines aiJt. 

Using the explicit form of de}. (z ), we find that 
for large s there appears in the expression for 
the total cross section a factor 

(ap (t) -1)2cpf2 (t)lt=o· 

If the function cp i2 ( t ) has no singularity capable 
of compensating for the factor ( ap ( t) - 1 )2 at 
t = 0, then the total cross section for yy scatter­
ing would vanish at high energies, whereas the 
elastic cross section would differ from zero, since 
the differential cross section for elastic scattering 
would differ from zero at any rate in some interval 
t < 0. This contradicts the obvious inequality aiJt 
:::: aiJ, which is the consequence of the unitarity 
relation in the s-channel. It is therefore neces­
sary that the function cp'{2(t) have a second-order 
pole at t = 0. 

From the integral representation for r'[2 ( t ) we 
see that as t ----. 0 the function cpi2 ( t) has the usual 
threshold behavior tJ, which in the asymptotic ex­
pression for the invariant functions cancels out the 
factor t-J due to the d-functions. Such a behavior 
agrees also with the threshold behavior of gt2(t), 
for as t ----. 0 we have ~Pi2 ( t) "' tJ /2. Therefore, 
cp '[2 ( t ) can become infinite at t = 0 only as a re­
suit of an expression that contains both J and t, 
that is, as a result of a moving singularity, if we 
exclude the presence of an essential singularity at 
J = 1, for example, the accumulation of poles. The 
character of this singularity, generally speaking, 
can be quite complicated, but if we wish to remain 
within the framework of the moving-pole picture, 
we must assume the existence, in addition to the 
P-pole, of a pair of moving poles which pass 
through the point J = 1 at t = 0. 

Let us see whether the foregoing behavior of 
f'/2 (t) near J = 1 contradicts the integral repre­
sentation for fi2(t). From (2) and from the ex­
pression 

f~2 (t) = (J - 1) cp£2 (t)/(J - ap(t)) 

we see that the function cp i2 ( t ) , which one might 
think should have no standing poles, has a second­
order pole at J = 1. From this point of view, the 

first term in (2) is particularly dangerous since 
the integrand contains a combination of invariant 
functions which has a definite sign at t = 0. 

In order to answer the question, we put J = 1 
in (2). At this point, if we use the Regge asym­
ptotics, the representation certainly exists for 
t < 0. However, in this region, the function under 
the integral sign is, generally speaking, not posi­
tive-definite, so that the integral can vanish and 
there may be no standing pole. On the other hand, 
at the point t = 0, when the integral sign contains 
the half-sum of the total cross section for the 
scattering of protons with like and unlike polari­
zations (accurate to a multiplier), that is, a 
positive-definite quantity, the integral diverges 
logarithmically and the representation is mean­
ingless. When t = 0 the integrand contains, gen­
erally speaking, a sign-definite function, so that 
with respect to unitarity in the t channel the com­
plete system comprises a state which can contain 
only photons, and all the invariant functions will 
have a singularity at t = 0. Consequently there 
can again be no standing pole. 

It is sensible to expect this second-order pole 
to be in fact moving and to ensure the self consist­
ency of the theory-the total cross section does not 
vanish and does not become smaller than the elas­
tic cross section. We note that if we do not admit 
intermediate states that contain only photons in 
the unitarity conditions of the t-channel, then 
cp'[2(t) will most likely have a standing pole at 
J = 1, since the expression 

A [F; (s, t) + F; (s, t)- 2F; (s, t) 

will be positive definite in the region 0 :s t < t 0 up 
to the first Karplus singularity. But in this case 
the pole will ·no longer contradict the conditions of 
unitarity in the t-channel, and the analysis of pho­
ton scattering at high energies will not differ in 
principle from the analysis of the scattering of 
other particles with spin, for example nucleons. 

It is natural to regard these two additional poles, 
the introduction of which is dictated by the need of 
avoiding contradiction in the analysis of yy scat­
tering from the point of view of the Regge poles, 
not simply as singularities of the partial wave of 
yy scattering in the t channel, but singularities 
in the complex J plane of the partial amplitudes 
of all possible processes which combine with the 
vacuum poles, including the partial waves of 
strongly interacting particles. 

It must be noted that the need for introducing, 
in addition to the P pole, two other poles that pass 
through J = 1 when t = 0 has arisen in the analy-
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sis of photons-particles with spin 1 and mass 0. 
If we consider the scattering of vector mesons, 
that is, particles having the same spin 1 but with 
nonzero mass, then there would be no need for in­
troducing these two additional poles within, the 
framework of the theory proper, since the factor 
(ap(t)- 1)2, which causes the total scattering 
cross section of the photons to vanish if no addi­
tional poles are introduced, would occur for such 
a combination of invariant functions, which would 
not determine for t = 0 the total cross section 
(the total cross section is determined by the par­
tial wave with zero spin projection on the direc­
tion of the relative motion of the particle), and the 
question of introducing these poles could be solved 
only by experiment. 

4. Thus, is it possible to introduce in non-con­
tradictory fashion three vacuum poles that cross 
at the point J = 1 when t = 0 in a system of 
strongly interacting particles? It is clear that a 
third-order pole moving along the P-trajectory 
cannot be introduced, for although the total cross 
section is found to increase like ln2 s, which does 
not contradict the Froissart conditions, the elastic 
cross section increases like In3 s and exceeds the 
total cross section at high energies. Three poles 
crossing at the point J = 1 when t = 0, having for 
t < 0 real trajectories, are not suitable for the 
same reason. The point is that, although for large 
s and for t < 0 the amplitude is determined by a 
single P-pole, all three poles contribute to the 
elastic cross section, expressed in terms of the 
square of the amplitude, for effective t "' 1/ln s. 
Therefore, in order not to arrive at the aforemen­
tioned contradiction, we must decrease the effec­
tive momentum transfer; it is sufficient, in par­
ticular, to have teff "' ln - 2 s. 

For example, the following picture is possible: 
one pole has the usual P-trajectory; the others 
collide at the point J = 1 for positive t tending 
to zero, and become complex conjugate for t < 0. 
If the real part of their trajectories is to the left 
of the third pole for t < 0, then this P-pole re­
mains the principal pole for large s and for small 
non-zero momentum transfer. 

If we disregard the imaginary parts of the tra­
jectories for t > 0, which generally speaking are 
due to the fact that the threshold of the different 
processes in the t-channel is equal to zero, the 
partial amplitude in the t-channel near the point 
J = 1 can be represented in the form 

tJ (t) = rrJ (t)I(J - 1 - rt) 

'< (J -1 -r1t- VM (J -1 -r1 t+ Vi3t>. 

where Yi > y > 0, {3 > 0, and the function cpJ (t) 
has no singularities near J = 1. 

The invariant amplitude determining the total 
cross section will have, for large s and for nega­
tive near-zero t, the form 

A (s, t) ~ s {elY ln s- ely, ln s cos V- t~ln2s 
- t [~- t Ch- r>•J 

(rt-r)t V } + V _ 1~ ety,ln s sin -t~ ln2 s,. 

From (3) we see, first, that teff "' In - 2 s and, 
second, for any non-zero momentum transfer 
there are such s for which the scattering ampli­
tude is determined by only one principal P-pole. 

(3) 

Putting for simplicity y1 = y, we can readily ob­
tain by direct calculation that ael "' {3- 1 ln2 s 
whereas atot"' ln2 s. This means that for suffi­
ciently large {3 (the poles diverge sufficiently 
rapidly in the complex plane after collision) the 
theory becomes noncontradictory: atot > ael· 

Since for t < 0 and large s only one pole makes 
a contribution to the elastic amplitudes, all formu­
las that follow from the factorization of the resi­
dues of the different processes remain in effect 
and only for t = 0, that is, for the total cross sec­
tions, do the factorization formulas acquire an in­
essential factor, namely 

aNN = + a2 res f~N (t) [t=o ln2 s, 

aNy = ab res f~y (t) [t=o In s, 

cryy = b2 res f~y (t) lt=o· . 

Consequently uNNayy = % aky• which differs by a 
factor t;2 from the corresponding formula obtained 
earlier (see [ 2•3J). 

Analogously, for the total cross sections of the 
scattering of an arbitrary particle A and a photon 
at high values of s, the following factorization 
formula is valid 

Thus, an examination of the scattering of ph,o­
tons at high energies, from the point of view of the 
Regge poles, without contradicting the conditions 
of unitarity in the s- and t-channels and under the 
condition that the total system admit of states con­
taining at least only two photons, leads to a singu­
larity in the complex J plane which ensures the 
maximum interaction strength allowed by analytic­
ity and unitarity for strongly interacting particles. 

In conclusion, I am deeply grateful to I. Ya. 
Pomeranchuk for guidance of this work and to 
V. B. Berestetski1, V. N. Gribov, and L. B. Okun' 
for numerous valuable discussions. 
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