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A theory connected with nonlinear effects in the interaction of the field with the medium is 
developed for the pulsations in the output power of lasers. Formulas are derived for the 
amplitudes and frequencies of the spikes as functions of the parameters characterizing the 
laser. The mechanism of the spiking is the transfer of particles from the upper level to the 
lower one with the radiation of energy and in the opposite direction with absorption of energy. 
The theory is applied to the ruby laser and is compared with experiment. 

ONE of the problems in the operation of optical the upper level. The steady state process is de-
masers is the nature of the pulsations (or spiking) scribed by equations of the form 
in their power output. At present a large number i8 + 000~/2Q + 00~g = _ 4nP, 
of materials (around thirty) have been used in ·· · 

p + 2r2P + (w~ + r: + ~) p = -2d2 WoNgjh, 
lasers. Of these only the gas lasers (for example, 
He-Ne) and several solid state lasers (for exam- N + r 1 (N- No)= 2g (F + r2P)jhwo. (1) 

ple, CaF2 doped with Sm2 +) do not produce pulsa
tions; the majority of solid-state lasers, however, 
have a pulsating output. 

There are many theoretical papers [1•2] 1) at
tempting to explain this behavior, but progress 
has been very modest so far. 

The equations which are written down and 
solved in these papers do not contain stable limit 
cycles; they contain only singular points of the 
stable focus type. This means that all pulsations 
occurring in the system die out sooner or later. 
From this it has been concluded that the pulsa
tions are related exclusively to the build-up proc
esses of laser action and hence that the pulsations 
should disappear in lasers operating continuously. 
However, undamped spiking is observed even in 
c. w. lasers [4]. Singer and Wong [sJ were evidently 
the first to point out the importance of nonlinear 
effects in the interaction of the field with the 
medium for the explanation of spiking. Following 
their ideas, one of the present authors [3] found 
spiking behavior in a system described by a single 
relaxation time T 1• 

In the present paper the pulsations are treated 
on the basis of more general equations applicable 
to solid state lasers, and the results are com
pared with experiments made on a ruby laser. 

We consider a two-level system ( E2 > E 1 ). 

There is a constant flux of active particles into 

1lc£J'] for an earlier bibliography. 

Here g is the electric field strength2) in the 
cavity, P is the average value of the polarization 
of the active particles, N is the number of parti
cles in the upper level, No is the initial number 
of these particles, w 0 is the transition frequency
assumed for simplicity equal to the cavity frequency, 
Q is the quality factor of the cavity, and y2 = 1/T2, 

y 1 = 1/ T 1 where T2 is the transverse relaxation 
time and T1 is the interaction time of the particles 
with the high frequency field. (For ruby 1/ T1 

= 1/Tsp + 1/Tp, where "sp" in the subscript in
dicates spontaneous and "p" indicates pump); 
for a four-level system such as u3+ doped CaF 2, 

the magnitude of T1 is the time of the nonradia
tive transition from the lower of the two active 
levels to the "pumping level" (ground state); d is 
the modulus of the dipole moment matrix element, 
and .6. is the frequency shift between the polari
zation of the active particles .and the electric field. 
The meaning of this last quantity for ruby will be 
discussed later. Equations of this type involving 
T1 have been widely used in discussing the opera
tion of microwave masers [S, 7]. Equations involv
ing T 1 and T2 are also known in the literature. 

We seek a solution of the form 

IE= E (t) cos [w 0t + <p (t)l, P = P 1 (t) cos [w 0 t -i- 'ljJ (t)J, 

where E, P 1, cp, and if! are slowly varying func-

2lSpatial effects are not taken into account in the present 
treatment and the electric field is considered to be nearly 
harmonic. 
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tions of time. Application of the Vander Pol 
method to the system (1) leads to the following set 
of equations: 

dx/dt c~ ---ffi 0X/2Q -f- (ffi 0 /2Q) !J sinl <1>, 
dy/dt =' ~ y2y -'- Yz XZ sin /f), 
dz/dt = ~ Y1 (z ~ z,,) -- '( 1 (z0 -- I) xy sin 1<1>, 

d(f>/dt ~ ~ B + (1 2 xz!y _L u> 0y:2Qx) cos 1<P. (2) 

The following dimensionless quantities have been 
introduced 

X= E!Eo; y == P/Po; z o= N/N~; sin{D --= sin cp ·~in¢(); 
cos1 1!) = cos CP/ sin (f> 0 

along with the notations B = ( 6 + y ~ )/2w 0, <P = ljJ 
- cp. Eo, Po, N0 and <P 0 are the solutions of (1) for 
the case of stationary harmonic behavior. 

For simplicity further investigation will be 
made for the case of zero frequency mismatch 
(B==O). 

Equations ( 1) admit the case of stationary 
harmonic behavior: 

Eo= l/4n:QhtY0y 1 , Po=~ 1/Nohr/4rtQ, 

N~ = hy/4rtQd2 , <D 0 = n:/2. 

When the condition 

(3) 

Zo > [ (ffio/2 Q) 2 + ffioit/2 Q + 3wor2/2 Q I ly 2 (ffio/2Q -- I c Y 2) 

(4) 

is fulfilled 3) the harmonic mode will be unstable 
and pulsations will arise. We now investigate 
further the nature of the pulsating mode. 

It is convenient to introduce a ''dimensionless 
time'' 

(4a) 

( w 1 will be defined below). Equations (2) can then 
be written in the form 

ftX = ~x + y sin1 <D, 

[t [tD ~ (ft2XZ/j.ty) COS1 <D) =-~ !JX-1 COS1 <D, 

( 5) 

We have introduced here the small parameters 

(6) 

The last of these conditions is connected with the 
fact that when y 2 > w0/2Q condition (4) will never 

3linvestigation of the stable system (1) with zero frequency 
detuning was first carried out by A. N. Oraevskii. It was he 
who obtained this condition. 

be satisfied, i.e., the harmonic mode will always 
be stable and there will be no spiking. 

The system ( 5) can be transformed to a non
linear equation of the third order: 

X ~ x' _[ lti2_(~fl_~ X (x2 ~ 1) 
X , lU~ (l -;- !12) 

== -- ,_., [ (1 Ht2t1 ( x ~ ~ ) 
l Ill (1 + ftz) x + J:l:!:_x c_ rtr,dzo-1) x2x J; 

f-l lUl (i !- [L2) 

it is convenient to take 

Here we have used Eq. (3). Then, accurate to 
first order in J.l, (7) takes the form 

(7) 

X-- )H>: +X (x2 -- 1) = ~ ~~ [x -- xx/x + J.ltXIp. + xx2 l. 
(8) 

This is a nonlinear equation with a small non
linearity in the right-hand member. It can be 
solved by standard methods [B]. For J.l = 0 the 
equation can be integrated: 

X ~2 t xYrC + 2ln X ~x2 • (9) 

Equation (9) defines a family of cycles i:n the Van 
der Pol plane, depending on the quantity C (cf. [3] ). 

The motion in each cycle is stable. 
By expanding ln ( x) around 1 it is simple to 

obtain the amplitude of the field as a function of 
time (the argument of the sine varies from -rr/2 
to+rr/2): 

E =Eo (2 ~ C1) 

X [2 =r l"r2Cl sin {dEo h-1 V2 ~ cl (i + h±)}J-l (10) 

( h± is an arbitrary constant) and the period 

T = 2nhjd£0 V2 ~ C1 , (11) 

where C1 = C - 1, and where E 0 is determined 
by (3). We have reverted to the time t in (10) and 
(11) by using (4a); w1 is taken correct to first 
order in J.l· 

Evaluation of the constant C1 is elementary 
but somewhat time-consuming. One obtains the 
expression 

cl = 2[1 ~ Y12WQ (}~YJ[3~~~~2~ (d~on-l. ( 12) 

The calculation of C1 is also carried out to first 
order in J.l. A zero value for C1 indicates that the 
cycle degenerates into a point and the behavior 
becomes stationary and harmonic. In this case 
the pulses disappear and hence condition ( 4) need 
not be satisfied. In fact if the inequality in condi
tion ( 4) is replaced by an equality, and Eqs. ( 3) 
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. _FIG. 1. An oscillogram of the output of the crystal (top trace). The modulation, which decreases during the pulse, is clearly 
VISible. The bottom trace shows the pulse of the flash lamp. 

FIG. 2. Time sweep of the output of the ruby laser. Each bright band is a spike. 

and (6) are taken into account, then, to first order, 

1 = Y1 (dEo/ht 2 w0 j2Q, 

which clearly coincides with the condition that c 1 

be zero. 
A few remarks may be made about the solution 

we have found. As long as condition (4) is not 
satisfied there will be no cycles and the solution 
will be E = E0 (3). When condition (4) is satisfied 
pulsations will occur on top of a constant average 
field of amplitude E0• As long as the amplitude of 
these pulsations is small they will be approxi
mately sinusoidal, although harmonics will be 
present. The frequency of the pulsations ( 11) is 
determined by the average amplitude of the field 
and increases with increasing amplitude. The 
mechanism of this process consists in the trans-

fer of particles from the upper level to the lower 
with release of energy (the rising portion of a 
spike) and the transfer of particles under the in
fluence of the field from the lower level to the 
upper with the absorption of energy (the falling 
portion of a spike). 

The frequency of the spikes is of order dE 0/h. 
This is precisely the frequency at which particles 
are transferred from level to level. The pulses 
occur under conditions of strong saturation, 
wherein each active particle goes several times 
from the upper to the lower level and back during 
the time of interaction with the radiation field. 
Because of the population inversion, transitions 
from the upper level to the lower always predom
inate on the average. This of course is true for 
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the pulsating mode as well (the amplitude of the 
field never falls to zero). 

The appearance of the pulsations means that 
the Q of the cavity has become "too high" and 
the cavity can not get rid of part of the energy in 
the field. This part of the field is absorbed by the 
particles and then re-radiated. This "repumping" 
is the basis of the spiking behavior. 

COMPARISON WITH EXPERIMENT 

Application of this general theory to a particu
lar laser requires certain clarifications. We are 
interested in a laser operating on the 2E - 4A2 

transition in ruby (the R1 transition). Although 
ruby is a three-level system (the green band being 
the third level), for the existing pumping levels it 
may be adequately described by two levels with a 
constant influx of particles. This is due to the 
fact that the third level is practically empty (the 
lifetime of the nonradiative transition from it is 
of the order of 10- 8 seconds), and (for constant 
pumping) the modulation of the constant flow of 
particles to the 2E level d~e to the pulsations 
does not exceed several percent. A second ques
tion involves the width of the 2E level. Evidently 
it is clear [9] that this width is not due to relaxa
tion but rather to an adiabatic shift of the position 
of the 2E level as a result of the lattice vibrations. 
This causes a decrease in the interaction of the 
ion with the laser field and can be taken into ac
count by introducing in (1) a quantity 1:::., which is 
the effective frequency shift between the electric 
field and the polarization. This problem still re
quires an exact solution, but we consider a very 
simple model of the line: the broadening of the 
upper level is taken into account by introducing 
the Hamiltonian 

H=Vcosw2t, (13) 

where the only non-zero matrix element of V is 
(2E I V I2E) (cf. [9] ), and w2 satisfies the relation: 
w of the pulsations « w2 « w0• Calculation shows 
that Eqs. (1) with the term 1:::. and the equation 
with the Hamiltonian (13) give the same simplified 
equations. 

An attempt to verify Eqs. (10), (11), and (12) 
via Q, T1, 72 and the other parameters is appar
ently doomed to failure. The question of the mag
nitude of 72 remains open in general. The other 
parameters, for example 71 (determined by the 
pump), although clear theoretically are difficult 
to obtain experimentally. Hence we have attempted 
to write down verifiable formulas in terms of ob
servable quantities rather than in terms of the 
above parameters. 

If we take account of 1:::. in ( 1) [which is equiva
lent to (2) with B "' OJ then we easily obtain in 
place of (10) and (11) 

E = £ 0 , . • 2 -.c1 . , (lOa) 
2 =f VZC1 sm {dEoh-1 V2- Ct(t + h±) sm <Do} 

(11a) 

where sin <1> 0 = [ 1 + ( 2BQ/ w0 )2 ]- 112 is a function 
only of temperature. 

The quantities E2 and T are observed in ex
periment. It is clear from (lOa) that 

r· 
( 14) 

Knowing E~ax and Einin we can determine Eo 
and C1 and verify (11a). For a given temperature 
(11a) has the form 

T~ lfEoV2-C1 ( 15) 

(the coefficient of proportionality depends also on 
the number of modes excited). 

The test of (15) was carried out under pulsed 
conditions. It is clear that if the pulse of pumping 
light is sufficiently long and all quantities vary 
slowly, one may make use of (lOa) and (11a) (the 
amplitudes of approximately 103 spikes vary by a 
factor of three). 

The experimental set-up was similar to the 
one used in [to]. The laser output was recorded 
with an FEU photomultiplier and a high speed SFR 
camera. The angular distribution of the emission 
from the crystal was obtained in the focal plane 
of the SFR objective. Using a small slit 0.1 mm 
wide, a narrow band was isolated from the angular 
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FIG. 3. The dependence of the period T on Emax' for two 

different crystals with the laser operated at low temperature 
(108°K) and close to threshold. (The voltage on the flash 
lamp was 2.6 kV, the threshold voltage 2.5 kV.) The experi
mental dependence is shown· by the solid lines, and the 
theoretical dependence by the dashed lines (the units are 
arbitrary). 
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distribution and its image projected by a second 
lens and a rotating mirror onto the film. A typical 
oscillogram of the radiation from the crystal-ob
tained on an OK-17M oscilloscope-is shown in 
Fig. 1 (top trace). The pumping lamp pulse as 
recorded by a photocell is shown below in Fig. 1. 
Figure 2 shows the time scan of the output of the 
ruby laser; a marked periodicity is seen. The 
mirror rotated at 7500 rpm; the period of the 
spikes is about 1 JJ.Sec. The vertical spread char
acterizes the angular distribution. 

The values of Eiuax and Eiuin during the 
pulse were determined from the oscillograms. 
The "theoretical" relationship (15) (as a function 
of the inverted population) was then constructed. 
The experimental value of T was obtained by 
counting the number of spikes on the film in the 
SFR. 

Measurements were made for various temper
atures (103-125°K) and for various voltages on 
the flash lamp. When the laser is operated near 
threshold, (15) gives good agreement with experi
ment (see Fig. 3 for typical behavior). For opera
tion far above threshold, ( 15) gives a more rapid 
variation than experiment. This is connected with 
the fact that well above threshold the spectral 
distribution changes markedly during the pulse, 
and this is not taken into account in our equations. 
(The angular dependence varies weakly, about 
10-25%, under the conditions of our experiment.) 
If one takes into account the fact that when n 
modes are excited one determines from the oscil
lograms quantities proportional to nEbax and 
nEiuin• Eq. (15) will have the form 

T ~ Vn/no/ E0 }/2 -Cr. 

where n is the number of modes at a given point 
in the output pulse (with maximum value n 0). The 
value of n decreases with decreasing E 2, which 
produces a more gradual dependence for T. 

These observations are supported by experiments 
in which simultaneous measurements were made 
of the variation in the angular and spectral compo
sition of the beam (using an interferometer). 
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