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The electric conductivity due to interaction with the electromagnetic field of electrons lo­
cated near degeneracy points is calculated for metals with intersecting bands (like graphite). 
Various cases of the frequency dependence of electric conductivity near threshold are inves­
tigated. 

THE direct absorption of photons by conduction 
electrons is known to result from band-to-band 
transitions. Since the momentum of a photon is 
negligibly small at infrared or lower frequencies, 
the energy conservation law in such cases becomes 

Es (p) + 1iw c e,· (p) (s =f= s'); 

E s ( p) is the energy of an electron with quasi­
momentum p belonging to the s-th band; t:iw is 

(1) 

the energy of a photon with frequency w. We have, 
as a rule, min[ Es'(P)- Es(p)] >"' 0, as a result of 
which absorption begins at some threshold fre­
quency Wth (t:iwth=min[Es'(p)- Es(p)]). 

It is sometimes possible for constant-energy 
surfaces Es ( p) = E to contain one or more points 
of degeneracy at which the equation Es(P) = E can 
be solved for two different values of the band index 
s. These are called band-intersection points. From 
the principle that terms do not cross, [1, 2] it fol­
lows that only two bands can intersect at a degener­
acy point, as a general rule. The existence of band 
intersection points eliminates the lower limit of 
absorbable frequencies. In other words, metals 
with intersecting bands should exhibit a nonthresh­
old photoconductive effect. 1) 

It is the purpose of the present work to calculate 
the part of the complex dielectric constant that is 
associated with band-to-band transitions at rela­
tively low frequencies. However, the frequencies 
are assumed to be large compared with the col-

l)The intersection of bands is relatively rare among 
metals. An example is found in graphite, photon absorption in 
which will be discussed below. Band intersection should not 
be confused with band overlapping, in which case min E8 < max 
E8 ' (p) and min E8 ' (p) < min E8 (p ). In the case of band over­
lapping (without intersection) nonthreshold absorption is im­
possible since the coinciding energy values in the different 
bands correspond to different values of the quasi-momentum. 

lision frequency v = 1/T, where T is the relaxa­
tion time of the electron gas. The condition WT 

» 1 enables us in calculating the effect of interest 
to entirely neglect relaxation effects in the elec­
tron system. In choosing a frequency satisfying 
the condition WT » 1 it must be remembered that 
as a result of quantum effects the collision fre­
quency is greatly dependent on w. [3•4] Therefore 
most of our results will be applicable to the far 
infrared region. 

The interaction Hamiltonian of electrons with 
an arbitrary dispersion law in an electromagnetic 
field is written conveniently, introducing the elec­
tron velocity operator, as follows: 

knt = - (e/c) ~A, (2) 

where A is the vector potential of the electromag­
netic field, and c-1 oA/ot = E, where the electric 
field E in the metal is taken to be spatially homo­
geneous. 

It will be convenient to include an explicit de­
pendence on the energy difference Es- Es' in the 
velocity operator v; from [l] we have 

Vss' = (ae, (p)/ap) 6,,, + (es- e,·) 1i-1Qss'· (3) 

The operator 0 is associated with band-to-band 
transitions and appears in the expression for the 
coordinate operator in the quasi-momentum rep­
resentation: [1•5] r = (t:i/i) 8/op + 0. The matrix 
elements of the operator 0 do not generally van­
ish at the degeneracy points [where Es(P) 
=Es'(p)]. 

In order to calculate the complex dielectric 
constapt we define the mean current as j = Sp {pf}. 
Here j is the second-quantized current density 
operator: 

(4) 

655 
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where V is the volume of the crystal, a;p and asp 
are the electron creation and annihilation operators 
in a state of band s with quasi-momentum p, and 
p is a statistical operator satisfying 

in~= [H, rl. fi ~~flo+ lit, (5) 
A 

where H0 is the Hamiltonian of the electron sys-
tem: 

rp 
A 

and Ht is the interaction operator (2), which has 
the second-quantized form 

Using the definition h = UikEk of the electric 
conductivity tensor, we obtain by the standard 
procedure 

f i k 
ie2 'l r\• t'ss'0 s's 

r:;ili = - (2rrli~)" w LJ dtp I e (p)- R (p) -liw -- iy 
:;s' • \ s , 's' 

Y-+0 

(6) 

(7) 

vi vk ) 

+ e5 (p) -- E,. (~) ~5- hw II( J (llsp- n,•p). (8) 

where nsp is the Fermi equilibrium function 

(9) 

and t is the chemical potential of the electron gas 
[ Es ( p) = t is the Fermi surface]. 

It will be recalled that we are calculating only 
that part of Uik that is associated with band-to­
band transitions. In order to calculate the total 
electric conductivity tensor we must take into 
account the coordinate dependence of the electro­
magnetic field potentials. [4] We now write (8) in 
the case of an electron transition from the first 
to the second band: 

2ie2 

r:J;k =- - (2rrli)3 w 

(10) 

where E2 > E1 is assumed. From this formula we 
derive diagonal values of the real and imaginary 
parts of the tensor Uik= 

where the integrals in (12) must be understood to 
mean 

~f(p)dT~c=~de ~ f(p) 
E(p)c~E 

(13) 

Equation (ll), in which the character of the dis­
persion law is not specified, does not restrict us to 
an investigation of only nonthreshold absorption, 
which we discuss here. The equation is also valid 
for the general case of band-to-band transitions, 
and we can use it to arrive at the frequency de­
pendence of Re aa (i.e., of the absorption coeffi­
cient) near the absorption threshold. We shall 
first consider the most probable low-temperature 
case (or rather, the relatively high frequency case 
nw » T ). The temperature can here be set equal 
to zero, in which case the integral in (ll) becomes 

I = \ I v~2l 2 o (e2 -- e1 - 1iw) dtp, (14) 
(Ep-ttw'<,,<,p) 

where EF is the Fermi energy. The integration 
region is shown schematically in Fig. 1 by the 
cross-hatched area. 

FIG. 1. Integration region in (14). 1 -
the surface E1(p) = Ep; 2- the surface 

Et(p) = Ep - nw. fJ 
1 

Two cases are possible, as follows. 
In the first case the point Po at which the func­

tion E2(p) - E1(p) reaches its minimum is located 
in the region of p-space over which Eq. (14) is in­
tegrated. We then have 

+ + [82 (e2 - e1)18p; 8pk]p=p, (p; - Pto) (pk - PkO), 

fiwth= min (e2 -- e1) = [e2 - e1]p=p,· (14a) 

The principal values of the tensor 82( E2- Et )/ElpiOpk 
will be denoted by 1/M1, 1/M2, and 1/M3• Equation 
(14) then yields 

or 
e2 -v :I ::J.. 2 If a l/2 

~e ::>a= -~.1-, - I V12 (Po) I (M1M2M3) (w - Wth) (w ~ Wth). 
rrli wth 

(16) 

Thus in this case the derivative of electric conduc­
tivity (and therefore of the absorption coefficient ) 
with respect to frequency possesses a square-root 
singularity (see Fig. 2 ) • 

In the· second case Po lies outside the integra­
tion region of (14). This means that at the fre­
quency threshold wfh the surface bounding the 
integration region is tangent to the surface E2 ( p) 
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Reei'a: 

I 
I 

-r 
d.ReurxJdw uith 

FIG. 2. Frequency de­
pendency of Rea a near 
threshold (for the case 
represented in Fig. 1). 

I 

~~ 
I 

wth 
{J) 

- E i ( p) = tiw (Fig. 3). In the case represented by 
Fig. 3a we have 

e2 1 v~2 (p,)I 2 RGRth(ro- ro~h) ' 
Re Cla = , (w-::J:. roth); (17) 

2:rtli2ro1h(RG + R 1h) (v2 - v1) 2 

RG and Rth are the corresponding radii of curva­
ture ( RF for the Fermi surface, Ra for the sur­
face E i ( p) = EF + tiwfh, and Rth for the surface 
E2 - E i = tiwfh). All values are taken at the point 

Pi· 

J I 

a b 

FIG. 3. Contact of the surface E2 (p) - E1(p) =liw with the 
surface bounding the integration region in (14). 1 - the sur­
face E1(p) = EF; 2- E1(p) = EF -11w; 3- E2 - E1 =11w. The 
cross-hatched area is a portion of the region represented in 
Fig. 1. 

In the case represented in Fig. 3b we have 

1 } + I v,- vzl (18) 

Thus in the second case the derivative of Re aa, 
and therefore of the absorption coefficient, exhibits 
a finite jump (Fig. 4). 

At finite but low temperatures the electric con­
ductivity in the first case depends very slightly on 
temperature. In the second case, for Wth < w < wfh 
the absorption coefficient is exponentially depend­
ent on temperature. 

We shall now consider the high-temperature 
case (tiw « T ), where 

( {; is the chemical potential ) and 
e2 \ a 2 e(<, -"r.)/T 6 (s2- s,- tiro) 

Re o,_ = (2:rt!i)' T .\ J Vt2 (po)J (exp (s,- 1;,)/T + 1)' d-rp. 

Proceeding as with the derivation of (16), we obtain 

(19) 

If I Ei(Po)- {;I« 1, then Re aa ~ 1/T. If I Ei(Po) 
-{;I » 1, then Re aa and the absorption coefficient 
are exponentially small quantities ( Re a a 

~ e-IEi<Po)-t;I/T). 

ReG.: 

L±_ 
(J)' (J) 

th 

FIG. 4 FIG. 5 

FIG. 4. Frequency dependence of Rea a near threshold 
(for the case represented in Fig. 3). 

FIG. S. The Fermi surface near a point of degeneracy. 

We have thus far tacitly assumed that v i2 (Po) 
and v 12 (Pi ) are different from zero; this is evi­
dently the most frequent case. However, if p0 is 
a high symmetry point it can be shown that v i2 (Po ) 
= 0 (a forbidden transition). Expanding v i2 ( p) in 
powers of p - p0, it is easily ·shown that in this 
case Re a a = ( w- Wth )312• Although the vanishing 
of v i2 (Pi) is extremely unlikely, we note that if 
v12(Pi) = 0, then Re aa ~ (w-wth) 2• 2> 

We now come to the case of energy band inter-

2lThe threshold absorption equations (16) - (19) derived 
here are analogous to those for semiconductors.["] It must be 
noted, however, that the metal equations are more accurate 
than the semiconductor equations, since metals have no ex­
citons, while in Semiconductors the laws r "" (w - Wth)'!, 

and (w - w1h)'!, hold true only fodi(w - Wtb) >> Eexc where 
~exc is the exciton ionization energy .[•] (We are indebted to 
E. I. Rashba for this observation.) 
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section. Near a self-intersection point of a con­
stant-energy surface the general dispersion law 
can be written as 

Er, 2 =A (p,) ± B (pz, n.1_) P.l• (20) 

where Pl = v'p~ + pf, n1 = P1/P1• and the axes 
are located as in Fig. 5. 

In analyzing the frequency dependence of the 
conductivity it must be taken into account that ac­
cording to (4) we have 

Vrz = [(ez- er)/Ti] QJ~· 

Therefore (13) can be written as 

We first consider the case of very low temper­
atures (nw » T). Integrating, subject to the con­
dition nw « EF, we obtain 

(21) 

where the bar denotes averaging over angles in 
the (px, Py) plane. All quantities included in (21) 
are taken for Pl = 0 and E1 = EF· The summation 
is carried out over all cone points. If we assume 
Q12 ~ a, Vz ~ B ~ v, we obtain in order of magni­
tude 

(22) 

It is easily verified that in the opposite extreme 
case ( nw « T ) the foregoing derived equation is 
valid to within terms of the order nw/T, i.e., 
Rea a~ w3 , with only slight temperature depend­
ence in relatively broad frequency and tempera­
ture ranges. 

We shall now discuss the case of graphite in 
greater detail. [6] The Fermi surface of graphite 
contains eight degeneracy points, two of which are 
located on the axis of symmetry. Near these points 
(points Ps in Fig. 6) the surface possesses axial 
symmetry. Knowledge of the quantities appearing 
in the dispersion law of graphite electrons and 
holes enables one to estimate the parameters in 
(21). According to [6] we have B ~ Vz ~ 106 

em/sec. This makes it possible in principle to 
evaluate a nondiagonal element of the coordinate 
operator from a comparison with experimental 
data. 3> 

3lWe have here evaluated only B and v z· The parameters 
of the electronic structure of graphite are known so com­
pletely that B and Vz can be calculated very accurately. 

FIG. 6. The Fermi sur­
face of graphite. a- over­
all view; b - arrangement 
of degeneracy points in the 
plane Pz = const. Degeneracy 
points located on the axis 
(as the point p5 ) are denoted 
by crosses. 

a 

Electrons 

Holes 

Electrons 

• 
b 

As already stated, the low-frequency limit of 
(21) is given by wr » 1. At high frequencies the 
limitation is associated with the expansion-(20). 
For graphite this decomposition can be used only 
if the energy quantum nw is considerably smaller 
than Haa ~ Y1(y3 /y0 ) 2 (given in the notation of [6J). 
Computations yield y 1 ( y 3 /y0 )2 ~ 0.03 eV, i.e., in 
addition to the given condition nw « EF we also 
require the inequality w « 4 x 1013 sec-1• Neglect 
of terms ~ H33 in the dispersion law leads to a 
merging of four cone points into one point. The 
intersection of bands is then accompanied by con­
tact (Fig. 7) and the constant-energy surface pos­
sesses axial symmetry. 

The dispersion law can be written as 

e1,2 = A' (Pz) ± B' (Pz) P}_. (23) 

A calculation analogous to the foregoing, using (13) 
for Re a a_, yielded • 

Rea a= :rte2w2 (2:rt1it2 ( I Q~2\ 2/ B'vz)o 
( e F ";> 1iw ";> H aa) . (24) 

We recall that the equations de.rived here for 

FIG. 7. Self-intersection 
with contact. 
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Re a a describe only the part of the electric con­
ductivity that is associated with band-to-band tran­
sitions. A comparison of the equations derived 
here with the usual equations [5] shows that band­
to-band transitions play a fundamental part at rela­
tively high frequencies. The experiments of Boyle 
and Nozieres C7J show that band-to-band transitions 
can account for the observed absorption pattern. 
However, the results given in [ 7] do not account 
for the analytic dependence of the absorption co­
efficient. 

An additional circumstance must be noted in 
conclusion. According to (14), Im aa is negative 
at low frequencies and is positive at very high fre­
quencies, the asymptotic frequency dependence 
being given by 

Im Ga:;::::::: (Znli):~~w)" w ~ (82 - 81) I v~2l2 (n1 - n2) dr:p. (25) 

Since E2 and E1 are close to each other, the sign 
reversal of Im a a must occur at relatively low 
frequencies and can. in principle lead to a sign re­
versal of the dielectric constant E of a metal ( E a 
= - 47T Im a a I w) in a certain frequency region (or 
at least to a great change in the value of I E a I ) • 
For WT » 1 the reflectivity of a metal is known 
to be associated with the fact that under these con­
ditions Re E < 0 with I E I » 1. The sign reversal 

of Re E must be accompanied by a considerable 
reduction of the reflection coefficient. 

1 L. Landau and E. Lifshitz, Kvantovaya me­
khanika (Quantum Mechanics), Gostekhizdat, 1948, 
Sec. 76. 

2 I. M. Lifshitz and M. I. Kaganov, UFN 78, 411 
(1962), Soviet Phys. Uspekhi 5, 878 (1963). 

3 T. Holstein, Phys. Rev. 96, 535 (1954); R. N. 
Gurzhi, JETP 33, 660 (1957), Soviet Phys. JETP 
6, 506 (1958). 

4 V. Ginzburg and G. Motulevich, UFN 55, 469 
(1955). 

5 I. M. Lifshitz and M. I. Kaganov, UFN 69, 419 
(1959), Soviet Phys. Uspkehi 2, 831 (1960). 

6 J. C. Slonczewski and P. R. Weiss, Phys. Rev. 
109, 272 (1958); P. Nozieres, Phys. Rev. 109, 1510 
(1958). 

7w. S. Boyle and P. Nozieres, Phys. Rev. 111, 
782 (1958). 

8 Hall, Bardeen, and Blatt, Phys. Rev. 95, 559 
(1954). 

9 R. J. Elliott, Phys. Rev. 108, 1384 (1957). 

Translated by I. Emin 
164 


