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A nonrelativistic model is studied which is a generalization of the quantum mechanics of two 
particles interacting with a potential. A new point interaction of the particles is introduced 
which involves their conversion into a third particle, which has the same quantum numbers 
as a bound state of the primary particles. In the theory so obtained the mass of the new 
particle and its interaction constant are arbitrary. In the special case in which the mass of 
the new particle is chosen exactly equal to the mass of the bound state of the original parti­
cles the entire theory is identical with ordinary quantum mechanics. The renormalization 
constants Z and Z 1 then become zero. 

ZIMMERMANN has shown that a compound parti­
cle can be described in quantum field theory by a 
local field. [1] In the present paper we shall use a 
model, which will be described, to discuss the 
question of whether one can describe a compound 
particle by an independent local field and thus 
achieve complete external symmetry among the 
compound and elementary particles. This is an 
interesting question in connection with the sug­
gested possibility of constructing the S matrix on 
the basis of its analytic properties and unitarity. 
As is well known, with this approach compound 
and elementary particles appear on a completely 
equal footing. 

We consider in the Lagrangian formalism 
two theories: one in which besides the elementary 
particles described by the fields there are com­
pound particles, and another in which instead of 
compound particles we introduce independent par­
ticles (fields) with the same quantum numbers. 
These two theories lead to identical analytic prop­
erties and unitarity conditions for the S matrix. 
Therefore we can assume that the scattering 
amplitudes will be the same in these theories, i.e., 
the two theories are physically indistinguishable. 
It is then still not understood how in the second 
case, with the compound particles described by 
independent fields, the characteristics-masses 
and interaction constants-of these particles are 
determined. 

A paper by Salam [2] puts forward without proof, 
on the basis of intuitive arguments, two require­
ments which are to determine the mass and the 
coupling constant of a compound particle when it 
is described by an independent field: the renor-

malized charge is to be equal to zero and there is 
to be no mass renormalization. Salam concluded 
from this that if z1 and oM are the constants in 
the charge and mass renormalizations of the com­
pound particle, then Z 1 = 0 and oM= 0. A number 
of other papers [3- 5] have discussed the condition 
Z = 0 ( Z is the wave-function renormalization 
constant) and reached rather indefinite conclu­
sions that when this is so the particle behaves in 
some sense like a compound particle. 

In this paper we shall start from a theory in 
which it is exactly known what the bound states 
(i.e., compound particles) are, and what their 
properties are-from the nonrelativistic quantum 
mechanics of two particles interacting with a 
certain potential. These particles, which are as­
sumed to have no spin, will be conventionally 
called "nucleons" or m-particles (m is their 
mass). We complete the physical scheme with one 
more interaction-a point interaction of the nu­
cleons with conversion into another particle of 
mass M, the M-particle, which has the same 
quantum numbers as the bound state of the nu­
cleons, the deuteron. We are interested in seeing 
to what extent and under what conditions the M­
particle so introduced imitates the deuteron. 

For the reader's convenience we list the main 
results. 

1. After the interaction of the nucleons with 
the M-particle is introduced the resulting theory 
is in general different from the previous theory, 
and is physically entirely reasonable for arbitrary 
values of the mass of the M-particle and its 
coupling constant with the nucleons, g (unrenor­
malized). It is curious that for certain values of 
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the mass of the M-particle and the constant g the 
bound state disappears and only the elementary 
particles remain in the theory. There is an upper 
bound on the renormalized coupling constant of 
the M-particle with the nucleons. This restriction 
is somewhat more complicated than that found by 
Landau. [s] The renormalization constants Z and 
Z 1 are in general finite, and oM = co. 

2. When the mass of the M-particle is chosen 
equal to the mass of the deuteron, the entire theory 
is the same as the initial theory (without the M­
particle). Then Z = Z 1 = 0, in agreement with 
both [2] and [3- 5]. It is important that the renor­
malized coupling constant is then entirely inde­
pendent of the unrenormalized constant. Accord­
ingly, the latter is arbitrary, and is not zero as 
in [2]. The renormalized coupling constant is just 
equal to the residue at the pole of the deuteron 
wave function in momentum space, as it should be 
according to dispersion theory. 

3. In the theory with the M-particle, when one 
of the nucleons and the M-particle are physical 
particles the vertex part is in general a nonde­
creasing function. This explains the fact that in 
the general case the dispersion relations for this 
function do not give any restrictions on the mass 
of the M-particle. When Z = Z 1 = 0 the vertex 
part becomes a decreasing function, and the dis­
persion equation for it is then a nontrivial equa­
tion which allows us to determine the mass of the 
M-particle (cf.[7] ). 

In this connection we note further that in our 
model the anomalous thresholds that appear in the 
vertex part for definite ratios of the masses of 
the particles are not related to the elementary or 
nonelementary nature of the particles. 

Thus the answer to the question stated at the 
beginning-whether one can describe a compound 
particle by an independent field-is in the affirma­
tive in quantum mechanics. The mass of the com­
pound particle is given uniquely by the conditions 
z = 0, z1 = 0, or by the dispersion relation for 
the vertex part. It is remarkable that these con­
ditions do not arise from the theory itself, but 
must be imposed on it from outside. 

1. THE MODEL 

We consider two identical scalar particles of 
mass m which interact with each other with a po­
tential V. Besides this, these particles can under­
go conversion into a third particle of mass M (the 
M-particle). In the second-quantization formalism 
the Lagrangian of the system is 

( 1) 

Lm and LM describe free m- and M-particles. 
The entire system is assumed nonrelativistic 

and Galilean-invariant. Therefore we have, for 
example, for the nucleons 

Lm=~~d3x(i\IJ+\p- 2!n Vljl+Vljl-nnjJ+l\J), (2) 

</J ( xa) is the operator for the nucleon field; xa is 
the coordinate-time four-vector (a= 0, 1, 2, 3); 
we keep the notation x for the coordinate three­
vector. In what follows we use the notation XaY a 
= x 0y0 - xy. LM differs from Lm by the replace­
ment of </J by the operator cp of the M field, and 
of the mass m by M. 

Lmm and LmM relate to the interaction be­
tween m-particles and the interaction between m­
and M-particles: 

L =' - _!_ \d3x d3y1jl+ (x 11) 1\J+ (Ya) V (x- y) 1\J (xa) 1\J (ya) 
mm 2 .: (3) 

(with xo = Yo), 

LmM = - g ~ d3x (cp+ljlljl + 1\J+ljl+cp). ( 4) 

The commutation rules for equal times are the 
usual ones: 

[1\J (x), 1\J+ (y)l = [<:p (x), cp+ (y)l = 6 (x- y). ( 5) 

The other commutators are zero. 
We note further that for Galilean invariance it 

is necessary to regard the difference 2m - M 
= 0 > 0 as small. Then the energy of the motion 
of the center of mass (without any constant term), 
which is all that changes under a Galilean trans­
formation, can be given approximately the same 
value for a pair of m-particles and for the M­
particle into which this pair has been converted: 
p2/4m r::;; p2/2M. It is essential here that we regard 
p2 as a quantity small in comparison with m 2 or 
M2. 

When g = 0 the system reduces to ordinary 
quantum mechanics and consists of free M-parti­
cles and nucleons interacting with the potential V. 
In the two-nucleon sector we get exhaustive in­
formation about the system from the Green's 
function: 

G (XIX, y", X~, y:) 

=- (0 IT (1\l (xa)l\l (Ya) 1\l+(x~)l\l+(y~)) 10), 

where I 0 > is the vacuum state. For equal initial 
and final times ( x 0 = y0, x 0 = Yo) this Green's 
function reduces to the Green's function of the 
Schrodinger equation for two nucleons and can be 
expressed in a simple way in terms of the solu­
tion of this equation. 
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We denote by G ( k 1K"2E, kjk2E') the Fourier 
transform of the Green's function G for x 0 = Yo 
and Xo = yfJ: 

G (k 1k2E, k~k~E') = ~ d4 xd4yd4 x' d4y' 6 (x0 - y0) 6 (x~ - y~)' 

X G (x", Ya., x~, y~) 
x exp (ik1"x" + ik2"Y" - ik~"x: - ik~"y:), 

k1o + k2o = E, k;o + k~o = E'. (6) 

It is an easy calculation to show that 

G (k1k2 E, k~k~E') = (2n)7 6 (E - E') 63 (K - K') G (e, k, k'), 

where 
(7) 

K = k1 + k2, K' = k~ + k~, k = 1/ 2 (k1 - kJ, 

k' = 1/ 2 (k~- k~), e = E - K 2!4m- 2m; 

G (e k k') = _ i \ da f~±) (k) f~±)* (k') _ i fo (k) /u (k') • 
' ' J p e- p2Jm+ tO e- eo 

(8) 

Here fb±) ( k) and f 0 ( k) are solutions of the sta­
tionary Schrodinger equation in momentum space 
for the scattering states (the signs ± refer to con­
verging or diverging waves) and the bound state 
(deuteron) with the binding energy E 0 : 

(p 2/m - k 2/m) f~±> (k) = (2~)3 ~ d3k' v (k - k') f~±> (k') (9) 

and an analogous equation for f0 ( k); v is the 
Fourier transform of the potential V. We assume 
that the nucleons form only one bound state. This 
restriction is unimportant for the results. 

Let us see what changes arise from the turning­
on of the interaction between m-particles and M­
particles. The two-nucleon sector is now charac­
terized by two Green's functions: 

They can both be found explicitly without difficulty, 
in terms of G, the coupling constant g, and the 
masses m and M. 

Let us begin with G2• Obviously the proper 
mass of the M-particle is (see Fig. 1) 

M (x" - y") = ig2G (x", x", y", y"). ( 10) 

From this we get as the expression for the func­
tion G2 in momentum space 

G2 (p") 

= ~M (p(l) [ l + ig2 ~·M (p(l) (2~)3 ~ d3k d3k' G (e, k, k') rl ' 
e= Po- p 2/4m- 2m. (11) 

The function 

~M (p") = - (p 0 - p2/2M - M + i0]-1 

FIG. 1. Single lines corre­
spond to nucleons, and double 
lines to M-particles. 

is the Green's function of the free M-particle. As 
we have already mentioned, the difference 2m - M 
= i5 is assumed to be small. Therefore G2 ( Pa) is 
actually a function of the one argument E. 

Before considering G1 we shall find the ex­
pressions for the vertex parts r ( xa, Ya· za) and 
r+ ( Ya· Xa, Za) = r (-xa. -Ya· -Za ), which cor­
respond to Feynman diagrams of the types of Fig. 
2, a, b, which do not contain any internal M lines. 
It is not hard to see that 

r+ (y",z",x") = g64 (y - x) 64 (z - x) 

+ igV (y - z) 6 (y0 - z0) G (y",z",Xa.,X"). ( 12) 

FIG. 2 

In momentum space this gives 

r+ (k1"' k2"' Pa.) = (2n)4 64 (k1 + k2 - p) gr (k2, e), ( 13) 

where k= %<k1 - k2 ), E =Po- p2/4m- 2m, and 

r (k 2, e)= i (e- k2/m) ~d3k'G (e, k,_k'). (14) 

The contributions to the Green's function G 
are: first, that from diagrams that have no M 
lines-this contribution is equal to G-and second, 
the contribution from the diagram with M lines 
shown schematically in Fig. 3. This contribution 
is given by 

- i \ ~m (x" - u,.) ~m (y" - v") d4u d4v 
" 
>< r+ (ucx,Va;,Za.) d4zG2 (za. - z~) 

X d4 z' f (z~, u~, v~) d4u' d4v' ~m (u: - x~) ~"' (v~ - y~). 

Setting x 0 = Yo and x0 = y0, we find in momentum 
space [dropping a delta function of the total mo­
mentum, multiplied by (2n) 7 ] 

.X 
.;:' 

!! !! 

FIG. 3 
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G1 (e, k, k') = G (e, k, k') 

. g2 r (k2, e) r (k'2, e) a. (e) 
+ 1 (2n)3 (e- k2jm + iO) (e- k'2/m + iO) ( 15) 

For the physical interpretation of the model it 
is necessary to carry out a renormalization of the 
mass and the "charge" g. This will be done in the 
next section. 

2. RENORMALIZATION AND THE PROPERTIES 
OF THE MODEL 

The observed mass of the M-particle is deter­
mined from the equation G2 1 = 0. Inserting a 
counterterm of the form -oMcp+ cp into the La­
grangian, we can arrange matters so that M will 
itself be the observed mass. We then have 

6M =- ig2 (2n)-3 ~d3kd3k'G (e, k, k'), (16) 

when Po- p2/2M- M = 0, i.e., when E = -6. 
After the mass renormalization 

G;1 (e) = - e- 6 + ig2 (2n)-3 ~d3kd3k' (G (e, k, k') 

-G (-6, k, k')). ( 17) 

We note that oM is infinite. Because of the inte­
grations over k and k' the expressions oM and 
G2 depend on the value of the wave function 
Fb±) ( x) in ordinary space at the origin of coordi-

nates: Fb±) ( 0) = a(±) ( p). As can be verified 
easily from Eq. (9), for p- oo the amplitude 
a(±) ( p) goes to ( 2rr )-3/2, provided that the de­
crease of v ( k) as k 2 - oo is not slower than 
1/k2 (that the singularity of V ( x) at the origin is 
not stronger than I x l- 1 ). Therefore the integral 

~d3p [a<±> (p) [2/(6+p 2/m) 

contained in oM does not exist. After the mass 
renormalization G2 1 becomes finite. 

The function G2 1 goes to zero not only at the 
point E = -6 which corresponds to the physical 
M-particle, but also at a point E = E1 which gives 
the bound state in the model. The equation for the 
determination of E1 is 

1 - 2 \ d• I a<±> (p) 12 g2a~ 
- g J p (e1- p2/m) (13 + p2/m) + (e1- eo) (ll +eo) (18) 

If o < I Eo [, then E1 < E0, and E1 - Eo from be­
low for g- 0. If, on the other hand, o > I Eo [, 

then E1 > E0• Moreover, E1 < 0, since otherwise 
the right member is complex. 

Let us denote the value of the integral in Eq. 
(18) for E1 = 0 by -c2• Then it is clear that for 

(19) 

there is no bound state. When the inequality (19) 
is replaced by equality, a bound state appears 
with E1 = 0. With further increase of the left 
member the level goes deeper, and for g - 0 we 
again have E 1 - E 0• 

In our model the charge renormalization is not 
associated with the removal of infinities, and both 
renormalization constants, Z for the wave-func­
tion renormalization for the M-particle and Z1 

for the vertex part, are in general finite. 
Z is determined in the usual way: 

Z = lim ~:;} (e) G2 (e) (20) 
£~-& 

(the value E = -6 corresponds to the physical M­
particle). It follows that 

z-1 = 1 + g2b2; 

b2_\d• la(±)(P)i• a~ 
- J P (p2 jm + ll)2 + (eo+ 6)2 ' 

(21) 

where a 0 is the value of the deuteron wave func­
tion at the origin (in ordinary space). We have 
0 ::::; Z ::::; 1, as must be the case. 

We define the constant z 1 in terms of the value 
of ')' ( k2 , E) when all three particles are physical. 
We then have E = -o, and also, by the law of con­
servation of energy and momentum, 

2m+ k 2/m + p2/4m = p 2/2M + M, 

which gives k 2 = -mo. We therefore set 

Z~1 = r (- m6, - 6) 

or in explicit form 

v (k- k') fp(±) (k') a<±>* (p) z-1 = 1 - - 1- \ d3p d3k' ---~;--:,..,------
1 (2n)'/, J ll + p•;m 

- ~~1 -\ d3k'v (k -k')f (k') (22) 
ll + eo (2n)'/, J o 

(with k 2 = -mo ). 
We now define the renormalized charge gr, 

vertex part yr, and M-particle Green's function 
r 

G2: 

(23) 

All of the matrix elements of the scattering 
matrix (not only in the two-nucleon sector, but in 
any sector) can be expressed in terms of these 
renormalized quantities alone. 

It must be emphasized once more that in our 
model for o ~ -Eo the constants Z and z 1 are 
finite, and the quantity gr is a finite function of g. 
Therefore in this case the renormalized charge 
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gr has no particular advantages as compared with 
the bare charge g, in contrast with the case of 
relativistic theory (with spin effects included), in 
which the bare charge may be infinite, and at any 
rate has no meaning in perturbation theory. In 
our present model either of the constants g or gr 
can with equal justification be regarded as a 
physical parameter of the theory. For our pur­
poses it is reasonable to regard g as the parame­
ter, since we start from the Lagrangian formula­
tion of the theory and ascribe meanings to the 
Hamiltonian, the interaction, and the Green's 
functions. If we fix on gr as the parameter, it 
can happen that as the second parameter of the 
theory-the mass of the M-particle-is varied 
these quantities lose their meanings (on this point 
see also the end of Section 3). 

The theory we have constructed is physically 
entirely reasonable for arbitrary values of the 
renormalized mass M and the bare charge g. It 
is obvious that the M-particle is an independent 
particle. Its characteristics are in no way con­
nected with the interaction between the nucleons. 
Let us note some features of the system of inter­
acting m- and M-particles. 

First, the bound state which existed for the 
nucleons before the introduction of the interaction 
with the M-particles is shifted to the point E1 de­
termined by Eq. 118) when this interaction is in­
troduced, and when the condition (19) holds the 
bound state disappears altogether. To convince 
ourselves of this, let us consider the poles of 
G1 ( E, k, k') as a function of E. They arise from 
the poles of G and G2 [the vertex part y can be 
expressed in terms of G, see Eq. (14)]. The poles 
at the points E = -6 and E = E 1, which come from 
G2, correspond to the physical M-particle and the 
new bound state. The latter is absent when the 
inequality ( 19) is satisfied. Corresponding to the 
old bound state (the deuteron) there is a pole of 
G at the point E = E 0• The function G1, however, 
has no pole at this point, since the second term in 
Eq. (15) also has a pole at E = E0, which exactly 
cancels the pole of the first term. 

A second feature, which can be seen directly 
from Eq. (23), is that the magnitude of the renor­
malized charge is bounded (unlike the bare charge, 
which can be arbitrary). It is clear that 

(24) 

where Z1 and b do not depend on the charge g. 
If we neglect the interaction between the nucleons 
(V = 0), then Z1 = 1, a(p) = (27T)- 312, and we 
find 

(25) 

This relation (with the equals sign) was obtained 
by Landau [s] from a consideration of the scattering 
amplitude of the particles in the general theory 
(in comparing the relations we must remember the 
difference between our definition of the coupling 
constant and Landau's). 

We would like to emphasize that in our model 
the Landau relation follows from two assumptions: 
1) that the interaction between the nucleus is in­
finitely small, and consequently there are no 
bound states of the nucleons before the introduc­
tion of the interaction with the M-particles; 2) the 
bare interaction of the nucleons with the M-parti­
cles is infinitely large, g- oo. 1l 

Let us further consider the vertex part 
y( k2, E) when the M-particle and one of the nu­
cleons are physical particles. We then have 
E = -6. The quantity analogous to y ( k2 , -6) 
= y ( k2 ) has been considered in the relativistic 
theory. [7] On the assumption that y ( k2 ) is analy­
tic and falls off for k 2 - oo it is possible to ex­
press y( k 2 ) approximately in terms of quantities 
that have no relation to the M-particle, and the 
result is that we get an equation for the determina­
tion of the mass of the M-particle. 

We can try to carry out an analogous procedure 
in our model also. The function y( k 2 ) will have 
analytic properties similar to those in the rela­
tivistic case if we take for the potential V ( x) a 

superposition of Yukawa potentials e-K!x 1/1 xI 
with different constants K 2: K 0• y ( k2 ) satisfies 
the obvious equations: 

(<'I+ k2/m) r (k2) + (2:n:)- 3 ~ d~ k'v (k- k') r (k'2) = 1' (26) 

from which it follows that with this choice of the 
potential y is an analytic function of k2 in the 
entire complex plane, except for a cut along the 
negative real axis to the left of the point [Ko 
+ (mo)1/2 12. 

This can be verified by using, for example, a 
method which we have suggested for the study of 
the wave function of the bound state.[9J With this 
method we can also find without difficulty an ex­
plicit expression for the discontinuity across the 
cut. It corresponds to the contribution from 
anomalous thresholds in the relativistic theory. 
An essential difference from [7] appears when we 

1>see also a paper by Gribov et al. [•] 
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write the dispersion relation for y( k2 ): y( k2 ) 

does not fall off for k2 - oo. This causes an im­
portant change in the result: there is no restric­
tion on the mass of the M-particle. 

We shall see later that there is an exceptional 
case in which y ( k2 ) does fall off-this is pre­
cisely the case in which the M-particle can be 
regarded as a bound state of the nucleons. There­
fore in our model the assumption that y ( k 2 ) falls 
off is equivalent to the assumption we made 
earlier, that the M-particle is a compound, not an 
elementary, particle. 

We note that y ( k 2 ) always has a threshold 
which corresponds to the anomalous threshold in 
relativistic theory. This shows that the anomaly 
is not related to the elementary or nonelementary 
nature of the particle, but is a property deter­
mined solely by the values of the particle masses. 

3. THE CASE IN WHICH THE M-PARTICLE IS 
COMPOUND 

In the preceding sections we have constructed 
a model of the interaction of two types of ele­
mentary particles-nucleons and M-particles. The 
masses of the particles and the quanti ties that 
characterize their interaction-the charge g and 
the potential V-have remained arbitrary. This is 
essentially what we wish to say when we call the 
two particles elementary and independent. Let us 
now consider a special case of our model-that in 
which the mass of the M-particle is equal to the 
mass of the bound state of the nucleons, the deu­
teron, which existed before the introduction of the 
interaction between nucleons and M-particles, 
i.e., the case in which o =2m- M = -E0• We shall 
at once find that in this case our model is exactly 
equivalent in its physical content to the ordinary 
quantum mechanics of the nucleons alone, as if 
there were no M-particles at all. The M-particle 
itself then precisely duplicates the behavior of the 
deuteron. 

o = -E0 is a singular point for all of the renor­
malization constants. We see from Eqs. (16), (21), 
and (22) that for 6 = -E0 the values are Z = Z 1 = 0, 
oM = oo. Let us consider the behavior of all the 
quantities that characterize the model for values 
of o close to -E0• For simplicity we shall suppose 
that the condition (19) is satisfied. Then G2 has 
only one pole. This simplifies the arguments, but 
the results are the same for the opposite case. 

It can be seen from Eq. (21) that for 6 + Eo- 0 

Z ~ (6 + e0 )2jg2ag, 

and it follows from Eq. (22) that 

(27) 

(28) 

where N is the residue of the deuteron wave func­
tion f0 ( k2 ) at the point k2 = m E0• 

It is remarkable that for 6 = -Eo the renor­
malized charge is finite and independent of the 
bare charge g: 

This value of the renormalized charge corre­
sponds precisely to what one gets in the theory 
without the M-particles, with the deuteron re­
garded as a bound state of the nucleons. 

(29) 

According to Eq. (17), for o + Eo- 0 the un­
renormalized propagation function G2 goes 
linearly to zero at all points. The renormalized 
propagation function increases linearly at all 
points. The unrenormalized vertex part does not 
depend on 6 at all, and the renormalized vertex 
part goes to zero everywhere except at the point 
which corresponds to the physical M-particle 
( E = -6), at which it goes to the finite value ( k 2 

- mE0 )f0 (k)/N. 
Let us now see what sort of scattering of the 

particles the model will give for 6 + Eo- 0. We 
first consider the scattering of two nucleons. It 
is described by the Green's function G1 ( E, k, k') 
with E = ko/m = k' 2/m. In Eq. (15) the contribution 
to G1 from the second term will be zero for 
6 + Eo- 0, since we have just seen that there we 
have G2 - 0. Therefore the scattering of the nu­
cleons will be the same as is given by the Green's 
function G, i.e., the same as before the introduc­
tion of the interaction with the M-particles. 

Let us take a general matrix element of the S 
matrix which describes the interaction between 
nucleons and M-particles. For 6- -E0 it goes 
over into the corresponding matrix element of the 
S matrix for the scattering of nucleons by deu­
terons without the introduction of any M-particles. 

To convince ourselves of this, let us consider 
the corresponding Feynman diagrams. We divide 
all of the diagrams into two groups: those that do 
not contain any internal M lines, and those that do 
contain such lines. For 6- -Eo the diagrams 
that contain internal M lines go to zero, since 
G2 - 0. There remain the diagrams without in­
ternal M lines. If there are also no external M 
lines, it is clear at once that the result will be the 
same as when the scattering of nucleons is calcu­
lated in the absence of M-particles. 

Suppose there are external M lines. Let us 
see what the part of a diagram connected with one 
such line gives (Fig. 4). Apart from a factor we 
get for the part in question the expression 
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FIG. 4 

where ~m is the Green's function of the free 
nucleon, k1a + k 2a = Pa• and Po= p2/2M + M. 
This expression is of course to be multiplied by 
a function of k 1a and k 2a which corresponds to 
the rest of the diagram, and integrated over k 1 

and k 2• For 6- -E~ the quantity gr yr ( k2, -6) 
goes over into ( 21r )3 2 ( k2/m - Eo) f0 ( k ). We would 
get exactly the same expression if we looked for 
the scattering of the deuteron in the theory without 
M-particles. This can be verified by an elementary 
calculation, using, for example, the method sug­
gested by Zimmermann. [t] 

Thus for 6- -Eo the entire theory goes over 
into the theory as it was before the introduction 
of the M-particles, into a theory containing only 
one elementary particle, the nucleon. The M­
particle goes over into the deuteron. This transi­
tion can be seen directly if we consider the state 
vector il>p of a physical M-particle with the mo­
mentum p. Obviously 

<I>r = z'i·<I>~ + ~ d3k1 d3k2 63 (p - k1 - k2) x. Ck1k2) 'Ptk,. 
( 30) 

where <I>~ is the state of the "bare" M-particle 
and 'll~ 1k2 is the state of two noninteracting 

nucleons. 
The expansion (30) is possible because the 

states il>~ and 'll~ 1k2 form a complete system of 

states in the two-nucleon sector, since they are 
the eigenstates of the Hamiltonian of the nonin­
teracting particles. For 6 - -Eo the constant 
Z ~ 0. In the limit 

a»p = ~ d3kl d3k2 63 (p - kl - k2) 'X. (kl, k2) 'l"~,k,• 

Thus il>p is orthogonal to the il>~ and can be ~x­
pressed in terms of the two-nucleon states <l'k1k 2• 

Some concluding remarks: When one of the nu­
cleons and the M-particle are physical particles 
the vertex part y( k2 ) goes over for 6 - - E0 

into the quantity (k2 - mE 0)f0 (k)/N, and conse­
quently falls off for k2 - 00 • We have already 
mentioned that in this case one can determine the 
energy of the bound state by means of the disper­
sion relation for y ( k2 ). 

For 6 - -Eo the renormalized coupling con­
stant gr is uniquely determined in terms of N 
and does not depend on g. This is perhaps the 
most characteristic way the case 6 = -E0 differs 
from other cases. Owing to this feature, for 
6 - -Eo the entire theory is uniquely determined, 
with no room for any arbitrariness. In the case 
6 = -Eo the restriction on gr of the Landau type, 
obtained from the condition (24), is replaced by 
the well known relation connecting N with the 
effective radius p. For gr this gives 

(g')"2 = 81tm-'!. I e0 1'1'/(1 - p Y m I eo 1). ( 31) 

This equation goes over into the Landau condition 
in the limit p- 0 (point interaction of the nu­
cleons). 

One final remark: In this section we have re­
garded g as fixed and have varied o, letting it go 
to -E0• One could try to fix gr and let 6- -E0•2) 

Then it is easy to see that Eq. (28) holds for Z1 

as before, Z = 1- (gr)2m 2/j27r) 3N2 (giving a 
finite value), and g = Z1 z- 2gr - 0. In the limit 
the scattering of nucleons would again agree with 
what one gets in the theory without M-particles. 
On the other hand the scattering of the M-particles 
would go over into the scattering of deuterons 
multiplied by a factor arising from replacement 
of the value of gr from Eq. ( 29) by the fixed value 
of gr. 

The theory obtained in the limit does not corre­
spond to any physical interaction, since g - 0, 
and therefore it is incorrect, lacking in balance. 
For example, in the limit G2 goes over into the 
free Green's function, so that we should have 
z = 1, but this is not the case. The most un­
pleasant thing is that in the limit the S matrix is 
not unitary: it differs by a numerical factor from 
the scattering matrix for the deuterons in the 
theory without M-particles, which is certainly 
unitary. Therefore the passage to the limit 
o- -Eo with fixed gr has no physical meaning. 

4. CONCLUSION 

The model which we have constructed is a 
generalization of a quantum-mechanical system 
of interacting particles. In this model all parti­
cles are regarded as independent and elementary 
[when the condition ( 19) is satisfied]. The ordinary 
quantum-mechanical system is obtained from the 
model in a special case, with a special choice of 
the mass of the newly introduced particle. This 
special case is characterized by a number of dis-

2>1 express my gratitude to V. Ya. Falnberg, who called my 
attention to this possibility. 
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tinctive features: the vanishing of the renormali­
zation constants Z, Z 1, and oM- 1, and as a con­
sequence of this, the falling off of the vertex part 
'Y ( k2). 

We leave open the question as to whether or not 
any such effects are actually observable. Clearly 
it could be expected that they would show up in the 
asymptotic behavior of observable quantities 
(electro-magnetic form-factors, say) at high en­
ergies. But the asymptotic behavior at high en­
ergies is not described by quantum mechanics, 
and therefore investigations in this direction re­
quire bringing in the relativistic theory of parti­
cles. 

In the low-energy region in quantum mechanics 
the model shows that there is no sharp distinction 
between a bound state ("deuteron") and an inde­
pendent M-particle. As the mass of the M-particle 
approaches that of the deuteron all physical quan­
tities go over in a continuous way into the corre­
sponding quantum-mechanical quantities for nu­
cleons and deuterons. This means that, strictly 
speaking, it is impossible to judge from low-en­
ergy experimental data whether the deuteron is a 
bound state or an independent particle. Either of 
the two alternatives is possible in principle. 

This conclusion is of course not to be taken too 
literally. In the case of the hydrogen atom, say, 
there is a whole series of S states. Here one 
could speak of a whole set of independent particles 
and ask whether the observed particles are the S 
states of the electron in the field of the proton or 
independent particles. But such a statement of the 
problem is very artificial and uninteresting. 

The ordinary quantum theory of the hydrogen 
atom is simpler and much richer than a theory 
with independent particles. It enables us to find 
all of the levels, which would have to be given 
from the beginning in a theory with independent 
particles. The actual deuteron is another matter; 
there is only one level, and that is poorly defined 
in the framework of quantum mechanics operating 
with potentials. In this case the question of ele­
mentary or nonelementary nature of the particle 
is very much in place. As we have already said, 

however, it cannot be solved if we remain in the 
low-energy region. 

We shall not deal here with the most interesting 
question, which is that of the degree to which the 
results obtained in the model are valid for rela­
tivistic field theory. We intend to devote a sepa­
rate paper to this. We remark only that in our 
opinion there is no change as to matters of princi­
ple. A possible complication is that in the rela­
tivistic theory the renormalized constants are al­
ways equal to zero, independently of the value of 
the mass of the M-particle. In this case one can 
consider a theory in which a cut-off momentum L 
is introduced, and study the behavior of all quanti­
ties for fixed L, taking the limit L - oo at the 
end of the calculations. The criterion for "non­
elementary" character of the particles is, we be­
lieve, our previous condition Z == Z1 == 0, which is 
now to be written for a fixed finite L and solved 
for the mass of the M-particle, after which we are 
to take L - oo, 

The writer is deeply grateful to the members 
of the seminar of the theoretical section of the 
Physics Institute (NIFI) of the Leningrad State 
University for interesting and helpful discussions. 
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