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The asymptotic behavior of 1r-meson photoproduction on nucleons at high energies and 1T­

meson production angles ~180° is investigated under the assumption of the existence of mov­
ing poles in the partial amplitudes. Asymptotic values of the differential cross section and 
polarization of recoil nucleons are derived. Assuming unitarity in the u-channel, it is shown 
that in the high-energy limit and at scattering angles close to 180° relation (1) holds for the 
differential cross sections. 

1. INTRODUCTION 

THE asymptotic behavior of scattering at high en­
ergies can be related to the mass spectrum of par­
ticles and resonances [i,2] by making use of the 
hypothesis of the moving poles of the scattering 
amplitude as functions of the orbital momentum. 
In accordance with this hypothesis, the asymptotic 
behavior of the backward scattering (scattering 
angle "'180°) at high energies is determined in 
processes of the type y + N- y + N, y + N- N 
+ 1T, 1T + N - 1T + N and the like by the fermion 
poles, that is, poles whose trajectories describe 
different fermion families. For example the nu­
cleon and the resonance in the 1rN system with 
quantum numbers T = Y2, F 5; 2 belong to one 
fermion family-they lie on the same trajectory [2]. 

The question of fermion poles was considered 
in many papers [2- 5]. Frautschi, Gell-Mann, and 
Zachariasen discussed the possibility of experi­
mentally verifying the assumption that the nucleon 
is a fermion Regge pole. Gribov C4J, assuming that 
the invariant amplitudes satisfy dispersion rela­
tions in momentum transfer, and using purely kine­
matic considerations, has shown that the poles of 
scattering amplitudes with different parity coin­
cide when the square of the energy in the c.m.s. 
of the crossed u-channel tends to zero, and are 
complex conjugate when u < 0. 

Such a character of fermion-pole trajectories 
leads to oscillatory behavior of the scattering am­
plitudes at high energies, but these oscillations 
manifest themselves neither in the cross section 
nor in the polarization. Only the correlation quan­
tities oscillate. For example, in meson-nucleon 
scattering, the oscillating quantity is the polariza-

tion of the recoil nucleons, if the initial nucleon is 
polarized. 

In the present paper we consider the asymptotic 
behavior of the photoproduction of pions on nucle­
ons at angles "' 180°. This process is related to 
1rN scattering through unitarity. In turn, unitarity 
in the same u-channel relates the photon-nucleon 
scattering amplitudes to the amplitudes of photo­
production of pions on nucleons. Simultaneous 
consideration of the processes y + N- y + N, 
y + N- N + 1T, 1r + N- 1T + N, which are related 
by unitarity, together with the assumption that the 
asymptotic behaviors of these processes at high 
energies and at scattering angles close to 180° 
are determined by the fermion pole, enables us 
to conclude that in the limit under consideration 
the differential cross sections averaged over the 
polarizations are connected by the relation 

Similar relations hold also between the cross 

(1) 

section of different processes in forward scatter­
ing [G], but in these relations, at best, one cross 
section is not observable. On the other hand re­
lation (1) relates asymptotic cross sections of ob­
servable processes. 

2. INVARIANT PHOTOPRODUCTION AMPLITUDE 

Let P1 and p2 be the 4-momenta of the nucleons 
in the initial and final states, and let k and q be 
the corresponding 4-momenta of the photon and the 
meson. Then the invariants of the process assume 
the form 
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As shown in [T], the photoproduction amplitude can 
be written in invariant fashion as a sum of four 
tensor quantities, multiplied by suitable scalar 
functions of the invariants (1). The latter, however, 
have different asymptotic behaviors, so that it is 
highly inconvenient to operate with them. We there­
fore write the amplitude in a somewhat modified 
form: 

4 

T = ~ MtAi! Mt = irs~k, 
i=l 

. ( m2 - u \ 
M2=-zrs P2·e+t=tq·e}, 

J5 (A 2 A \ 
M 3 =--z e+ 1_tkq·ej-

M4=-y5[~(m2-u) +k2p2·e], a=rtat, (2) 

where E -photon polarization vector, m -nucleon 
mass, and the meson mass is set equal to unity. We 
have left out the Dirac spinors from (2). Ai are 
scalar functions of the invariants, connected with 
the invariant amplitudes A, B, C, and D intro­
duced by Chew and Frautschi [3] in the following 
manner: 

A 1 =A -2mD, A 2 = (1-t)B, 

A3 = (1 - t) (C +D), A 4 =D. (3) 

All tensors Mi in (2), and consequently the func­
tions Ai in (3), are of the same order as s- oo 

(t- - 00 ). 

3. AMPLITUDE IN THE u-CHANNEL 

To find the asymptotic value of the scattering 
amplitude in the s channel ( s > 0, u < 0) for 
large s and finite u, using the hypothesis that 
there exist principal Regge poles, it is necessary 
first to change over to the c.m.s. of the u channel 
(u > 0, s < 0, p1 = -q, p2 = - k). The amplitude 
thus obtained must then be expanded in partial 
waves fz corresponding to transitions between 
states with definite quantum numbers, in our 
case parity. Further, in analogy with the pro­
cedure described in Gribov' s papers [B], it is 
necessary to introduce the functions fi and f[, 
which are analytic in l and which coincide with 
the physical partial amplitudes fz for even and 
odd l, respectively. The upper indices, plus or 
minus, determine the so-called signature [2], 

which plays the role of a new quantum number. 
Following this, going from summation over l to 
integration and assuming that the principal (most 
remote) singularities of Fz in l are poles, we 
can represent this integral in the form of a sum 
of residues at these poles (Regge poles). For each 

value of the signature there are two sets of poles 
with positive and negative parity. Each of these sets 
describes two types of transitions-from a state 
with total spin Y2 into a state with total spin 1;'2 and 
%. When the arguments z ""-s/2qk of the Legendre 
polynomials in the residues approach - oo (see, for 
example, [2J), each term of the sum over the res­
idues acquires a factor zln, and consequently the 
value of the sum will be determined by the term 
with the largest value of ln -the principal Regge 
pole. Continuing analytically the resultant expres­
sion into the region u < 0 we obtain the required 
asymptotic value. 

The expansion in partial waves is most con­
veniently carried out for amplitudes with definite 
helicity (A.niTIA.fi, A.y) [9J. In this connection, we 
introduce in the u-channel the following four he­
licity amplitudes, which determine the photopro­
duction process: 

'h = <+I T I+, 1), 1Jl2 = (-+I T I+ , 1), 

'lla = <+JTJ-+. 1), 1jl4 = <-+1 Tl-+. 1). 
(4) 

Expansion of these amplitudes in partial waves has 
the form (see [9 J) 

00 

(An IT J A~, Ay) = ~ (!+1) fL. dt..'t.. ('fr), 
1=0 

(5) 

where J. -scattering angle in the u-channel. The 
functions dt..'A. ( J.) are defined and their properties 
described in [9]. 

In connection with our purpose, we must set up 
such combinations of the amplitudes (4), which con­
tain only partial waves corresponding to transitions 
with definite parity. With the aid of the formulas 
of [S] it is easy to check that the partial function of 
the form f{ 'f fk corresponds l> to transitions be­
tween states with parities ( -1 )l and -( -1 )l re­
spectively. 

Starting from the explicit form of dt..'A. ( J.), we 
can choose the following combinations: 

+ ±1( '¢2 1Jlt ) 
't"! = Jf2 cos(it12)=Fsin({}l2) ' 

+ + 1 ( 1Jla 1Jl• ) 
't"2 = ¥2 \cos (it 1 2) ±sin({} 1 2) · (6) 

Substituting (5) in (6) and using the explicit form 
of dt..'A. ( J.) we obtain 

!)It can also be shown that(£: + f!) corresponds to a tran­
sition between states with total spin '!:,, while (f~ + f1) corre­
sponds to a transition from a state with spin 1/, to a state with 
spin 3/,. 
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4. ASYMPTOTIC VALUE OF THE AMPLITUDE 

It is easy to obtain by direct calculation the re­
lations between the amplitudes Ai of (3) and Ti of 
(6) in the asymptotic region of large z: 

-r± = -M+ 21k {(m ± Vu) A2 +A a}, 
1 - q 

Tt = M+ {+ ~ [Al + (m + Vu) A41 + m ~r_yu A a}- Tf, 
- - q r u 

u-m2 

k = 2 vu' 
q = 2 ~u {[(Vu + m)2 - II [(Vu- m)2 - 11}'1•. (8) 

Since the Ai have no singularity of the form 
..fU [!OJ, the expressions for T{ and Ti, as can be 
seen from (8), differ from each other in the sign of 
..fU . It follows therefore, in particular, that Ti + Ti 
remains finite as u- 0, whereas Ti- Ti vanishes 
or becomes infinite. This is possible only if the 
singularities of the partial waves for Ti and Ti 
coincide as u- 0. 

Going over in (7) from a sum over l to an in­
tegral and using formulas (8), we will determine 
in accordance with the program described above 
the contributions from the principal Regge poles 
to the amplitudes Ai. Denoting the residues of the 
functions f~- ff and f~- f{ by r 1 and r 2, respec­
tively, we obtain the following expression for the 
contribution from the pole with parity (- 1 )l 

A 3 =- ma1 - ~I> 

~~ = Vu a,, 

:t2 1 m + l '2 ( V- +) 
~ = - 2k vu t + 2 rf • 

N± =r(t+f){f(l+ 1)2V2:rtuM(qk/-1}-1 • 
(9) 

The plus and minus signs in (9) establish a definite 
signature. The contribution from the residue with 
opposite parity, in accordance with the foregoing, 
is obtained from (9) by reversing the sign of ..fU. 

We shall now show that the contributions from 

the principal Regge poles can be written in factor­
ized form, which in analogy with pole diagrams we 
choose in the form 

i'A A A 

r~'- = r~'- + 4m <ri- kr~'-), 
t = PI - q. (10) 

Expanding (10) in the tensors (2), we obtain expres­
sions for Ai in terms of the functions R, A., and (3. 

Equating these expressions to the functions ob­
tained in (9), we arrive at four equations for the 
three unknowns R, A., and (3. It is easy to verify 
that one of these equations is the consequence of 
the other three. As a result we obtain 

l + l R __ N s _(-s) 
- rl , 

sin nl 

A - .!!!__ [_!!!__ + -. I l .!.!__) ~ = - vu. (11) 
- - k yu- V t + 2 ,, • 

Continuing expressions (9) and (11) into the re­
gion u < 0, we can show, by following verbatim 
Gribov's argumentsC4J, that the residues of the 
poles of different parity are complex conjugate. 
The expression for the amplitude will therefore 
consist of the following combinations (i = 1, 2 ): 

± sl ± (- s) l ± • st• ± (- s} t• 
rxt = Rt + (R ) sin nl 1 sin nt• ' (12) 

r.~,·= Vu Rl s -(-s) -(R±)• s - -s ( l+ l l*+( >l") 
1-' sin nl ' sin nl* ' 

Rf = 2 (r1N)±, Ri: = -2 (r1N)±'A±/2m. (13) 

Introducing the moduli and phases of the expres­
sions (13) 

2r 1N = 1f 2p1ei"'•, A/2m = - p 2e1q>•, (14) 

we obtain for the imaginary and real parts of (12) 

Im a; = ± P[ (u) s1 cos (n, + 'ljl,), 
Im ~t = ± "V=U P! (u) i sin (l"~ + 'ljl1), 

Rea; = a±P[ (u) i cos (l"~ + 'ljl; + ~). 
Re~i =a± V uP[ (u) i sin (l"~ + 'ljl; + ~). 

Pf = pfpf; 

rx2 = ch nl" +cos nl' t r.l = _ sh nl" !: = In 5 (l5)* 
± ch nl" ± cos nl' ' g 1-' sin nl' ' "' ' 

l' and l" are the real and imaginary parts of the 
function l ( u), which determines the position of 
the pole. 

5. ASYMPTOTIC VALUES OF THE CROSS SEC­
TION AND POLARIZATION 

A detailed summary of the expressions for the 
cross section and all possible polarization effects 
is contained in the paper of Moravcsik[11J. By 
determining the connection between the functions 

*ch = cosh, sh = sinh, tg = tan. 
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Ai in (3) and the Moravcsik amplitudes A, B, C, 
and D, we obtain the following expression for the 
latter in terms of the ai and f3i of (12): 

A = v=u (~2 + a 1 - ma2), 

B sin 6 = V- u (~ 2 - a 1 + ma2), 

C = m~2- ~ 1 - ua2, D sine = m~2 - ~1 + ua2, (16) 

where e -scattering angle in the s channel. 
With the aid of (16) and (15) as well as of the 

table given by Moravcsik, it is possible to obtain 
the differential cross section and all the polari­
zation effects of the photoproduction process. We 
present some of them: 

Io = - u (p~)2 (1 +a~) {[ 1 + (m2 - u) (P:i)2 

- 2mp:i cos 'l'2l - 2 V- upi sin qJ2 cos 21>} s21', 

IoPm = - 2u (o~)2 a± sin(±~) {2V -upf sin qJ2 

- [1 + (m2 + u) (o:i)2 - 2mpi cos qJ2) cos 21>} s21 , 

l 0T mn = 4u (p[)2 {cos 1¥1 + a~ cos 1¥2 - 2mp:i 

><[cos (1f1 + 'l'2) +a~ cos (1¥2 + qJ2)1 + (Pi)2 

x [cos (1¥1 + 2qJ2) +a~ cos (1¥2 + 2qJ2)1} sin 21>, 

cos21> = ~e~): , 1ft= 2 (l"£ + 'l't), .1¥2 = 2 (l"£ + rpl =F !3). 
sm v (17) 

The notation is from Moravcsik's paper. We see 
that in spite of the oscillatory character of the 
energy dependence of the amplitude, the differen­
tial cross section and some polarization effects 
are monotonic functions of the energy. However, 
as can be seen from the last formula, some of the 
polarization effects oscillate with the energy. An 
identical picture is obtained for other processes 
in [4, 12J. We can therefore assume that such a 
behavior of the cross sections and polarizations 
is a characteristic feature of Regge-ization. 

6. CONNECTION BETWEEN CROSS SECTIONS 

Relation (1) between the differential cross sec­
tions can be readily obtained by using the unitarity 
condition for the partial amplitudes of the proc­
esses y+N-y+N, y+N-N+7r, 1r+N-1r 
+ N in the crossed u-channel. Let us consider to 
this end the partial helicity amplitudes for photon­
nucleon scattering gL .. " for photoproduction of 

pions on a m~cleon ft_\.', and for pion-nucleon 
scattering hh_,. The helicity partial amplitudes 
are related to the partial amplitudes with definite 
parity. For photoproduction this relation is given 
in (6) and (7); for yN scattering we have the fol­
lowing relations: 

I i I I . . 
g.;,, •;, = A+ + A_, g.,~,, -•;, = B~ + B~. 

i A1 A1 ; B1 B1 g.;,,-'(,= +- _, g-'f,,-'f, = +- -· gL.1, .• 1, = c~ - c~. 

(18) 
Finally, for 1rN scattering 

h.1 •.• 1• = h~ + h~. h_,1 ... 1, = h~ -hL, (19) 

where the quantities with index ( +) denote partial 
amplitudes with parity ( -1 )j+ 112, and the quanti­
ties with index (-) denote partial amplitudes with 
parity (-1)j- 112• 

Assuming that the extreme right-hand singular­
ity of all the amplitudes with definite parity is a 
pole, we obtain asymptotically at high energies 
( u < 0) the following differential cross section 
for yN scattering: 

da/dQ = (1 + a2) [(w1)2 + 2 (ffi2)2 + (ffia)2] s2i'-t, (20) 

where w1, w2, and w3 are the residues of the am­
plitudes At, Bt, and ct. 

Analogously we obtain the differential cross 
section of the 1rN scattering [4]: 

where ~ -residue of the amplitude hL 

(21) 

The photoproduction differential cross section 
is given in (17). It follows from unitarity that, 
first, the residues wl> w2, and w3 are connected 
by (see [12]) 

(22) 

and, second, that the following connection holds 

(23) 

From (22) and (23) in conjunction with (17), (14), 
(11), (20), and (21) we get (1). 

In conclusion, we are sincerely grateful to A. I. 
Akhiezer and V. N. Gribov for continuous attention 
to the work and for numerous discussions. 
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