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The study of the integral equation for the inverse dielectric constant operator started by Falk 
and by Adler[! •2] is continued. An expression is obtained for E ( w) suitable for the direct 
calculation of the dependence of E ( w) on the density of the medium. Under' certain assump
tions the behaviour of E ( 0) during transition to the metallic state is studied, and the singular
ities in E ( w) at the start of the absorption band are clarified. The possibility is shown of 
calculating the optical anisotropy of cubic crystals in the framework of the approximation. 

INTRODUCTION 

A number of papers[ 1•2J in recent years have 
considered the problems associated with the 
quantum treatment of the dielectric constant of 
crystals. When the correlation corrections to the 
energy obtained in the Hartree-Fock approxima
tion are considered, an equation naturally arises 
relating the so-called effective interaction in the 
medium to the simple Coulomb interaction. 
Hubbard[a] has given the most detailed derivation 
of this equation. Martin and Schwinger[4J and 
Falk[l] established that the dielectric constant 
of the medium is directly related to this effective 
interaction. Falk[l] considered by this means the 
case of almost free electrons, and attempted to 
take into account the effect on E ( w) of the so
called correction to the local field. The question 
of the correction to the local field has been treated 
most fully in the paper by AdlerC 2J. 

In our work we continue the study commenced in 
[! •2] of the integral equation for the inverse dielec
tric constant operator. 

The principal aim of our work is to develop a 
convenient method of calculating the static dielec
tric constant-the method being suitable for finding 
the variation of E ( 0) with the density of the me
dium. It should be pointed out at once that in our 
work, as also in [I •2], the effect of excitons on the 
dielectric constant is not considered at all. In par
ticular this fact manifests itself in that absorption 
in dielectrics starts not at ~/li, where ~ is the 
width of the forbidden gap, but earlier, at exciton 
levels. This fact is important when the variation 
of the dielectric constant with frequency w is 
sought; we consider, however, that taking exciton 
states into account does not greatly change the 
value of the static dielectric constant. In further 

work we shall attempt to take this effect into 
account. 

In the present work a formula is obtained which 
allows E ( 0) to be calculated if the wave functions 
and the energy spectrum of the electrons in the 
crystal are known[ 5J; a rigorous upper estimate 
for E ( w) is also obtained in the range of frequen
cies for which there is no absorption. In particu
lar for E ( 0) we have: 

8 (0) < I - D (k, k, 0), I k I->- 0. 

Here D ( k, k, 0) is a simple function of well known 
quantities (wave functions and energy spectrum). 
Under certain assumptions an estimate is made of 
the character of the singularity in E ( w) when w 
- ~- Here it is found that E ( w) is finite as w 
- ~ but its derivative is discontinuous: 

~Ree(ro) ={const;YD.-w, w=.i-B, 
iJw const, w = D. + B; 
Ime(ro)~Vro-~. ro=~+e, e->-0. 

The same estimate shows that under compression 
E ( 0) should increase and at the transition to a 
metal should jump discontinuously to infinity. 

In addition the possibility of calculating the op
tical anisotropy of cubic crystals within the frame
work of the approximation is demonstrated in the 
paper. 

1. THE INTEGRAL EQUATION FOR THE INVERSE 
DIELECTRIC CONSTANT OPERATOR AND THE 
STUDY OF THE SINGULARITIES OF THIS 
EQUATION 

As already noted in the introduction, when the 
correlation corrections to the energy calculated in 
the Hartree-Fock approximation are considered, 
an equation for the effective Coulomb interaction 
F(x, x') is obtained: 
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F (x, x') = J (x - x') 

+ ~ dydz J (x - y) M (y, z) F (z, x'), 

where J(x- y) = e 26 (x0 - y0 )/ lx- y I is the 
simple Coulomb interaction, the nucleus is 

M (y, z) = iS (y, z) S (z, y) 

(1) 

- ~ dudv J (u-v) S (y, v) S (v, z) S (z, u)S (u, y), (2) 

and S ( y, z) is the electronic Green function in the 
crystal calculated in the Hartree-Fock approxima
tion. The kernel M ( y, z) includes the two dia
grams of lowest order in the interaction, simple 
polarization and exchange, as shown in Fig. 1. 

FIG. 1 

For a more detailed introduction to this question 
we refer the reader to Hubbard's paper[ 3]. 

We show the relation between F ( x, x') and the di
electric constant. We make certain transforma
tions. We multiply (1) by M (x', u) and integrate 
with respect to dx'. Using the notation 

~ F (x, x') M (x', u) dx' = L (x, u), 

we obtain 

L (x, u) = ~dx' J (x- x') M (x', u) 

+ ~dydz J (x - y) M (y, z) L (z, u1• 

We introduce the notation B (x, u) = L (x, u) 
+ 6 ( x - u); then 

B(x, u)= 6 (x-u)+~ dydz J (x - y) M (y, z) B (z, u). (3) 

It is easy to show that the function 

G (x, x') = ~ dtB (x, t) J (t - x') (4) 

coincides with F (x, x' ). In fact, substituting in 
(4) B (x, t) from (3), we obtain 

G (x, x') = J (x - x') 

+ ~ dydz J (x - y) M (y, z) G (z, x'), 

which agrees with (1). 
The significance of the operator B (x, x') is 

seen in the following example. Let the charge 
density be p ( x'). Then it creates in the medium 
a potential 

'f!etf (x) = ~ dx' F (x, x') p (x') 

FROM THE QUANTUM VIEWPOINT 

= ~ dtdx'B (x, t) J (t - x') p (x') 

= ~B (x, t) cp (t) dt 

(cp (t) = ~ J (t - x') p (x') dx'). 

359 

Here cp ( t) is the potential created by the given 
charge distribution without taking into account the 
polarization of the medium. In the homogeneous 
case when B (x, t) = B (x - t) we obtain for the 
Fourier transforms of the functions CfJeff(x) and 
B (x - t) 

'f!eff (k, co) = B (k, co) 4:n:k-2p (k, co), 

whence it is obvious that B ( k, w) is the inverse di
electric constant operator E-1 ( k, w). The reader 
interested in a more rigorous proof of the identity 
of B ( k, w) and E-1 ( k, w) is referred to [1 •4]. 

Thus, to find the dielectric constant it is neces
sary to solve equation (3), the study of which we 
are concerned with. 

From expression (2) for M ( y, z) it follows 
that M ( y, z) depends on the difference of the 
times (Yo - z0) and satisfies the periodic condi
tion 

M (y + R, z + R, Yo- Zo) = M (y, z, Yo- Zo) 

( R are translation vectors of the direct lattice), 
since 

occ 
s (y' z) = e (yo - Zo) ~ u; (y) U; (z) iE i (y,-z,) 

j 

unocc 
(5) 

- E (zo -Yo) L; u: (y) Ua. (z) /Ea. (y,-z,), 

where Uj ( y) is the solution of the Hartree-Fock 
equations. The index j labels the quasi-momentum 
kj and the band number nj. In what follows the 
italic letters j, i will refer to occupied electronic 
states, and the Greek letters a, {3 to unoccupied. 

We take the Fourier transform of Eq. (3). 
Using the properties of M (y, z), we can consider 
it to be a function of the difference y - z and of 
one of the variables, for example, y, where it must 
be periodic in this variable. Then 

~~ dk dw 
M (y, z) = 7 ~ (Zn)" 2n M (k, g, co) 

x exp [igy- ik (y -z)- ico (y0 - z0)), 

B (x, x') = ~ ~ (:n~• ~: B (k, g, co) 
~ 

x exp [ igx - ik (x - x') - ico (x0 - x~)J, 

(" dk dw 4ne2 

J (x - y) = J (2n)3 2n 1{2 

x exp [- ik (x- y)- iw (x0 - y0)l (6) 
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( g is a vector of the reciprocal lattice). 
The Fourier transform of (3) becomes 

B (k, g, ro) = C'Jg, o 

~ 4ne2 + .LJI k-gi 2 M (k -m, g -m, ro) B (k, m, ro). 
m 

Using (2) and (5) we obtain 

M(k,g,ro) 

_ 1 ~ • [ 2(Ei-Eil) 
-vp Hip,(k-g)Hip,(k) p(E--£)2-w2 

J, (l I ll 

-niC'J (Ei- Ell+ ro) -niC'J (Ei- Ell- ro)]; 

P stands for the principal value, 

Hill (k) = ~ dr u; (r) eikr Ull (r). 

(7) 

( 8) 

(9) 

In this expression for M ( k, g, w) only the term 
iS ( y, z) S ( z, y) is taken into account. The fol
lowing term, which takes into account the effect of 
the exchange diagram, is of higher order in the 
interaction, and it will be evaluated at the end of 
the article. 

From (7) and (9) it is obvious that, as k-- g, 
the kernel of (7) has a pole I k - g 1-1• To remove 
this singularity we introduce the function B ( k, g) 
=klk-gl-1 b(k,g) (forbrevityweomit w). We 
use the notation 

~M(k-m, g-m) = D (k- k- ) 
I k-g\ lk-ml m, g · (10) 

It is obvious that D ( k - m, k - g) has no sin
gularities as k-- m, k - g. From this the equa
tion for b ( k, g) has the form 

b (k, g) = C'Jg,o + 2]D (k - m, k -g) b (k, m). (11) 
m 

We now establish the relation between the di
electric constant and the function b ( k, g, w). We 
have 

<fief/ (x) = ~ B (x, t) <p (t) dt. 

Let cp ( x) = cp k e -ik • x - iwxo; then 

<fief! (x) = ~ B (k, m, ro) <f!k ei <m-kl x-iwx,_ (12) 
m 

Here cp eff ( x) is the microscopic potential which 
contains rapidly varying terms. Averaging as 
usual over the region where kx changes little, but 
which is large compared with the dimensions of the 
unit cell, we obtain 

<<ref! (x)) = B (k, 0, ro) <f!k e-i kx-iwx,_ 

Hence we determine E ( k, w) = B-1 ( k, 0, w) by 
analogy with the formula 

(k ) 4np (k, w) 
<fief/ ' 00 = k2E (k, w) · 

(13) 

We note the fact that the Fourier components 
B ( k, g, w) = E-1 ( k, g, w) have poles at the points 
k = g because B ( k, g, w) = k I k - g 1-1 b ( k, g, w) 

but b ( k, g, w) has no zeroes for k = g. The con
dition k = g coincides exactly with the well-known 
Bragg law for the reflection of x rays. 

We remark that if E ( k, w) is a tensor, as hap
pens in the general case for a crystal, then 
E ( k, w) in formula (13) must be replaced by 
h ( k, w) k = k01.E .J. ( k, w) k9 where k? are the direc-

1 1 1 
tion cosines of k. 

Thus, remembering that B( k, 0, w) = b( k, 0, w) 
we obtain 

ke (k,ro) k = b-1 (k, 0, ro). (14) 

In what follows we limit ourselves to the case of 
an insulator in that range of frequencies for which 
there is no absorption, i.e. w < min ( EjJ - E j ), and 
consider only the frequency dispersion of the dielec
tric constant 

e (ro) = lime (k, ro). (15) 
k~o 

2. SOLUTION OF THE EQUATION FOR b(k, g) 

We consider Eq. (11) for b(k, g). For b(k, 0) 
we have 

b (k, 0) [l -D (k, k)l 

= 1 + 2] D (k - m, k) b (k, m). (16) 
m""o 

For g ¢ 0 

b (k, g) = D (k, k -g) b (k, 0) 

+ ~ D (k - m, k -g) b (k, m). (17) 
m""o 

We divide (16) and (17) by b ( k, 0) and label 

a (k, m) = b (k, m)/b (k,O), m =1= 0. 

Then 

b-1 (k, 0) = 1 -D (k, k) 

- ~ D (k - m, k) a (k, m), 
m""o 

a (k, g) = D (k, k -g) 

+ ~ D (k - m, k -g) a (k, m). 
m:;;i=O 

It follows from (14), (15) and (19) 

ke (ro) k =lim 
k~ 

(18) 

(19) 

(20) 

x { 1 -D (k, k, ro)- ~ D (k- m, k, ro) a (k, m, ro)}. 

m~ (2U 



DIELECTRIC CONSTANT 0 F CRYSTALS FROM THE QUANTUM VIEWPOINT 361 

The functions a ( k, m) are found from (20). Be
fore we show the way to solve (20), we demonstrate 
in a general form that kE ( w) k is always smaller 
than the quantity [ 1 - D( k, k, w)], k- 0. 

We multiply the complex conjugate of (20) by 
a ( k, g) and sum with respect to g "" 0: 

.l; I a (k, g) / 2 = .l; D' (k, k -g) a (k, g) 

+ .l; a' (k, m) D (k - m, k -g) a (k, g). 

In the absence of absorption D ( k - g, k) 
= D* ( k, k - g). It is clear, therefore, that 

.l; D (k - m, k) a (k, m) = .l; I a (k, m) 12 

'4ne•~ 2(£13 -£;) ~~ H,13 (k-m). 
1
• 

+ ---y- "'-! [(£.- E )"- w•] LJ I k- m I a (k, n) > 0, 
ill ' .il m,.co 

because ( E{3 - Ei) > 0. Thus kE ( w) k < 1 
- D ( k, k, w ) , k - 0. 

We now show how one must find a ( k, m) in 
the case of a crystal. We expand a ( k, m) in 
spherical functions, which depend on the angles 
between m and an arbitrary vector, k, for 
example: 

a (k, m, w) = .l;Cq~'- (k, m, w) Yq~'- (- m0), (22) 
q,f' 

where m 0 are the direction cosines of the direc
tion m. Then we have from (20) 

h Cq~'- (k, g, w) Yq~'- (- gG) = D (k, k -g) 
q,f' (23) 

+ ~ D (k -m, k-g) Cqf' (k, m, w) Yqf' (- m0). 

m,Q,f' 

For a crystal the wave functions can be repre
sented as a sum of spherical harmonics ( ni is the 
number of the band): 

u, (r) = u~~ (r) = h AZ~. (kt) t;, [r, Eni (kt)l Yt,m, (r0). 

l1m1 

When calculating Hij3 ( k - g) we easily see 
that 1)3 = ki - k but since we consider k - 0 then 
k13 R:; ki and 

Htil (-g)= 

X (kt) A7,~. (k,) ~ dr. r2fL [r, En1 (kt)I f~, [r, En13 (k,)] 

X \ Y;,m, (r0) Yt,m, (r0) e-igr dQ. 

It can be shown that 

~ Yt,m, (r0) Yt,m, (r0) e-igr dQ 
00 

= Jf4:rt (- l)m' .l; iP (jp (gr)- bp,ol 
P=J ms-mtl 

-. /(2/t + 1) (21. + 1) y (- ...,()) 
X Jl (2p + 1) p,m,-m, i5 , 

where jZ1 + 12 - pI is an even number, Bpz ,M .z 
1m1, 2m2 

are Clebsch-Gordan coefficients, and jp ( gr) are 
spherical Bessel functions. 

Further 

Hill(- g) 

g 

00 

p=l m,-m,l 

X BP. o -. /(2/1 + 1) (21• + 1) 
1, o; t,o Jl (2p + 1) 

( E (k)lfnil[ E ]ip(gr)-/3po X r, n, i t, r, nil (k,) g ' · 

We multiply equation (23) by y* ( -g0) 
q/). 

integrate with respect to dUgo· We obtain 

Cqf' (k, g, w) = ~D (k, k-g, w) Y;f' (- gG) dQg" 

+ .l; Bne• E,- Ell 
!,{3 V [(E,- £ 13)2 - w2] 

X h;~ nil (g, kt) h CP" (k, m, w) h;~nil (m, k,), 
m, P. v 

( Z1 + Z2 + q is even). 

(24) 

(25) 

and 

(26) 

Here we have replaced the summation over the 
directions m 0 by an integration: 

~ D (k, k -- g, w) Y;~'- (- gG) dQgo 

=Bne• ~ (E1 -E[3) H;13 (k) n;n 13 
V * [(E,- £ 13)2 - w2) -k- hqf' (g, k,). 

Thus we have a system of algebraic equations 
in terms of Cq/J. ( k, g, w): 
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We note that in the calculation of k-1 Hi/3 ( k) 
( k- 0) in (24) only the term with p = 1 remains. 

The dielectric constant is given in terms of 
CqJ..t ( k, g, w) in the following way: 

~ ~ . {. 8ltez ~ Hill (k) 
k8 (co) k = hm 1 -D (k, k, co)- y- ~-k-

k->{) ill 

(Ei-Eil) ~ n;nll l 
X (E. -E )2 -w2 ~ hpv (m, k;)Cpv (k, m, co)j . 

l f3 mpv 

(28) 

Formula (28) is the basic one for the calculation 
of E ( w ). 

We remark that, although it is clear theoreti
cally that in a cubic crystal Eik ( w) = E ( w) Oik• 
errors in the calculation can make it appear that 
Exx ( w), eyy ( w) and E zz ( w) differ somewhat 
from one another. It is therefore necessary in 
practice to put successively in (28) 

k=(~). k=(~). ( 0 ) 
k = ( 0 

,kz 

and calculate Exx ( w ), Eyy ( w) and Ezz ( w) as 
k- 0. The mean value E( w) = 1J 3 Sp Eik ( w) 
should be taken for E ( w). 

It is possible that a good approximation for the 
solution of the system (26) will be to take into 
account only certain values of the modulus m
the vector of the reciprocal lattice. Knowing the 
wave functions and the energy eigenvalues in the 
crystal,[ 5J we can calculate the functions 

n·np n·np 
F zt z2p ( g, ki) and hq~ ( g, ki). This procedure 

can be applied for various values of the density. 
Thus the change of E ( w) when the crystal is 

compressed will be found. We note that if 
ID(k, k-g, w} I< 1(g ;>' 0) then, solving (20) by 
an iteration method, we obtain 

ke (co) k = lim{l -D (k, k, co) 
k~o 

- ~ D (k, k -m, co) D (k -m, k, co)- ... }. (28') 
m,.co 

VARIOUS LIMITING CASES FOR E ( w) 

We now consider several particular cases for 
E ( w). In the case of a free electron gas Ui ( x) 
= v-1/leikx. A direct calculation of D ( k, g, w) 
shows that only D ( k, k, w) the diagonal expres
sions, do not vanish. It is therefore obvious from 
(21) that 

8 (co) =lim [l -D (k, k, co)l. 
k->{) 

Calculation gives 

8(co) = l-4nne2/mco2, 

where n is the number of electrons per cm3; this 
expression agrees with the classical one for free 
electrons. 

The other limiting case is that of isolated 
atoms, in the sense that the wave functions of the 
system of electrons can be represented by the 
strong binding method. Here we consider only the 
case of completely filled bands when the Bloch and 
Heitler-London methods coincide. Then 

'¢k; (r) = ;N~/ki~cp; (r- R) 
(29) 

( N is the number of atoms in the crystal, and 
cp i ( r) are the atomic functions}. 

Calculating D ( k, g, w) with these wave func
tions, and using (28') for E ( w), we obtain in the 
dipole approximation for the interaction between 
the atoms the well known Lorenz-Lorentz formula: 

8 = 1 + 4nna/(l -{- nna), (30) 

where a is the polarizability of one atom, taking 
into account the self-polarization correction (see 
[2]}. 

We now clarify the qualitative behavior of 
E ( w) close to the absorbing region, i.e., when w 
- ~ (~=min( Ep - Ei> is the energy gap be
tween filled and unfilled states}. We limit our
selves to considering only the term D ( k, k, w) in 
E ( w) (see equation (21}), since it can be shown 
that including the following term does not change 
the character of the singularity. 

By definition 

D (k k ) = 4lte' ~I Hm (k) 12 2 (£13 - E;) 
' 'co V ~ k2 [(Eil-E;)Z-w2]. 

The uppermost filled band and the subsequent un
filled band play the principal role in this sum. 
The dependence E ( k) for these bands typical for 
an insulator is shown in Fig. 2 ( k0 is the limiting 
momentum of filling). For the calculation we put 

E; (k) =A; -B,k2 , Ell (k) = A 13 + Bilk2 , 

k-2 1 H;f3 (k) 12 = const · ~k;,kf3 

[/If) 

FIG. 2 
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( const. has the dimensions of cm2 and is of order -D (k, k,w) 
J(ilrl/1)1 2). Thesecondconditionassumesa k~o ~, 

2
[ 1 

weak dependence of the wave function on quasi- ~ const · .l dk · k !J. _ w + Bk2 + !J. + w 1+ Bk2 ], 

momentum. 
Under these assumptions we obtain 

-D (k, k, w) 
k~o 

0 

where .6. = A/1 - Ai is the energy gap, and B = BJ1 
+ Bi. Evaluating the integral we have* 

[ 2ko V !J.- w -. /-B- V !J. + w t k 1 /-B-J 
const · B -- 8 ,1, arctg k0 V !J. _ w - 8 ,1, arc g o V !J. + w , 

w<~ 

t. [2ko_~ V~ I ~V~+koVB 1- VII+w x 
cons B 2 s'l, n w - !J. - ko V 13 B'1' 

It is not difficult to show that as w -- .6. this 
function is finite; however, its derivative has a 
discontinuity: 

for w = !J.- e, 

for w = !J. +e. 

Thus we see that E ( w) has a peak (break) at 
w = .6. (Fig. 3 ). When the crystal is compressed 

C(w} 

FIG. 3 

as .6. -- 0 this peak will be displaced in the direc
tion of smaller frequencies and will grow in mag
nitude. When the bands cross and the insulator 
turns into a metal, intraband transitions provide 
an important contribution to E ( w) because, after 
crossing, we have two partially filled bands. A 
similar calculation shows that this changes E ( w) 

by the amount -en/ w 2 ( c > 0; n is the number of 
filled states in the band which were previously 
empty, or the number of holes in the previously 
filled band). This contribution changes E ( w) 
smoothly when w >" 0, since to start with n = 0 
and then increases, but for w = 0 the value of 
E ( 0) becomes infinite, which agrees with the fact 
that we now have a metal and not an insulator. 

We now show that, when an imaginary part of 
E ( w) appears, the character of the singularity of 
the real part does not change, and we also clarify 

X arctg ko V !J. ~- w, w > ~. 

qualitatively the behavior of Im E ( w) at the start 
of the absorption band. 

We put D ( k, g, w) = D' ( k, g, w) + iD" ( k, g, w) 

where D' ( k, g, w) is the same as D ( k, g, w) 
when there is no absorption, and 

D" (k, g, w) = :n: 4~2 ~ H;flk (k) H;~ (g) o (E;- Ell+ w). 
j, {l g 

Writing the quantities a ( k, m, w) in (21) in a 
similar way, i.e., a ( k, m, w) = a' ( k, m, w) 
+ ia" ( k, m, w) we see that an additional contribu
tion to the real part E 1 ( w) appears: 

~D" (k -m, k) a" (k, m), 
k~o 

and the imaginary part is: 

e" (w) = -D" (k, k, w)- ~ D (k- m, k) a' (k, m} 
k~o m,.co k~o 

- ~ D' (k -m, k) a" (k, m). 
k~o 

We estimate D" ( k, k, w) as w -- .6. under the 
same assumptions: 

k, 

D" (k, k,w)=const· ~ o (w- ~ -Bk2) k2dk 
k~ 0 

w<~, 

~ + Bk~>w > ~. 
w > ~ +Bk~. 

It is not difficult to see that, since in the first 
approximation a"(k, g)~ D" (k, k-g), the con
tribution to the real part E 1 ( w) is proportional to 
w - .6. as w-- .6., i.e., the singularity in E' ( w) 

noted above is retained. 
Estimates made to take into account the contri

bution of the exchange diagram to E ( w) show that 

*arctg = tan -•. 
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in the first approximation this again leads to a de
crease of E ( w) relative to the magnitude 

[1-D(k,k,w)]. 
k-+0 

We note in conclusion that using the results ob
tained we can easily take into account spatial dis
persion of the dielectric constant. Expanding in 
(21) with respect to ka (a is the lattice constant), 
and retaining only the terms quadratic in ka (the 
linear terms disappear due to the cubic symmetry), 
we see that a certain tensor is added to the scalar 
quantity E ( w ); with this is associated the optical 
anisotropy of cubic crystals .c 6] 
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