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WE know of semiconductors with a carrier mo
bility u that is very low (u < 1 cm2/V-sec) down 
to sufficiently low temperatures. Such small mo
bilities cannot be obtained by ordinary computation 
methods, which are suitable only for the case of 
weak interaction between the carriers and the scat
terers. In several papers [1- 4] it was shown for the 
case of strong interaction between the carriers and 
the polarization lattice vibrations, that at high tern
peratures ( T > T 0 ) the mobility depends on the 
temperature like exp (- Ea/kT ), and the principal 
role in the mobility mechanism is played by super
barrier classical jumps of the small-radius pola
rons from one site to the other. The value of T 0 

is determined from the condition 

kT0 ::::::1iw0 12lnSr. 

Here w0 is the limiting frequency of the optical 
phonons and ST is a dimensionless parameter 
characterizing the force binding the electrons with 
the phonons [see (14) of [ 3]], ST » 1. It is of in
terest to obtain an expression for the mobility in 
the low-temperature region (T < T0 ). We shall 
show in the present note that when T < T0 the 
mobility increases sharply with decreasing tem
perature like exp (nw0 /kT ). The mobility thus 
has a minimum at T"' T0• 

We shall use the procedure proposed in [ 3] and 
consider the temperature range T1 < T <To where 
T1 is determined from the condition 1) 4( T1) 
= ~Ep /kT = 1, and ~Ep is the width of the polaron 
band. If the band is filled little, the condition 174 < 1 
guarantees that the carriers obey Boltzmann statis
tics. Incidentally, the technique proposed makes it 
possible to consider the case of Boltzmann statis
tics for arbitrary 1)4. 

It is shown in [3] that the electric conductivity 
is the sum of two terms, <TH and <TB, where <TH 
is the contribution to the electric conductivity due 

to jumps from site to site, while <TB must be de
termined by solving a transport equation in the 
form 

(1) 
p 

where rfk and r;ck are the left and right vertices, 
while Wk and Wpk are the probabilities of depar
ture and arrival (see [3]). The contribution <TB 
is equal to 

as = e~ ef3P. 2] Re (Fkr:k), (2) 
k 

where {3 = 1/kT, V -normalization volume, and 
J1. -chemical potential. An analysis of the terms 
of the series for the vertices rfk and r;k for 
T1 < T < T0 yields 1> 

rt~o) = r~~o) = Vx (k) =-+ 2] J (g) gFikg e -Sr(g)' (3) 
g 

where J (g) is the exchange integral* 

1 liw ~ 
Sr (g) = ZN 2] I Yq 12 (I- cos qg) cth + 

q 

( cf. (14) of [3J), and the succeeding terms of the 
series are small relative to the powers of the pa
rameters 171 and 112: 

J 
'Ill = liwoS' 

' ( J )2 1 TJ2= liwo SinS, (4) 

where S = ST( g) I T-o· In the series for the proba
bility, as in the case when T > T 0, the main role 
is played by the second-order term w<2>, appar
ently owing to the fact that the zeroth approxima
tion chosen was not the best. For the zeroth and 
first terms of the expansion we have 

w<o) I W(2) ::::::::; e-2S ~I' w<l) I w<2) z e-5 ~I' (5) 

and when n > 2 the succeeding terms w<n> of the 
series are small with respect to the powers of 111 

and 172· After cumbersome calculations we get 2> 

W~2~ = ~ 2] ei(k-p)<lGW(~G), 
.:lG 

W~2l = W(O), (6)t 

[ 1 ~ I 12 ( ) ]s}-' - _ 4 w~ · _2 x N LJ Yq a2 q wq ;:::::: W - TJ1 Llw sh Po. 
q 

a;(q) = I -cos qg;, i = I, 2, Pq = Tiwq~ I 2, 

a (q) = t (cos q (~G + g3 - gt) +cos q~G- cos q (~G- g1 ) 

-cos q (~G + gs)l. (6a) 
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.6.w -width of dispersion of optical branch. 
We seek the solution of (1) in the form 

n = ~ f (G) exp (- ikG). 
G 

Substituting (3) and (6) in (1) we obtain 

r (G)= o G =!= g, 

x . -i!t-lJ(g)gxexp(-ST (g)) (7) 
f (G)= W(O)-W(g) G=g, 

where g is the vector joining the given atom with 
the nearest neighbor. We thus obtain ultimately 3 > 

_ ne•~ ~ J 2 (g) g; exp (- 2ST (g)) 
0 8 - n• ..:.; w (O) - w (g) 

g 

l)The first line of Eq. (36) of['], for T » T 0 , contains an 

error. Actually the estimate of the ratio r~~1 ljr~~O) coincides 

with the result for r~l'>Jri~o) in the second and third lines of 

(36). 
*cth ~ coth. 
2lit is stated mistakenly in [']that when T » T0 the proba

bility Wpk is independent of p and k, i.e., the arrival terms 
in (1) are equal to zero. This, however, does not change the 
estimate of the order of smallness of 178 when T » T0 , which 
was carried out in ['] without account of arrival. 

t sh ~sinh. 
3lThe estimate of 178 .in [2) is incorrect, since w<2> is mis

takenly replaced by W(O) « W(l), 

1 I. Yamashita and T. Kurosawa, J. Chern. Phys. 
Sol. 5, 34 (1958); J. Phys. Soc. Japan 15, 802 
(1960). 

(8) 2 T. Holstein, Ann. Phys. 8, 346, 343 (1959). 

Estimates show that when T1 < T < T0 

' ~[ J2 h-2 ]2~1 
c;H 1 08~ S(nwo)"s Po ~ • 

It follows from (8) that the expression for the 
mobility has the form 

(9) 

where .6.Ep ~ J exp (- ST) -width of polaron band 
and u = ea2/n = 0.1 (a/a)2 cm2/V-sec has the di
mension of mobility, where a0 = 10-8 em. For 
broad bands (.6.Ep » kT) we have (v~)/kT ~ 1/m*, 
i.e., (9) goes over into the usual expression for the 
mobility, suitable for the condition nW /kT « 1. 
The region of applicability of (9) is not confined to 
this condition, and (9) can be used if 

We have .6-Ep/kT « 1 by vir~e of the condition 
ry4 < 1, while the ratio .6.Ep /nW can be arbitrary. 
This ratio increases sharply with decreasing tem
perature. When it exceeds unity the wave vector k 
becomes a "good" quantum number. 

Thus, in the case of narrow bands and weak in
teraction with the scatterers (.6-Ep/nW > 1, 
.6-Ep/kT < 1) formula (9) applies to the mobility, 
as before. However, as the effective interaction 
between the polarons and the polarization phonons 
weakens, scattering by impurities or acoustic 
phonons may enter into play, and this changes the 
temperature variation of the mobility in the region 
of lower temperatures (T « T0 ). We have left out 
of the Hamiltonian the terms responsible for the 
relaxation of the optical phonons, i.e., we have as
sumed that they always have a Planck distribution, 
and the effect of mutual dragging can be neglected. 

3 I. G. Lang and Yu. A. Firsov, JETP 43, 1843 
(1962), Soviet Phys. JETP 16, 1301 (1963). 

4 G. L. Sewell, Phys. Rev. 129, 597 (1963). 

Translated by J. G. Adashko 
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IT was established in recent investigations [1- 2] 
that the momentum spectra of A and I: hyperons, 
produced in inelastic 1r-p collisions at energies 
T"' 10 BeV, have two maxima: for T = 7 BeV one 
in the region p"' 0.8 BeV /c and the other at p 
"' 1. 6 Be VIc ( see Fig. 1 ) . The recoil nucleons 
have similar spectraC3J. We shall show below 
that such a "double-hump" baryon spectrum is 
the direct consequence of resonant interaction 
between the primary 7T- meson and the interme
diate particle that transfers the main part of the 
interaction in primary 1rN collisions. 

Let us consider the production of A hyperons 


