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The parameter a, which determines the density of nuclear levels in the Fermi gas model, 
and also the dependence of the nuclear temperature on the mass number, are derived from 
experimental data on the mean distance between neutron s-resonances. The effective nu­
clear excitation energies for an even number of protons and neutrons correspond to the 
pairing energy calculations made by Nemirovski1 and Adamchuk on the basis of experimen­
tal nuclear mass values. The parameter a, which determines the distribution of levels with 
respect to the total angular momentum, is obtained by employing the mean square magnetic 
quantum numbers of the nucleons in accordance with the shell model. The calculated values 
of the parameters a and a, and the nuclear temperatures for an excitation energy of 7 MeV, 
are found to agree with other available data. It is also shown that for the excitation energies 
indicated the moments of inertia of nuclei far away from closed shells are approximately the 
same as those for rigid bodies. 

l. In calculations of the widths of various proc­
esses, of the spectra of inelastically scattered 
neutrons and other particles emitted by the com­
pound nucleus, the distribution of fission frag­
ments with respect to the mass, etc, in the frame­
work of the statistical theory, a knowledge of the 
energy dependence of the density of nuclear levels 
is necessary. In the present work, the mass­
number dependence of the parameter a, which 
determines the density of levels in the Fermi gas 
model, is calculated on the basis of experimental 
data on the mean distances between the neutron 
s-resonances. For excitation energies below the 
Fermi energy, which is the case at hand, the nu­
cleons principally involved in the excitation proc­
ess are those situated close to the boundary of the 
distribution, and the parameter a has the meaning 
of the density of single-nucleon states close to the 
Fermi surface. 

In contrast with a number of similar calcula­
tions carried out previously, it is shown here that 
the values obtained for the parameter a and the 
parameter a (which determines the distribution 
of levels with respect to the total angular momen­
tum), and also the nuclear temperatures at exci­
tation energies of the order of the binding energy 
of the neutron, are quantitatively consistent with 
one another if use is made of the mean square 
magnetic quantum numbers of the nucleons from 
the shell model. 

For an excitation energy of 7 MeV, the com­
puted temperatures are in excellent agreement 
with the corresponding experimental data obtained 

from the treatment of the spectra of inelastically 
scattered neutrons. The dependence computed here 
of a on the mass number does not contradict the 
existent data and for A~ 25 it practically coin­
cides with the direct measurements of Hibdon. 
The moments of inertia of nuclei far away from 
closed shells are found here to be of the order of 
those of rigid bodies, in accordance with the theo­
retical predictions. 

2. We make use here of the well known formula 
for the density of levels with a given value of the 
total angular momentum J and given (arbitrary) 
parity, for the excitation energy E, which is an 
excellent approximation for not too small a pa­
rameter a (see, for example, [l, 2] ): 

p (£, J) = p (£) ';, exp 2J ' 1 [ 
2 (2n), '~3 

(1) 

where p( E) is the total density of states (with ac­
count of degeneracy in the total angular momen­
tum): 

p (£) = 2J(2J + 1) p (£, J). (2) 
J 

In the Fermi gas model, which consists of a mix­
ture of the proton and neutron components we have 

p (£) = V n exp [2 (a£)'1•] (3) 
J~ a.,"'£"'14 ' 

where 

(4) 

and where G is the combined density of proton and 
neutron single-particle states close to the Fermi 
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surface: 

(5) 

The parameter a in Eq. (1) is associated with 
the moment of inertia of the nucleus tf and the 
temperature T: 

(6) 

where in the given case the moment of inertia is a 
free parameter determined by the properties of the 
nuclear material and the shape of the nucleus, 
while the temperature in the Fermi gas model is 

T = (Eja)'l •• (7) 

We shall not make any distinction here between 
the so-called nuclear temperature, which is de­
fined as the reciprocal of the logarithmic deriva­
tive of the density of levels, and the thermodynamic 
temperature, which is equal to the reciprocal of 
the derivative of the entropy with respect to the 
energy, since the difference between them is not 
large for the excitation energies considered here.C3J 

On the basis of the data of [3- 7] it was assumed 
in the initial variant of the calculation that a= 4 ± 1 
and does not depend on the mass number. If we 
use the dependence on the mass number of the 
mean square of the magnetic quantum numbers 
of the nucleons, assumed in the work of Lang[B] 
on the basis of the shell model [ 9] 

(8) 

and the expression for the moment of inertia 

(9) 

we can again compute a from (6), making use of 
the values of a and T obtained for a= 4, and we 
can employ the new a for an iterated calculation 
of a and T, etc. As a result of several iterations 
of this nature, the calculations become self con­
sistent and the final values of a do not contradict 
the existing data. Therefore, for the final calcu­
lation, it was assumed that 

o2 =GT(m2)=8.89-10-2 aTA'1•. (10) 

The observed density of s-resonance for a tar­
get nucleus spin I = 0 is p ( Bn, Y2 ), and for I ;z; 0 
it is p(Bn, I-Y2 ) + p(Bn, I+Y2 ), where Bn is the 
binding energy of the neutron in the compound nu­
cleus. Since levels of only one parity are observed 
in this case (corresponding to the parity of the 
ground state of the target nucleus ) , the density of 
levels computed from experimental data is dou­
bled, inasmuch as the levels can be assumed with 
great accuracy to have an equilibrium distribution 
with respect to the parity. [2] 

By using (1) and (10), the total density of states 
was computed for each of the given nuclei, while 
the transcendental algebraic equation obtained from 
(3) was solved graphically. The experimental data 
on the mean distances between neutron s-reso­
nances used here were obtained from [10]. No cor­
rections on the possible missing of levels in the 
experiment have been introduced. The excitation 
energies were assumed to be equal to the binding 
energy of the neutron in the compound nucleus, 
which was computed from known nuclear masses. 
[ 11] The improved accuracy in the region A "' 100 
and for rare earths was made from the data of 
[12,13] 

It was assumed that before the nucleus with even 
values of Z and N could be regarded as a gas of 
free nucleons it would be necessary to expend a 
part of the energy on the breaking of nucleon pairs. 
The remaining energy, which could be called the 
effective energy of excitation of the nucleon gas U, 
is determined in the following way: 

Compound nucleus 

r /5" +lin, even-even (e.e.) 

U =' Bn -l {)P' even-odd (e.o.) 
on, odd-even (o.e.) 

0 odd-odd (o.o.) 

(11) 

where <'>p and <'>n are the energies of coupling of 
two protons and two neutrons. For calculation of 
the coupling energy, we make use of formulas pro­
posed by Nemirovski1 and Adamchuk: [14] 

{jP = Ep-~1 [17.0-0.691 (3A-1)(!A-2Z)l 
9A ' - j 

2Na + 44,5-:1.3 ' (12) 

_ 1 [ 2Z(Z-1)J- 2Z2 • 
6n- En- gA'h 17.0-0.691 A + 44,5 ]3, 

Ep = 1/ 2 [Ez.N-2Ez-I,N +Ez-2,N J. 
En= 1/ 2 [Ez,N-2Ez,N-1 +Ez,N-2 ]. (13) 

Ep, En are the usually determined energies of cou­
pling in a nucleus with even Z or N. The correc­
tion terms in (12) are due to the difference in the 
surface energy, the Coulomb energy and the sym­
metry energy for neighboring nuclei. The numeri­
cal coefficients in these cases are such that <'>p 
and <'>n are expressed in MeV. 

The results obtained for the parameter a can 
be compared with the equation proposed by New­
ton: [15] 

a = 2a (Jz + Tv + 1) A '•", (14) 
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where Jz and JN are the ''effective angular mo­
menta" of the protons and neutrons close to the 
Fermi surface, computed by Newton on the basis 
of the scheme for shell levels of Klinkenberg. [iG] 

Lang[8J, analyzing data of different researches, 
obtained better agreement with experiment for 
a = 0.0374. 

Using the final values of a and T, we can es­
timate the moments of inertia of the nuclei in the 
excited states by Eq. (6), and compare them with 
the estimate of the rigid body moment of inertia:[!] 

(15) 

where Mn is the mass of the nucleon and R is the 
radius of the nucleus. For r 0 = 1.2 F, 

Jfj"ift = 73:Ia2 'TA'1'. (16) 

3. The results of the calculation of the function 
a(A) under the assumption that all the excitation 
energy, which is equal to the binding energy of the 
neutron Bn, goes over into the excitation energy 
of single-particle states regardless of the parity 
of the numbers Z and N in the nucleus, are shown 
in Fig. 1. The errors indicated are due to the in­
accuracy of knowledge of the mean distances be­
tween the s-resonances and the excitation ener­
gies, and do not include uncertainties in the pa­
rameter a. In Fig. 2 are shown the parameters a 
computed with account of the coupling energy (12) 
for nuclei with even Z and N. It is seen that the 
differences in the parameters a virtually vanish 
for nuclei of different types, with the exception of 
a few cases. The general dependence of the pa­
rameters on the mass number is approximately 
linear: a ~ 0.125 A. 

For comparison, Eq. (14) is plotted in Fig. 2 

FIG. 1. Dependence of the parameter a on the 
mass number, obtained under the assumption that 
the excitation energy is equal to the binding en­
ergy of the neutron, Bn. 

a, MeV~ 

.JO 

Zfi 

with the numerical coefficient of Lang, and re­
produces sufficiently satisfactorily the dependence 
a( A) obtained here. Figure 3 shows the depend­
ence of the nuclear temperature on the mass num­
ber for effective excitation energies U, and Fig. 4 
gives the dependence on the mass number of the 
nuclear temperature normalized according to (7) 
to the effective excitation energy of 7 MeV. [ 8, 10] 

In these data, the coupling energy is also taken 
into account, after which they are normalized to 
the energy of 7 MeV. From a comparison of Figs. 
3 and 4, it is seen that the reduction of the nuclear 
temperatures to a single excitation energy smooths 
out the difference in temperatures for neighboring 
nuclei. 

We note that similar experimental data for an 
initial energy of 14 MeV lead to temperatures close 
to those shown in Fig. 4., although they should be 
~ 40 per cent larger if the Fermi gas model cor­
rectly describes the energy dependence of the tem­
perature. There is some evidence [3•4] that the den­
sity of levels in the considered energy range of ex­
citation can be described satisfactorily under the 
assumption of a constant temperature. However, 
the recent data of Lang, [8] the data of Erba and 
coworkers,[17J and the results of this research 
show that the Fermi gas model is applicable for 
the description of the density of levels in a wide 
range of energies. The contradiction noted is per­
haps connected with the inaccuracy of the methods 
of analysis of the experimental data. 

The values of the parameter a computed here, 
together with the existing data [3-7J, are shown in 
Fig. 5. 

The ratios of the moments of inertia of nuclei 
for excitation energy of 7 MeV to the rigid body 
moment of inertia (for r 0 = 1.2 F) are shown as 

• odd-odd 
o even-even 
" even-odd 
~ odd-even 
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FIG. 2. Parameter a computed under the assumption that the excitation energy is equal to the effective 
excitation energy U, in accord with the relation (11). 
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FIG. 3. Nuclear temperatures for effective excitation 
energies U. 
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FIG. 4. Nuclear temperatures normalized 
to an excitation energy of 7 MeV. Data on 
temperatures obtained from the spectra of 
inelastic scattering were taken from Refs. 
8, 10. 

FIG. 5. The parameter a for excitation energy 
of 7 MeV [according to Eq. (10)]. Other data taken 
from [•· 7 J. 
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a function of the mass number in Fig. 6. 
It was pointed out earlierC18] that for suffi­

ciently large excited moments, the inertia of the 
nuclei should be close to the rigid-body value, 
since then the quasi-classical consideration is 
valid. [1,19] However, in nearly closed shells, the 
moments of inertia decrease, especially for Z 
= 82 and N = 126, where they amount to - 25 per 
cent of the rigid-body value. Another consequence 
of the quasiclassical model [1] -the approximately 
linear dependence of the parameter a on the mass 
number-is also confirmed by the results of the 
present research. It should be noted that the mean 
energy of the Fermi level for protons and neutrons, 
corresponding in the quasiclassical model to the 
proportionality constant 0.125, is equal to- 20 MeV, 
which is significantly less than the expected value 
if one starts out from the depth of the actual poten­
tial of the optical model (around 50 MeV). Discus­
sion of the reasons for this discrepancy, however, 
lie outside the framework of the present research. 

An explanation of the effects associated with the 
parity of the numbers Z and N by the effect of 
coupling of only the very "uppermost" nucleons, 
and shell effects-the multiplicity of states of nu­
cleons close to the Fermi surface, points up the 
fact that in the range of excitation energies con­
sidered ( 4-11 MeV) essentially only the nucleons 
in the upper filled states take part in the excitation 
process; this also corresponds to the assumed 
model. 

In conclusion, I take this opportunity to thank 
V. S. Stavinski1 and L. N. Usachev for useful dis­
cussions during the course Of the research. The 
author is very grateful to P. E. Nemirovski1 for 
valuable suggestions and for making available data 
on the coupling energies. 
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FIG. 6. Ratio of the moments of inertia 
of nuclei for effective excitation energy of 
7 MeV to the rigid-body moments of inertia. 
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