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It is demonstrated by means of the complex moment method that the invariant functions de
scribing 1ry, Ny and yy scattering can be factorized. The consequences to the observable 
quantities, ensuing from this factorization, are indicated. 

l. Gribov and Pomeranchuk[t] have considered 
the spin structure of the 1rN and NN scattering 
amplitudes at high energies under the assumption 
that these processes are due essentially to Regge 
poles. In the present paper we consider under the 
same assumption the structure of the amplitudes 
of scattering in which photons participate. 

We write down the invariant amplitudes cp, H, 
g1111 , G/.111 and F1111 ,pa for the 1rN, NN, 1ry, Ny, and 
yy scattering, respectively, in the form 

<p =A+ (s, t, u) + B- (s, t, u) k, K = k + k', 

+ ~--- + ----F!J.V, po = F 1 (s, t, u) :n:l'-:n:v:n:p :n:o + F2 (s, t, u) nl'-nv npno 

+ ----- --.-...--+ F3 (s, t, u) (~:n:vnpna + :n:o:n:an""nv) 

L1 = /1 + l~, L2 = l2 + t;, Q = /1 - l~ = 1;- /2, 

L. L L1 L2 L L' L L1 L2 L 1 = 1 - -2- 2• 2 = 2 - -2 11 
L2 Ll 

- • - - • '2 -'/ Ns=E&a{3yL2a.L1(3Qy; :n:!J.,v=Lw,v(-L1) ', 

np, 0 = L~P. a (-L;2 ( 1', ns = Ns (- N2f'1•. 

'(1) '(2) ' (1) ' (2) + H3 (s, t, u) :1'2 :1'1 + H4 (s, t, u) (ir5:1'2) (ir.S"'l) Here k, k'; p, Pt• P2• Pt• P2; 111 , ltv• l2a• l~. liw and 
l2p are the momenta of the mesons, nucleons, and 
photons, respectively, before and after scattering. 
The indices + and - indicate whether the covariant 
functions reverse sign upon making the substitu
tion s .;= u. The expression for the photon-photon 
scattering amplitude can be obtained in the given 
form in analogy with the procedure used in the 
derivation of the expressions for NN and Ny 
scattering [2•3J, taking into account parity con
servation and the crossing symmetry for each 
photon pair. 

+ Hs (s, t, u) (ir5)<1l (ir.)<2l, 

K = k + k', L = l + l', Q = l-l' = k' -k, 

K' = K - !2::_ L L2 , 

n"" = N"" (- N2( 1'; 

G~'-v = ar (s, t, u) n""nv + 02 (s, t, u) ~'ii.,L 

+a; (s, t, u) til'- nv + a; (s, t, u) nl'- rd. 

:1' = p + p', L = l + l', Q = l - l' = p' - p, 

I ~ - 0 -

f1' = f1' -UL' Nl'- = El'-afly fi'a L{lQy, 

ill'- = :1'~ (- fjJ'2r'/s' nl'- = N 1'- (- N2r'/•; 

To obtain asymptotic expressions for the in
variant functions, it is necessary to expand the 
scattering amplitudes of the indicated processes 
in the t-channel in partial waves. This is con
veniently done in terms of the helicity amplitudes. 
C4J We present a classification of the helicity 
states of two pions, two photons, and a nucleon
antinucleon pair with specified total momentum J 
in the channel where t is the energy. 

The two pions can be in the sole state 1 J, 00) 
with quantum numbers ( -1 )Jp = +1, ( -1 )Jc = +1, 
and C = + 1. The nucleon-antinucleon pair can be 
in the following states [5]: 
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IJ, 0, +>NN =I J, + 1j2 + 1J2> 

+I J, - 1/2 - 1/2) (- 1)JP = + 1, 

(-JVC = + 1, 

JJ,l,+> -=IJ.+1J2_1J2) 
NN 

+ IJ, _1/2 + 1J2) (-1)J P= + 1. 

(-1)J c = + 1, 

I J, 0, ->NN =I J, + 1J2 + 1J2> 

-I J, - 1/2 - 1/2) (-1)J p = -1, 

(- 1)J c = + 1, 

I J, 1, -> - =I J, + 1;2 - 1/2> NN 

-I J, - 1/2 + 112) (-1)J p = -1, 

(-1)J c =- 1. 

The two photons can be in the following states with 
c = +1: 

JJ,O,+>yy =\J,+1+1> 

+ I J, - 1 - 1 > <- 1 )J P = + 1, 

<-IV c =+I. 

I J, 2, +>yy =I J, + 1 -1> +I J, -1 

+ 1) (- 1)J p = + 1, 

(- 1)J c = + 1. 

jJ,O,->yy=IJ, +1+1>-IJ, 

- 1- 1) (- 1)J p =- 1, 

(- 1)J c = + 1. 

I J, 2, ->yy =I J, + 1- 1> -I J,- 1 

+ 1) (- 1)J p =- 1, 

(-1)JC=-1. 

The numbers 0, 1, and 2 indicate the absolute value 
of the projection of the total spin on the direction 
of relative motion, and consequently determine the 
minimum value of the momentum J. 

The processes under consideration are deter
mined by the partial amplitudes of the transitions 
between states with identical quantum numbers. 
In view of the fact that in the investigated case C 
has a fixed value +1, three different sets of quan
tum numbers are possible, corresponding to three 
types of Regge-pole trajectories: P-trajectories 
with vacuum quantum numbers ( -1 )JP = +1, 
( -1 )JC = +1. Q-trajectories with negative signa
ture ( -1 )JP = -1, ( -1 )Jc = -1, and S-trajector
ies with negative parity ( -1 )JP = -1, ( -1 )Jc = +1. 

In particular, the yy and Ny scattering proc
esses are determined by five and six different 
partial amplitudes, respectively, corresponding 
to the number of invariant functions in the indi
cated amplitudes. 

2. Let us consider for the sake of simplicity 
the 1ry scattering amplitude. The expansion of the 
spiral amplitudes in partial waves in the c.m.s. in 
the t-channel is 

(00 I g l ++> =- 1/2 fa+(s, t, u) + b+(s, t, u)l 

(1) 

(00 I g I+-) =- 1/ 2 [a+ (s, t, u) -b+ (s, t, u)l 

1-z2 " x PJ(z), -v (J -1) J (J + 1) (J + 2) 
(2) 

where 

g(x, (t) = < oo I SJ 1 + 1 + 1 > 

- n ('- 4t-t')'/•r [ +( -- 2 - 1- .l a1 s, t) + bt (s, t) l QJ(z) dz. ( 3) 
z, 

g~2 (t) = (00 I SJ I + 1 - 1) 

'I oo 

=- ; (~ ~ 411') '~ lat(s, t) - bt (s, t)l 
z, 

z2 -1 
X -v (J _ 1) J (J + 1)(J + Z) · Q~ (z) dz, ( 4) 

z = ( -2s + 21}- t)/.Jt(t- 411 2 ), at(s, t) and 
bi ( s, t) are the absorptive parts of the invariant 
functions in the s-channel, and the kinematic fac
tor [ t/ ( t - 4112 ) ) 11 4 is due to the normalization. 

We note that in accordance with the optical 
theorem the value of -[a{(s, t)- b{(s, t)] at 
t = 0, i.e., the imaginary part of the combination 
-[a+(s, t, u)- b+(s, t, u)] at t = o, determines 
the total 1ry scattering cross section, while 
-[a+(s, t, u) + b+( s, t, u)] = 0 when t = 0, as a 
consequence of the conservation of the projection 
of the total momentum on the direction of the rela
tive motion [s]. 

To obtain asymptotic expressions for the func
tions a+(s, t, u) and b+(s, t, u) it is necessary, 
in accordance with the general idea, to continue 
analytically the partial waves to complex values 
of J, to write the sum over the partial waves in 
the form of a Watson-Sommerfeld integral, and, 



1460 V. D. MUR 

stipulating that the moving singularities of the 
partial waves are only poles, find the contribution 
from these poles to the invariant functions 
a+( s, t, u) and b +( s, t, u). The partial amplitudes 
g~ (t) and g0~ (t) have the quantum numbers of 
vacuum and can therefore enter in combination 
with the principal vacuum pole, which gives 
asymptotically the main contribution to the func
tions a+(s, t, u) and b+(s, t, u). In order to ob
tain the values of a+( s, t, u) and b +( s, t, u) at 
negative t (the physical region of the s-channel) 
it is necessary to be able to shift the integration 
contour in the complex J plane to the left of the 
line Re J = 1, since the principal vacuum pole 
passes when t = 0 through the point J = 1 and 
moves to the left in the J plane as t decreases. 

In going through the described procedure, no 
difficulties arise with expression (1), but expres
sion (2) must be treated with some caution. First, 
the summation in (2) begins with J = 2, and there
fore, according to Mandelstam [7J, it is necessary 
to use the formula 

P J (z) Q_J-l (z)- QJ (z) 
- sin nJ = n cos n J 

and retain asymptotically only the contribution 
from Q_J_ 1 ( z ), which is equivalent to using the 
asymptotic expression PJ ( z) ~ zJ as z -oo for 
Re J :s -% and consequently P:J ( z ) 
~ J ( J - 1) zJ- 2 as z -co for Re J :s%. 

Second, in order for the integrand in the Wat
son-Sommerfeld integral to have no root branch 
point at J = 1, it is necessary that gt2 ( t) have a 
stationary branch point at J = 1. We have here 
two possibilities, As J - 1 either gt2 ( t) 
~ ~ qJ(J, t) or gt2 (t) ~ qJ(J, t)/IJ"=l, 
where the function <P ( J, t) no longer has a sta
tionary branch point at J = 1. 

The choice of the particular variant is deter
mined uniquely by the set of intermediate states 
in the unitarity conditions in the t-channel. If the 
lowest intermediate states are considered to be 
the two-pion states, i.e., if the threshold of the 
different processes in the t-channel is t = 4J.l2, 

then we see from ( 4) that g0~ ( t) ~ <P ( J, t )/JJ=l, 
since the integral does not vanish for small t 
(the combination -[ai(s, t)- bi(s, t)], which 
determines the total cross section of the 7r'Y 
scattering when t = 0, is positive definite). Then 
we shall have a stationary pole at J - 1 in the 
analogous partial 'Y'Y scattering wave, but this will 
not contradict the unitarity conditions, since two
photon states are not admissible as intermediate 
states. On the other hand, if the photons are taken 

into consideration in the intermediate states, i.e., 
if we assume that the point t = 0 is the threshold, 
then, in order to avoid contradiction of the uni
tarity condition, we must choose the opposite vari
ant g{2 ( t) ~ ~ <P( J, t) as J- 1, which 
should be ensured by the vanishing of the corre
sponding integral in ( 4). 

It is now easy to write the contribution from 
the poles to the functions a+( s, t, u) and 
b+(s, t, u) for large s: 

+ + 1 + e-ina.(t) 
a (s, t, u) + b (s, t, u) = sinncx(l) sa.<t> resgto (t) IJ=a(t) 

X {- 2 (-t-)''•r {2cx (I)+ 2} t-a.<t>;a (t - 4f.12) ,.<on} ( 5) 
I- 4f.L3 f2 [ex (t) + 1] ' 

1 + e-ina.(t) 
a+(s, t, u) -b+ (s, t, u) = sin nex (t) 

ex (t) [ex (I) -1] res gt2 (I) I x sa.<t> , 
{[ex (I) -1] ex (I) [ex (I)+ 1] [ex (I)+ 2]} ;, J=a.(t\ 

X {- 2 (-1-)'/• r [2ex (I) + 2] t-a.(l)/2 (t - 4u2)-a.(l)/2} ( 6) 
1-4f.L2 P[ex(1)+1J r · 

Taking into account the boundary condition for 
the trajectory of the principal vacuum pole a p ( 0) 
= 1, we see that in the case when gt2 ( t) 
~ <P ( J, t) I~ and for the usual threshold be
havior of d2 ( t) as t - 0, the total 7r'Y scattering 
cross section tends to a constant value at high 
energies. On the other hand if g02 ( t) ~ ~ 
x <P( J, t ), then for the total 7r'Y scattering cross 
section not to vanish it is necessary that the 
residue of the principal vacuum pole, in addition 
to exhibiting the usual threshold behavior, become 
infinite at t = 0 so as to compensate for the factor 
[a( t) - 1] in ( 6). At the same time, the residues 
of the next vacuum poles should behave in the 
usual manner at t = 0. 

3. Proceeding analogously, we can find 
asymptotic expressions for all the invariant func
tions of the processes considered. The vacuum 
poles contribute to all the invariant functions, 

+ ( + I + except H5 s, t, u), G5 (s, t, u), and F 5 (s, t, u), 
which are determined by S-type poles; however, 
the contributions to H4(s, t, u)[1•8•9J, G6+(s, t, u), 
and F4 ( s, t, u) are asymptotically small (these 
functions are Q-type poles). 

If we take into account the fact that the residues 
of the partial amplitudes, which combine with a 
definite Regge pole, factor out [1•10], then it is 
possible to obtain connections between the invari
ant functions at large s and small t, which are 
conveniently written in the form 
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rat (s, t, u) ~it. + a2 (s, t, u) il~'-nv L + a; (s, t, u) np.n., 

+ ai (s, t, u) np.nvLl '~" (s, t, u) = [a+(s, t, u) ltp.ltv 

+ b+(s, t, u) np.nJ 

X [A+ (s, t, u) + B- (s, t, u) L], 
+ ~~~~ + ~~~~ 

fF1 (s, t, u) :n:p.:n:v:n:p:n:a + F2 (s, t, u) np.nvnpna 

+ F; (s, t, u) 6i~'-3t;fipna 

+ npnonp.nv)l f~,(s, t, u) = [a+ (s, t, u) np.nv 

+ b+ (s, t, u) np.nvl 

X [a+(s, t, u) npna + b+(s, t, u) flpnal. (7) 

where f;rr ( s' t, u) is the invariant rrrr scattering 
amplitude. 

On the other hand, using formula (7) of the 
paper by Gribov and Pomeranchuk [1] we can 
readily obtain the relation 

~~~~ + ~~~-

[Fi (s, t, u) :n:p.:n:.:n:p:rta + F2 (s, t, u) np.nvnpna 

+ F;(s, t, u) (~n.npna + npnanp.nv)l fHt (s, t, u) 

+ H2 (s, t, u) (#i1l + #i2l) 

+ h (1) A (2) + - -+ Ha(s, t, u) ffo2 [JJI ]= fGd (s, t, u) :n:p.:n:v 
-- '(1) + a2(s, t, u):rtp.nvffo2 
~ ~ ~ ~ '(1) + a;(s, t, u) np.nv + ai(s, t, u) np.nvffo2 I 
~- ~ ~ '(2) 

X Wi(s, t, u) :rtp:rta + a;(s, t, u) :rtp:rta ffo1 
~ ~ - ~ A(2) + a;(s, t, u) npna + a4(s, t, u) npnaffol I. (8) 

For the ny, Ny, and 'Y'Y scattering amplitudes 
at large s and small t we can write down an ex
plicitly factorized expression, analogous to that 
proposed by Okun' for NN scattering [5]: 

a = D (s) s-3 { ( r<Il .'l's + r<2ly ) ffo gv p.v N m N 5 a. /3 

where 

D(s) = (1 - e-ina.<t)) s 11 <1l/sin na (t). 

4. Let us note some consequences of (7), (8), 
and (9). 

(9) 

a) When t = 0 the optical theorem leads to re
lations between the total cross sections of the 
corresponding reactions, valid without neglecting 
H4(s, t, u)[sJ, G6+(s, t, u), and F4(s, t, u), viz.: 

a1T~'Y'Y = (any)2, O"n~Ny = O"rrNO"rry• and O"yyO"NN 
= ( ayN )2 [10]. 

b) Analogous relations hold for the differential 
elastic scattering cross sections averaged over 
the polarizations, but now with neglect of 
H4(s, t, u), G6(s, t, u), and F4(s, t, u). 

c) Taking into consideration the fact that the 
products r i ( t) r 'Y ( t)' which are determined by 
the imaginary parts of the invariant functions in 
the physical region, are real CtJ, we can show that 
there is no nucleon polarization in N scattering, 
and that the photons are plane-polarized with a 
polarization that is the same for all three reac
tions ( ny, Ny, and 'Y'Y scattering). 

d) There is no correlation of the particle 
polarization in Ny and 'Y'Y scattering. 

e) The nucleon spin flip in Ny scattering is the 
same as in rrN and NN scattering [1J. The polari
zation state of the scattered photons is the same 
for all three reactions, (rry, Ny, and yy), if the 
incoming photons have the same polarization state. 
If the incoming photons are completely polarized, 
than the rotation of the Stokes vector is the same 
in the c.m.s. of these reactions. 

In conclusion, I thank I. Ya. Pomeranchuk for 
guidance and help with the work, and V. B. 
Berestetskil, V. N. Gribov, I. Yu. Kobzarev, L. B. 
Okun', Yu. A. Simonov, and M. V. Terent'ev for 
useful discussions. 
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