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On the basis of equations proposed by the author in a previous paper [i] it is shown that by 
compensating the electrostatic repulsive field by the field of virtual vector mesons it is 
possible to construct a stable classical model of a charged particle having mechanical an
gular momentum and a magnetic moment. 

IT was shown previously[!] that it is possible to 
construct a stable extended classical model of a 
charged particle by balancing the electrostatic re
pulsive forces by "meson" attractive forces. The 
corresponding vector mesons must have an infinite 
imaginary charge and an infinite imaginary mass. 
If their mass is chosen to be real, then the equilib
rium turns out to be unstable; an imaginary finite 
mass would lead to velocities exceeding the veloc
ity of light. Therefore, in order that the Lagrang
ian should satisfy the necessary requirements of 
relativistic invariance not only formally, it is nec
essary to choose the mass of the particles to be 
imaginary infinite. Then from the equations it fol
lows that the corresponding charge is also imagi
nary infinite. 

Outside the region occupied by the electric 
charge the ''meson'' field has an infinitely small 
spatial period, and, therefore, is not directly ob
servable. Thus, no new physical constants appear 
in the theory in addition to the radius (or the mass) 
which is of a purely field-theoretical nature and 
turns out to be finite as a result of the subtraction 
of the energy of the "meson" field from the energy 
of the electrostatic field. 

In this article we consider the problem of a cer
tain extension of the proposed model. We can as
sume that it has not only a static charge density, 
but also a stationary current distribution. Such a 
model can exist without radiating provided the elec
tromagnetic force is everywhere balanced by the 
"meson" force. 

In accordance with [i], the basic equations can 
be written in the rest system of the charge as a 
whole in the following form 

.1cp = - 4np, 

.11jJ = - 4npA.- x21jJ, 
(1) 

(2) 

rot rot A = - 4n:c-1j, 

rot rot B = - 4n:c-11..j - x28, 

E -A.F + c-1 [j, H -A.G] = 0. 

(3) * 
(4) 

(5)* 

Here cp, A, E, H, are the electromagnetic and 1/J, 
B, F, G are the "meson" potentials and fields, 
p, j are the densities of the electric charge and 
current. The constant A. which is invariant by 
definition characterizes the charge as the source 
of "meson" field, and the sign of K2 is chosen in 
accordance with the fact that this field is virtual. 

In future we shall assume that the current j 
and the potentials A and B have only azimuthal 
components with respect to a certain symmetry 
axis and do not themselves depend on the azimuth. 
Thus, the law of conservation of charge and the 
Lorentz condition for the electromagnetic potential 
will both be satisfied. 

Just as in [iJ, we set A.2 - - oo and transform 
Eqs. (1)-(4) in accordance with this. The nature 
of the transformation can be seen sufficiently well 
from dealing with Eqs. (1)-(2). By combining 
these equations we obtain 

We introduce the notation 

and then in the limit obtain 

(6) 

(8) 

(9) 

The product K v is assumed to be finite. The mag
netic quantities are subjected to analogous trans-
formations . 

*rot= curl; [j, H] = j x H. 
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The system (1)-(5) is nonlinear. It does not 
admit the usual separation of variables in finite 
form by means of expansion in terms of Legendre 
polynomials. Physically this is understandable: it 
is impossible to balance the forces of some one 
magnetic multipole, in particular a dipole, in the 
second term of (5) by a finite number of electric 
multipoles in the first term. Therefore, the charge 
as a whole will have not only a magnetic dipole mo
ment but also all magnetic moments of odd order 
and all electric moments of even order. Possibly 
this unattractive property of the classical model 
will not go over into the quantum theory where the 
rigid condition of equilibrium is replaced by the 
much less restrictive condition that the solutions 
should be stationary. 

For the electric quantities we seek an expansion 
of the form 

00 00 

x = ~ X~k (r)P2k (cosS), y = ~ Y2k(r) P2k(cosf:l) (10) 
k=O k=O 

and for the magnetic quantities of the form 
00 00 

x = ~ x2k+I(r)Pik+I (cosf:l), 

k=O 

y = ~ y2k+I (r) P~k+1 (cos 8 ). 
k=O 

(11) 

Substitution into (8) yields 

d2 ( ) s (s + 1) ( ) 2 2 (j(2 r Xs - Ys - ,. r Xs - Ys = -X v rxs, (12) 

where s can be either odd or even. 
On substituting into the nonlinear equations (5) 

we have tore-expand the products of Legendre 
polynomials in terms of the first powers of these 
polynomials. For this we have the following for
mulas: 

k+l 
P2k P21 = ~ L~J:. 21 P2n• 

n=lk-11 
k+l+l 

(13) 

P~k+1 P~+l = ~ Mii:+l. 2l+1 P2n. (14) 
n=lk-ll 
(s+l)/2 

P,P} = ~ N~j P2n; (15) 
n=Js-11/2 

with s, t in (15) being either odd or even, but both 
of the same parity. The coefficient L~~. 2z can be 
obtained, in accordance with [2], in the following 
manner ("Heron's formula"): 

L2n 4n+1 
2k· 21 = 4(k+l+n)+1 

X [2(k+n-l)-1]!! 
[2 (k + n -I)]!! 

[2(k+l-n)-1]!! 
[2(k+l-n)]!! 

X [2 (n + 1-k)-1]!! [2 (k + l + n)]!! 
[2(n+i-k)]!! [2(k +I +n)-1]!! · 

(16) 

Further we have 

M:~+l. 2t+l=f-1(2k + 1) (2k + 2)+ (2! + 1) (2! + 2) 

- 2n (2n + 1)JL~I:+I. 21+1• (17) 

N2n _ s (s + 1) + 2n (2n + 1)- t (t + 1) L2n 
s,t- 4n (n -t- 1) s, t, (18) 

where the order of the subscripts in the last for
mula is, evidently, not immaterial. 

Now, comparing coefficients of the same poly
nomials we obtain the condition for the equilibrium 
of the radial component of the force: 

00 n+l [ 2n dyzl 2n 1 d J 
~ ~ L2k,2l X2k ~- Mzk+I. 21+1 X2k+l rdr (ry2l+l) = 0, 
1=0 k=ln-ll (19) 
where n ~ 0. For the component of the force which 
is perpendicular to the radius we obtain (the azi
muthal component is equal to zero because of sym
metry considerations ) 

co n+l n-1 n+l co l+n 

~ ~ N~k.2tX2kY21 + (~ ~ + ~ ~ ) 
1=1 k=J n-tJ l=o k=n-1-1 1=11 k=l-n 

X N;J:+l. 21+1 (2! + I) (2! + 2) X2k+1 Y21+1 = 0, (20) 

with n ~ 1. 
Equations (12), (19), and (20) form a complete 

system which must be solved within the region oc
cupied by the charge r :::::: r 0• At the origin of co
ordinates r = 0 the condition of regularity must 
be satisfied: the expansion for a quantity with in
dex s starts with rs. At r = r 0 the components 
of the field and the static potential of the charge 
are continuous. Because the "meson" field oscil
lates in space we do not have to impose conditions 
on it at r = oo • Therefore, the conditions for it 
being continuous at r = r 0 can always be satisfied. 
Then the conditions for the continuity of the elec
tromagnetic field can be expressed only with the 
aid of the quantities x, y, determined from the 
interior problem. In accordance with the expan
sion (10) each term of even order corr;esponds to 
an electric multipole, and each term of odd order 
corresponds to a magnetic multipole. 

In accordance with (7) the electromagnetic po
tentials are simply defined as the differences x- y. 
Consequently, in zero order we have 

[r f, (Xo- Yo) }=r, = - ~ · (21) 

In all higher orders the multipole moments are 
excluded since the corresponding boundary condi
tions are homogeneous. Thus, 
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,~ r (xl- Yl) lr=r, = - (xl- Y1) /r=r, , 

= - 3 (x2 - Y2) 'r=r, etc. (22) 

The somewhat different form in which the even and 
odd multipoles are recorded is associated with the 
fact that the former are electric multipoles, and 
the latter are magnetic multipoles Together with 
conditions (21) and (22), and also the condition at 
the origin, the system of equations given above is 
complete and can be solved numerically if we re
strict ourselves to several terms in the expan
sions (10)-(11). 

The energy and the angular momentum can be 
easily expressed in terms of integrals taken only 
over the interior region. Thus, the energy is equal 
to 

iB = + ~ [p (c:p- A\jl) ++(A-- AB)l dV 

xvr 0 00 

= ~ \' 22 dz "" [ x2kY2k + (2k + 1) (2k + 2) 
ro J ,i..l 4k + 1 4k + 3 

0 k=O 
(23) 

The parameter Kvr0 must be chosen from the con
dition that & is minimum. In the zero order ap
proximation[!] the energy calculated in accordance 
with (23) did not have any minimum. However, it 
was possible to change somewhat the definition of 
the quantity v associated with the ''meson'' charge 
A.. In particular, by replacing v by 7T/2Kro + E we 
found the only positive minimum value of & • The 

choice of the coefficient 1r/2 gives the smallest 
minimum. The transition from v to E establishes 
a certain connection between the mass and the 
charge of the "mesons." In future, possibly, we 
should minimize IE also with respect to the shape 
of the charge by letting it deviate from spherical. 

By utilizing the definition of angular momen
tum [SJ it is possible to express it also in terms 
of an integral taken over only the interior region, 
with the surface integral vanishing identically. We 
obtain 

I Ml = + \ ~ [r, (A- AB)l pdV[ 

_ e2 v\:" z3d { 2 ~ [2k (1- 2k) - c J z 3 XoYl + ,i..i X2k 1ok"- 1 Y2k-1 
0 k=l 

(24) 

' 2 (k + 1) (2k + 1) ]} 
-t- (4k+1)(4k+3) Y2k+l • 
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