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The acoustoelectric effect which consists of the production of a direct current jac under the 
action of a sound wave propagating in a conductor is studied theoretically. A phenomenolog
ical theory of the effect is developed which considers the effect as one of second order in the 
deformation and which is valid in the limiting case of long waves. The frequency dependence 
and the tensor characteristics are determined for this case. The concept of an odd or an 
even acoustoelectric effect is introduced depending on whether the sign of the current jac 
remains the same or is reversed when the direction of propagation of the sound wave is 
reversed. It is shown that the even effect can exist only in crystals without a symmetry 
center. The general considerations are illustrated by a number of cases such as, for ex
ample, those of a piezoelectric conductor, a semiconductor with many energy minima, and 
a conductor having electrons and holes. In the last two cases sound absorption is also evalu
ated. The Mandel'shtam-Leontovich theory has been utilized for the calculation of the absorp
tion coefficient. 

1. GENERAL THEORY 

A traveling sound wave propagated in a conduc
tor drags the current carriers and creates a direct 
acoustoelectric current jac or in the case of an 
open circuit a constant acoustoelectric field Eac. 
This effect was first predicted by ParmenterC1J, 
but the physical picture which he utilized for the 
description of the effect has called forth a number 
of objections [2]. The effect was observed for the 
first time by Weinreich et al [a] in the case of n
germanium. They also developed a theory of the 
effect in this case which agrees well with the ex
perimental data. 

The object of the present paper is to develop for 
the acoustoelectric effect a general phenomenolog
ical theory which is valid in the limiting case of 
low sound frequencies. In this section we obtain 
the frequency dependence of the effect and deter
mine its tensor characteristics. In subsequent 
sections the general theory is illustrated on a 
number of examples. 

The acoustoelectric effect is an effect of the 
second order in the deformation. The deformation 
produced by a sound wave is a periodic function of 
the coordinates and the time and, therefore, in the 
lowest order the direct current jac must be ex
pressed as an average (with respect to the coor
dinates and the time ) of a quadratic combination 
of the components of the displacement vector u or 

of its derivatives. It is evident that the displace
ment vector can appear in this combination only in 
the form of components of the deformation tensor 
or of its derivatives, since the current cannot be 
proportional to quantities which characterize a 
translation or a rotation of the crystal as a whole.1> 
Further, it is evident that at least one of the fac
tors in this quadratic combination must contain the 
time derivative of the deformation tensor since a 
static deformation cannot give rise to a current. 

The acoustoelectric effect can be odd or even 
with respect to a reversal of the direction of prop
agation of a traveling sound wave. We begin by 
considering the odd effect. In the lowest order 
with respect to the sound frequency w and the 
propagation vector q the following expression 
(summation is implied over repeated indices ) 
satisfies the requirements enumerated above: 

.ac _ y (auab · "-. 
J; - ik,abcd axk Ucd / , (1.1) 

where the symbol ( ... ) denotes averaging over 
time intervals considerably longer than the period 
of oscillation, and over a volume greater than .1/q3 . 

!)Strictly speaking, the last assertion is not valid if we 
take into account the Stewart-Tolman effect, which consists 
of the appearance of a current as a result of the crystal being 
accelerated as a whole. We shall neglect this effect because 
of its smallness (cf. [•a]). 
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(1.5) We note that in fact (1.1) takes into account all 
the possible combinations of the given type of de
rivatives of the tensor Uab since the following 
relations hold 

<aunn · ) <. aucd ) < au ) 
(j)c- Ucd = Uab ()x- = - Uab _a_c_3 ' 

k k xk 
(1.2) 

which are obtained as a result of integration by 
parts. 

By utilizing (1.2) and also the symmetry of the 
deformation tensor we obtain the following sym
metry properties of the tensor Y: 

Yik,abcd = Yik,tdab = Yik,bacd = Yik,abdc · (1.3) 

Thus, for small w and q .the odd acoustoelectric 
current is proportional to qw(u~k)2 , where u~k is 
the value of the amplitude of the deformation ten
sor in the sound wave. 

Similarly, for an even acoustoelectric current 
we write 

(1.4) 

The number of spatial and time derivatives in this 
expression must be even since a change in the sign 
of the frequency or of the wave vector corresponds 
to a change in the direction of propagation of a 
traveling sound wave. The symmetry properties 
of the tensor :=: with respect to the last four in
dices are the same as those of the tensor Y. An 
even effect can exist only in crystals without a 
symmetry center, since only for such crystals can 
a fifth rank tensor differ from zero. In the present 
case for small w and q we have jac"' w2 (u~k) 2 , 
i.e., the frequency dependence is the same both 
for the even and the odd effects. But in fact in the 
majority of the interesting cases the odd effect is 
considerably greater than the even one. 

It is evident that (1.1) and (1.5) are not the most 
general quadratic expressions which can be con
structed from the quantities Buab /Bxk and licd• 
since these quantities are taken at a particular in
stant of time and at a single point in space. These 
expressions ho~d only under the assumption that 
the correlation of the characteristic electronic 
quantities defining j ac falls off rapidly at distances 
much smaller than a wavelength of sound, and at 
times which are much smaller than the period of 
the sound wave. It is specifically in this sense that 
we should interpret the requirement of the small
ness of w and q as a criterion for the applicability 
of the phenomenological expressions (1.1) and (1.4). 

In the odd effect in a number of cases the field 
Eac is related to the coefficient of sound absorp
tion r by a simple order of magnitude estimate[4bJ 

(where S is the flux density for the sound energy, 
e is the charge of the current carriers, N0 is their 
equilibrium concentration, w is the velocity of 
sound). This can be obtained by utilizing simple 
considerations associated with the law of conser
vation of energy and of momentum. However, one 
should use this formula cautiously, since we shall 
see below that sometimes it can lead to grossly in
correct results, although there are cases in which 
it is either exact or gives the correct order of 
magnitude. 

We now proceed to discuss examples which il
lustrate the general considerations presented above. 

2. PIEZOELECTRIC SEMICONDUCTORS 

In a piezoelectric sample the stress tensor sik 
is a linear function of the deformation tensor and 
of the electric field 

(2.1) 

where Aiklm is the elastic modulus tensor (at 
constant IS), and 13Z,ik is the piezoelectric tensor. 
Similarly, the electric displacement vector is given 
by 

(2.2) 

where E is the dielectric permittivity tensor. 
If the piezoelectric substance is deformed elec

tric fields appear in it which are proportional to 
the deformation. If a sound wave is propagated in 
a piezoelectric semiconductor these fields, and 
also the resulting temperature gradients, give rise 
to an alternating electric current whose density to 
the first order in the deformation can be written in 
the form 2> 

(2.3) 

Here Uik is the conductivity tensor, Dik is the 
tensor of the diffusion coefficients, N = N0 +oN 
is the concentration of the current carriers, N 0 

is its value for Uik = 0, T is the temperature. 
The Joule heat produced by this current deter

mines the specific sound absorption in piezoelec
tric semiconductors. This absorption has been 
investigated [5], and it was shown that the third 
term in (2.3) is negligibly small in comparison 
with the first two, and the following expression 

2lwe assume that the principal interaction of the sound 
wave with the current carriers is a piezoelectric one, and 
therefore do not write in (2.3) terms which are proportional, 
for example, to the gradient of the deformation potential. 
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was obtained for the density of sound energy ab
sorbed per unit time: 

(2.4) 

(2.5) 

We now discuss the odd acoustoelectric effect 
in piezoelectric substances. It is evident that 
(j<1>) = 0. Therefore, in order to obtain after av
eraging an acoustoelectric current different from 
zero it is necessary to consider the following terms 
of the expansion which take into account the depend
ence of a, D, and y on the concentration of the cur
rent carriers, the electric field, the deformation 
tensor, etc. It can be easily verified that a con
tribution to the odd effect is given by only the fol
lowing two terms: 

ja;" = (f!N/Sk) acr,klaN- (f!NaTiaxk) ay,k/aN . (2.6) 

It is necessary to indicate the sense in which 
we should interpret the derivatives with respect 
to N in (2. 6). The kinetic coefficients aik and 'Yik 
are functions of the variables which characterize 
the thermodynamic state of the semiconductor, 
and also of the concentration of the current car
riers N which should be regarded as an additional 
variable ( cf., [GJ). To a high degree of accuracy 
the sound oscillations are adiabatic, and, therefore, 
the derivatives referred to above should be evalu
ated at constant entropy S (and likewise deforma
tion Uik). We shall not make a special point of 
calling attention to this circumstance. The adia
batic derivative can be transformed to the vari
ables N and T and in this way can be expressed 
in terms of more convenient quantities: 

( a::;,k ) = ( a::;,.k) + ~ (aJ,k) (a~ ) 
\ aN s aN T Cy aT N aT N ' 

(2. 7) 

where Cy is the specific heat (at constant vol
ume); t is the chemical potential of the current 
carriers. 

With the aid of estimates analogous to those 
made in [5] it can be verified that the second term 
in (2. 6) is considerably smaller than the first one. 
We set /Si =- acp/axi, thereby taking into account 
the fact that the electrical field is longitudinal. 
Then the remaining term can be rewritten in the 
following form 

j~C = (6N/S~) acr,.~ I aN=- (6N acp I a~> aud aN, 

where the ~ axis is directed along q; ai~ = ai~k/q. 
Utilizing the equation of continuity eaoN/at 

+ aj~ ;a~ = 0 we transform this expression: 

·ac = a::;ia <a6N > = _ _1__ a!JiE, < a6N> 
]; iJN a~ cp w aN cp iJt 

= __ _1__ aG;a <( + _1__ a~ f!N) a6N'> 
w aN cp e aN a1 / 

(2.8) 

In the derivation of (2.8) we have taken into account 
the fact that in a traveling wave all the quantities 
depend on the difference q ~ - wt = q ( ~ - wt ) , as a 
result of which we have 

wa6N!a~ = - af!N!at. 

Strictly speaking, this equation is not quite exact 
since any traveling sound wave is in actual fact 
spatially damped like exp (- r U2). However, by 
means of direct estimates it can be verified that 
the corresponding error is negligibly small as long 
as 

This inequality is satisfied in practically all cases. 
In the following sections we shall also neglect the 
influence on the acoustoelectric effect of weak 
damping of sound waves. 

On the other hand, thelquantity, (h ( (f,.i -e-1at/axi )) 
is nothing other than the density of sound energy 
absorbed by the electrons per unit time rs. There
fore, 

(2.9) 

If aik- N, while the second term in (2. 7) is small 
in comparison with the first one, then expression 
(1.5) is obtained for Eac. 

On substituting (2.4) into (2.9) we finally obtain 

·GC 1 a!Jik ~~ ,ab~p,cd qlq p( UC~Uablaxk) 
I i = - e aN !Jmnqmqn (1 + q•;x2J2 + (orra)• • 

(2.10) 

Expressions (2.4) and (2.10) are applicable if 
the tensor a does not depend on w and q. Condi
tions under which this holds have been discussed 
in [5]. We shall assume that these conditions are 
satisfied also in all the following sections. 

On comparing (2.10) and (1.1) in the limiting 
case of small w and q we obtain 

(2.11) 

Thus, in the present case the tensor Y depends in 
a complicated manner on the direction of the vec
tor q. The conditions for the smallness of w and 
q which were mentioned in the preceding section 
have the form q « K, w « 1/ T a· In concluding the 
present section we note that everything that we have 
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said on the limits of applicability of the theory re
fers to the case when there is only one kind of cur
rent carriers. However, if there are several kinds, 
i.e., if there exist several groups of carriers such 
that the time for the establishment of equilibrium 
between these groups is relatively large, then the 
problem becomes more complicated, and it must 
be solved with the aid of Eqs. (3.2) and (4.1) dis
cussed in the two following sections. 

3. IMPURITY SEMICONDUCTOR WITH SEVERAL 
ENERGY MINIMA 

We discuss here conductors in which the current 
carriers occupy a number of regions in p-space 
(energy minima) which go over into one another 
under symmetry transformations. The volume of 
such regions is assumed to be small compared to 
the volume of the first Brillouin zone, so that the 
components of the tensor of the deformation poten
tial A?k do not depend on p to a high degree of 
accuracy, but, of course, depend on the number 
of the region a. 

Examples of such conductors are n-germanium 
and n-silicon. The absorption of sound and the 
acoustoelectric effect in n-Ge have been discussed 
in the paper by Weinreich et al [3] in the special 
case of transverse sound propagating along a four
fold axis. Here we shall discuss the general theory 
of this effect. 

On assuming that there exist s equivalent min
ima (in n-Ge s = 4; in n-Si s = 6) we shall first 
determine the increment on~ in the concentration 
of the electrons at the a-th minimum of no as a 
result of a static deformation. In the case of such 
a deformation the energy of the electron at the a-th 
minimum will change by an amount oE:a + ecp 0 

= Afkuik + ecp o· 
The electrostatic potential cp 0 ought to be deter

mined as a solution of the Poisson equation. How
ever, in the case of long waves, when q2/K2 « 1, 
this equation can be replaced by the condition of 
neutrality 

~ 6n~ = 0. 
a.=] 

From this it follows that 

a no 
Q = df' 

(3.1) 

However, if the deformation varies with time, 
then the increment in the concentration ona will 
be determined by the system of equations 

= ~ [w~"' (6n~ - 6n~) - Wo:f3 (6n"' - 6n~)l, (3.2) 
lkl 

where w af3 is the probability of transition for a 
current carrier from the a-th to the {3-th mini
mum. This equation is applicable if the time for 
the establishment of equilibrium within a given 
minimum is much smaller than 1/wa/3· The mi
croscopic derivation of these equations and of the 
expression for w af3 is given in the Appendix. 

The electric field - Bcp' ;a~ vanishes in the case 
of a static deformation. In the case of a dynamic 
deformation, if q2/K 2 « 1 and WTu « 1, then to 
determine it we can again use the condition of 
neutrality which has the form 

(3.3) 

As before, the principal contribution to the 
acoustoelectric current is related to the depend
ence of ul~ > on na 

a (a) 

j7' =- ~ :~: (6na :£ (6e- OE + eqJ')). (3.4) 
"' 

In order to be specific we shall evaluate this 
expression for the case of germanium when s = 4, 
Waf3 = 1/T. Then (3.2) assumes the form 

(- iw + D~~~ q2 + 4/1:) 6na. + e-1a~~~ q2qJ' 

_ 1 (a) 2 " Q 'V (" " . - - 7i" Gz,~ q ue, + T .:::.J ue13 - ue,). (3.5) 
{l 

We shall further restrict ourselves to the case 
of long waves, when q2DT = q2uT/e2Q « 1. Then 
(3.5) becomes considerably simplified, and on 
taking (3.3) into account its solution can be writ
ten in the form 

Dna = on~/(1- iwrM), 'tM = r/4, 

eqJ' = - {~ a~t1 oe,- oe ~ aH1 + e2 ~ Dit1 on,} j ~ ait1• 

o. o. o. a (3. 6) 

On substituting (3.6) into (3.4) we obtain 

-ac 1 aNo TM 

]i = Hie ~ 1 + (wTM)' 

A - 'V\·> ~(>)I 'V _(a) 
... led - L..J ~ cc{J:._::_ .LJ v2,~. 

a a 

(3. 7) 



1436 V. L. GUREVICH and A. L. EFROS 

In order to determine when the relation (1.5) 
holds we shall evaluate the absorption of sound. In 
order to do this we make use of the Mandel'shtam
Leontovich method [7] which can be used in all those 
cases when a process characterized by a long time 
for the establishment of equilibrium can occur in 
a body. Following this method we shall determine 
the increment in the moduli of elasticity due to the 
interaction between sound and the current carri
ers: 

"Aiklm = :2k = ( ::ik ) + ~ (a;: ) ::n~ , 
lm lm na. a a. , U[m lm 

(3.9) 

where Sik is the stress tensor. 
Utilizing (3.6) we obtain 

(3.10) 

(3.11) 

(3.12) 

Here A 0 is the modulus of elasticity for the crystal 
at zero frequency, 3 > while A 00 is the modulus of 
elasticity for the crystal at frequencies w » 1/TM, 
or in the absence of current carriers. 

The increment in the energy of the system of 
electrons as a result of the deformation is given 
by 

(3.13) 

while the corresponding increment in the stress 
tensor is given by 

(3.18) 

where wg is the group velocity of sound which ap
pears in the expression for the flux density of sound 
energy. 

By utilizing (3.16), (3.17), and (3.18), we obtain 

1 w'TM ~ aNo 
fS = 32 1 + (WTM)2 ..::..J 6e~ (68(3- 6ecr) af" 

~(3 

1 aNo TM ~A~ (A{j A~)('. . ) (3 19) = 16 7 1 ' ( T )2 ..::..J ik lm - lm ,U;k Utm . • 
» I W M cr(3 

Sometimes if the sound is propagated in the 
crystal along some direction possessing a high 
degree of symmetry it may turn out that jac and 
Eac are also both parallel to this direction. If, 
moreover, all the a~~) are equal to one another 
and are proportional' to na, then relation (1.5) 
holds. Just such a situation occurs in the case 
discussed in [ 3]. But in all the other cases re
lation (1.5), generally speaking, does not hold. 

In a cubic crystal we have 

(3.20) 

where the vector k(a) determines the position of 
the a-th minimum in p-space. 

In n -germanium the minima occur on three
fold axes. On substituting (3.20) into (3.16) it 
can be easily verified that in this case only the 
modulus Axyxy is renormalized as a result of 
transitions between minima. Therefore, absorp
tion of this type will be experienced only by those 
oscillations the expressions for the velocity of 
sound for which contain this modulus. 4> This fact 
was discovered experimentally in the work of 

(3.14) Pomerantz et al[9J. 

From this it follows that 

(3.15) 

On substituting (3.15) and (3.6) into (3.11) and (3.10) 
we obtain 

On substituting the renormalized moduli of elas
ticity into the equation of motion we can obtain both 
the correction to the phase velocity of sound 

(3.17) 

and also the absorption coefficient 

3)The problem of the renormalization of the static moduli 
of elasticity has been experimentally investigated in the paper 
by Bruner and KeyesJa] The same paper also contains a theo
retical analysis applicable to the present case. 

Similar calculations show that in the case of 
n-silicon, in which the minima are situated on 
four-fold axes, the modulus Axyxy is not re
normalized, but the moduli Axxxx and Axxyy are 
renormalized. 

4. CONDUCTOR WITH CARRIERS OF OPPOSITE 
SIGN 

We shall assume that the recombination time for 
carriers of opposite sign is much larger than the 
time for the establishment of equilibrium within a 
system of carriers of a given sign. Therefore, we 
can speak of the absorption of sound and of the 
acoustoelectric current associated with the lagging 
of the concentration of carriers with respect to its 

4>By an analysis of (3.5) simultaneously with (3.3) it can 
be shown that taking into account terms of order q2 D does not 
alter this conclusion. 
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equilibrium value corresponding to a given value 
of the deformation. 

Equations analogous to (3. 2) have the following 
form 

abn, . . - ({!'"- bn~ ' bn1- bn~) e1 {jf""+ d!V]l- -e, -T--T T ' 
r r 

abn, . . - (bn,- bn~ ' bn,- bn~) 
e2 (JI+d!VJz--e2 T IT ' 

r r 

The solution of these equations can be written 
in the form 

By analogy with the preceding section we obtain 
for the sound energy absorbed per unit time 

T M Q,Q2 (A(l) , ·\(21) ( A (1) -1· ·\ 121) / . . ) fS= , 2 --- ab I• ab Clcd -, cd ,UabUcd, 
1 --;- (WT M) Q, + Q, 

(4.4) 

and for the acoustoelectric current 

-ac 1 (aa}11 (2) aa)~ (l)) 

}i = e, (cr<ll-+- cr(2)) q q an, Opq - an, <>pq 
im ' lm l m 

(4.5) 

The absorption of sound in semiconductors with 
two kinds of current carriers has been discussed 
by Hopfield[iOJ for the case when the diffusion of 
the current carriers could be neglected, the ten
sors Uik are nonsymmetric because of the pres
ence of a strong magnetic field H and, moreover, 
there exists in a direction perpendicular to H a 
constant electric field E the presence of which 
can change the sign of the coefficient r. For E 
= 0 the corresponding expression of Hopfield is 
a special case of our formula (4.4) which is ob
tained if in the right hand side of (4.3) we neglect 
the second term. 

In the paper by Dumke and Haering[UJ the same 
problem was solved taking diffusion into account. 
For E "" 0 a calculation analogous to the one car
ried out in the text yields 

, T AI (cu -- qV) Q1Q2 . A.(l) 
IS= ------ --,- (ilab 

w [1 --'- T~ (w- qV)2] Q, T Q, 

x <uabUcd), 

where V = cE x H/H2 is the drift velocity in the 
crossed electric and magnetic fields. This ex
pression differs from the corresponding formula 
of [U]. 

CONCLUSION 

In conclusion we will dwell briefly on several 
other mechanisms which lead to the absorption 
of sound and to the acoustoelectric effect. 

In the case of a simple zone a homogeneous but 
variable deformation does not lead to absorption of 
sound if we neglect the small dependence of the de
formation potential on the quasimomentum. The 
point is that the constant increment to the energy 
due to the deformation is equivalent to a change 
in the reference origin and should not lead to any 
physical effects. As a result of this the coefficient 
of sound absorption turns out to be proportional for 
small w and q not to (U.abUcd), but to 
((BUab/8xi)(8ucd/8xk)) as a result of which it 
should contain an extra power of q2• 

Indeed, calculation shows that in the case of 
longitudinal sound 

r = q"A'e w-r, 
4:n:e2pw2 ( l + q2jx2) 2 + (ulT0 ) 2 

If u ...... N and the second term in (2. 7) is small, then 
r is related to Eac by Eq. (1.5). 

Another possible mechanism for the absorption 
of sound is due to the change in the position of the 
impurity level as the result of deformation. If the 
impurities are not completely ionized, then the 
equilibrium concentration corresponding to a given 
deformation is established only after a certain time 
Ti which can be large. The existence of such a 
time can also be associated with a mechanism of 
sound absorption of Mandel'shtam-Leontovich type 
and with a corresponding acoustoelectric current. 

In the case of an impurity semiconductor with 
a simple zone the change in the position of the im
purity level oE = HikUik• where Hik is an energy 
of the order of the depth of the impurity level. The 
corresponding coefficient for the absorption of lon
gitudinal sound is 

w'-r,. N H2 r = " ~~ 
1 + ( u:rt',-)2 pw"kT • 

This coefficient is relatively small. For a semi
conductor with many minima cases are possible in 
which the shift in the impurity levels as a result of 
deformation is fairly large, and consequently the 
absorption of sound should also be large. However, 
such a shift is of a fairly complicated nature, and 
this effect requires special discussion. 
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APPENDIX 

We shall give a microscopic derivation of Eqs. 
(3.2). In order to avoid awkward expressions we 
shall consider the case when we can neglect the 
Fermi degeneracy. Let F ap be the distribution 
function for electrons belonging to the a-th mini
mum with respect to the momentum p. It is deter
mined by an equation of the following form: 

iJF a.p oF a.p iJea. oF a.p oea. _ [oF a.p J 
----at+ arap-ap or - at st • 

(A.1) 

We integrate (A.1) over the momenta, and in doing 
so transform the third term on the left hand side 
by integrating it by parts. As a result we obtain 

(A.2) 

Further we have 

X ~ (Wa.p, a.'p' Fa.p- Wa.'p', a.p F a.'p'), (A.4) 
n' 

where W ap,a'p' is the transition probability, V0 

is the volume of the crystal. 
Summation in (A.4) is in fact carried out over 

all a' ;.! a, since the transitions within a given 
minimum conserve the number of particles in the 
minimum. 

Further, we shall assume that the characteris
tic transition time between minima is much greater 
than the time for the establishment of equilibrium 
within a given minimum. As a result of this, as 
can be verified by means of direct estimates, up 
to small terms proportional to the ratio of these 
times the distribution function for the carriers is 
the quasiequilibrium function of the form 

F a.p = F 0 ( e~P + 6Ea. - 6e - ~0 - 6~a.) , (A. 5) 

where F 0 is the Boltzmann function. A deviation 
of the system from equilibrium manifests itself in 
the fact that the distribution function within each 
minimum has its own "chemical potential." On 
the other hand, it is clear that a distribution func
tion of the form F 0( E~p + oEa- oE- t 0 ) makes the 
collision integral vanish, and consequently also 
(A.4). 

On substituting (A.5) into (A.4) and on keeping 
tlte first nonvanishing term of the expansion in 
terms of ota we obtain 

(A.6) 

(A.6) can be rewritten in the form 

(A. 7) 

where 

(A.8) 

On substituting (A. 7) into (A.1) we obtain equa
tion (3.2). 
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