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The perturbation theory series for 1r-meson pair production in electron-positron collisions 
has been evaluated in the double logarithmic approximation. 

BAiER and Khelfets [tJ have shown that taking into divergence. Evidently, (1) can be rewritten in the 
account the radiation corrections to the cross sec- form 
tion for the production of pairs of fermions in 
electron-positron collisions leads to a charac
teristic change in the behavior of the cross section 
near the threshold for the reaction. They have 
calculated these radiation corrections in the so
called double logarithmic approximation [2 •3]. In 
the present article an analogous investigation is 
made for the case of the production of pairs of 
scalar mesons. It turns out that the change in the 
behavior of the cross section at the threshold noted 
in [tJ also occurs in the present case. 

It is convenient to carry out the concrete inves
tigation in the Duffin-Kemmer formulation which 
has a great .formal similarity with the formalism 
of the usual spinor electrodynamics. In particular, 
the class of all possible diagrams of scalar elec
trodynamics in the formulation indicated above 
coincides with the class of diagrams for the elec
trodynamics of fermions. 

In order to illustrate the application of the 
double logarithmic method to the cas.e of scalar 
electrodynamics we shall evaluate the vertex func
tion r a ( p, q; l) = fla + A a ( p, q; l) which we shall 
need later by assuming that 

p2 = q~ = 112' [2 z - 2 (pq) > p2' q2. 

In first order perturbation theory we have 

A~2)(p, q; l) =~(' ~vGn (p -k) ~aGn(q- k)~vk-2 d4k, 
nt ~ 

G~(q) = q+fL+(q•-q•)lfL = q(q+fLl _ _!___ 
q2- fL2 fL (q'- fl") fl ' 

q = ~vqv, ~v~a~). + ~).~a~v = ~vga). + ~).gav, 
goo = 1, gu = gzz = gaa = - 1. ( 1) 

We have chosen here the Feynman gauge which is 
the most convenient one for practical calculations. 

Just as in the case of spinor electrodynamics 
Ag> ( p, q; l) has a single logarithmic ultraviolet 

A~2> (p, q; l) 

(2) 

Since only the first integral has a double loga
rithmic part all the other integrals can be omitted 
in our approximation. In doing this it should be 
noted that because of the method adopted by us of 
separating the meson Green's function into two 
terms this integral has a quadratic divergence in 
the region of large virtual momenta. However, 
this divergence is cancelled by the quadratically 
divergent parts of the third and fourth integrals. 
For these reasons it need not be taken into consid
eration and the double logarithmic terms can be 
considered to be the fundamental ones. 

In order to ~ick out the latter terms we intro
duce, as usual 3 J, the variables u, v and x, whose 
significance is that they make the principal term 
in the denominator linear in the variables of inte-
gration: 

a2u - av a2v - au 
k = P a2 - 1 + q a2 - 1 + k 1.' 

a = (pq)/112, - k'i_ = x > 0; 

(p - k)2 - 112 ~ - 2 (pq) v, (q - k)2 - 112 ~ - 2 (pq) u. 

(3) 

In carrying out the integration with respect to x 
one should take the residue at the point ~ = 0, 
which gives the factor ( - i1r ) . The regions of in
tegration with respect to u and v are defined by 
the following inequalities 
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fl~fl fl~fl . . 
(pq) ~u< 1, (pq) <v~ 1, 

vl(a + V a2 - 1) <;; u <;; v (a + J1 a2 - 1). (4) 

The parameter D. il defined by the equation p2 - ll2 

= 2flD.fl has been introduced in order to remove the 
logarithmic infrared divergence in (2). 

Omitting everywhere in the numerator small k 
(their presence reduces the logarithmic degree of 
the integral) we obtain 

A(2) (p . f) = !':_ \ [3.,f1-lp (p + fl) 13of1-lq (q + fl) 13., rl4k {5) 
o ' q, ni ~ [(p- k)2- !12] [(q- k)•- !12] k2 'Y . 

We assume that the momenta p and q refer to 
real particles. Then the quantity of interest is not 
the function Agl itself but its matrix element 
7p ( p) AiJl cp ( q) which enters into the cross section 
for the process (scattering by a nonfree photon). 
But, as can be easily shown by utilizing the proper
ties of the {3 -matrices, we have 

~(p) ~vW1P <P + ft) = 2p.,~(p), W1tl (q + ft) ~.<r>(q) = 2q.,cp(q) 

(6) 

( p2 = q2 "' fl2). Therefore, the numerator in (5) can 
be replaced by 4(pq)f3u· The integral (5) in the 
region under investigation has been evaluated by 
AbrikosovC3J [formula (26a) ]. 

We consider now the n-th order approximation 
of perturbation theory. The numerator in the term 
of maximum logarithmic order corresponding to 
one of the diagrams of this order has the form 

~v, ft-1P <P + ft) ~v, • · · ft-1P (p + ft) ~oW1 q (q + ft) 
... ~~-.ft -1q (q + ft) ~1.,. 

We now note that 

ft- 1P (p + ft) ~vft- 1P (p + ft) = 2pvft-1P (p + ft). (7) 

Assuming again that the momenta p and q refer 
to real particles, and utilizing (6) and (7), we ar
rive at the conclusion that the numerator under 
consideration can be replaced by [ 4 ( pq) ] n/3 u· 

Thus, just as in the case of spinor electrody
namics we have 

~ (p) fo (p, q; l) cp (q) = <P (p) ~oCJ! (q) exp {- e2 f/2n}, (8) 

where 

f = ~~~ 
~ u v (9) 

within the limits shown in ( 4). 
It should be noted here, apparently, that in con

trast to the usual electrodynamics where the elec
tron mass diverges logarithmically, the meson 
mass in scalar electrodynamics diverges quad-

ratically. This circumstance should be taken into 
account in calculations in the double logarithmic 
approximation. Indeed, one should first carry out 
a renormalization of the meson mass and then use 
such a meson Green's function which has been re
normalized with respect to mass. The remaining 
divergent terms in the Green's function will, as a 
result of Ward's identity, cancel with the corre
sponding terms of the vertex part, so that we can 
utilize for the internal lines the "nonovergrown" 
functions with renormalized mass. 

Let us now discuss scattering accompanied by 
the emission of real quanta. The crossed meson 
line in the generalized Abrikosov diagram corre
sponds, as can be easily seen, to the factor 

( 10) 

with the normalization cp{3 0 cp = 2flE. It is clear 
from this that the discussion of scattering accom
panied by the creation of real quanta in virtue of 
Eq. ( 7) does not differ at all from that carried out 
by Abrikosov for the case of ordinary electrody
namics. 

The foregoing discussion is sufficient for our 
main aim: the calculation of the cross section for 
the creation of a pair of scalar mesons accom
panying the annihilation of an electron-positron 
pair. The general form of the diagram of order 
2 ( n + 1) which gives a double logarithmic contri
bution is shown in the figure (the notation coincides 
with that utilized in [4], the dotted line denotes a 
strong quantum). This diagram corresponds to the 
integral 

,_ r1 m, 

X r 0 Gelp 1 + 2.; kt - 2.; Xt J r 
1 1 

s m2 '• m2 

... ~G" [ q2 + 2.; kt - 2.;xt] ~aG" [ ql - 2.; kt - 2.; Xt] ~ 
r,+l 1 

5 d4k. m, d4x. m, d4x. 5 -2 

... ~G" [ qJ- ( ~) J ~cp) II k2' II x2' lJ x2' (t - ~ k;) 
i=l l i=l l i=l 1 1 

(11) 

(each y-matrix is contracted with one of the {3-
matrices ) . Here k is the momentum of the ''lad
der'' quantum, K is the momentum of the "vertex'' 
quantum, Ge ( p) is the "nonovergrown" Green's 
function for the electron and Grr ( q) is the "non-
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/} = /}, 

overgrown'' Green's function for the meson (in 
the sense indicated above ) . 

In the numerator of ( 11) we can again delete all 
the k and K which reduce the logarithmic degree. 
After this the reduction of the numerator presents 
no difficulties. By utilizing (6) and (7) together 
with the analogous equations 

(p + m) rvu = 2pvu, urv (p + m) = 2pvu. 

(p + m) rfp + m) = 2pv (p + m), (12) 

we obtain for it the value [4(pq)]n (uy0.u)(cpf3cftJ), 
with all the scalars of the problem being taken 
equal, as in C4J. 

The reduction of the denominator does not differ 
from that carried out in [5]. For each virtual 
quantum we introduce the variables Ui, Vi, Xi (for 
ladder quanta) or (Pi, lJ!i• Yi (for the vertex 
quanta). It is important to establish the sign of 
the matrix element with fixed s, rt, r2, mt, m2. 
In order to do this we note that in s - rt - mt 
propagator functions the scalar products P2ki and 
p2Ki occur with a minus sign. Similarly, there is 
a minus sign in r2 + m2 propagator functions con
taining the products qtki and qtKi· Moreover, one 
should perform the replacement <Pi• l/!i - -<Pi· 
-l/!i in mt + m2 cases (as many times as there 
are Green's functions in which Ptki occurs with a 
plus sign and PtKi occurs with a minus sign, or in 
which q2ki occurs with a plus sign and q2Ki occurs 
with a minus sign). As a result of this the matrix 
element acquires the factor ( -1 )s+rt+r2. For 
subsequent transformations it is convenient to use 
the following rule: we shall introduce the variables 
u and v (ladder) and cp and ljJ (vertex) in such a 
way that the variables u or cp correspond to the 
end of the line while the variables v or lj! corre
spond to the beginning of the line. Naturally, the 
beginning and the end of the line can be chosen in 
an arbitrary manner. As a result of these trans
formations and of subsequent integration we obtain 

I= . (- 2:n:i)n (- l)s+r1+r,AsAm1Am, 
lo . (pq) e " 

f5 f':' r::· 
X (rl+m1)I(s-rl+ml)!(r2+m2)I(s-r2+m2)1 • ( 13) 

where Ai are the Jacobians of the corresponding 
transformations: 

A = (mJ.L/4:rt) ab (ab - lf'1•, A, = (m2/4:rt) a2 (a2 - 1)-'1•, 

A, = (fl2/4:rt)b2 (b2 - 1(1', 

( 14) 

while fi are integrals of the type (9) taken between 
appropriate limits. 

It is important to note that if we move the end 
of one of the ladder quanta past a strong quantum 
(a change in one of the r by unity) only the sign 
of the matrix element is altered. Since, on the 
other hand, in any order of perturbation theory for 
any given diagram there also exists another dia
gram which is analogous to the given one in all re
spects except that one of the ends of a weak ladder 
quantum has been taken past a strong quantum, it 
is clear that in summing over all r the contribu
tions of such diagrams cancel one another, and the 
only significant contribution is the one coming from 
the vertex quanta in the diagram shown in the 
figure with rt = r2 = s = 0. 

Two cases can occur: 
1. a » 1 and b » 1. In this case A = Ae = Arr 

= (pq)/471" and (13) takes on the form 

I= io (- i!2tf':''f'::'l(mii) 2 (m21)2• (15) 

Here, in accordance with the foregoing, we have 
set r 1 = r2 = s = 0. 

2. a » 1 and b ~ 1. In this case A = Ae 
= ( pq)/4rr. As regards Arr, for b- 1 we have 
Arr - oo, which follows from the fact that at the 
point b = 1 the transformation (3) is not applicable. 
However, in virtue of the condition 

the quantity Arrfrr tends for b - 1 to a finite and, 
moreover, a single logarithmic limit: 
(J}/2rr) ln(f.1,/L::.f.1, ). Therefore, in our approxima
tion we should omit the terms with m2 ;" 0: 

( 16) 

In this formula m is the number of quanta corre
sponding to the electron vertex. 

On multiplying ( 15) and ( 16) by the number of 
different diagrams with given mt and m2, which is 
evidently equal to mt!m2 !, and also on taking into 
account the fact that to each photon line in the 
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Feynman diagram there corresponds the factor 
1/lTi, and to each vertex there corresponds the 
factor e, we obtain after summation over m 1, m2 

and n, subject to the condition m 1 + m2 = n, 

da = da0 exp {- ~ (f, + f,)} (17) 

in the first case, and an analogous formula in which 
flT has been omitted in the second case. Here da0 

is the cross section for the process in the lowest 
order of perturbation theory. 

Thus, in order to obtain the desired cross sec
tion it is sufficient to utilize the simplest diagram 
of perturbation theory treating it as a skeleton dia
gram. In doing this the photon Green's function 
should be regarded as "nonovergrown," while for 
the vertices we should take the one found by Abri
kosov in the case of fermions, and the one obtained 
in the early part of this article in the case of me
sons. 

The cross section ( 17) depends on the arbitrary 
parameters tl.m and tl.J.t and tends to zero as tl.m 
- 0, tl.IJ- - 0. In order to eliminate this depend
ence it is necessary to take into account the possi
bility of emission of real quanta, since only the 
total cross section for the elastic and the inelastic 
processes is of physical interest. 

The use of generalized Abrikosov diagrams for 
the calculation of such a cross section has been 
demonstrated in the case of spinor electrodynamics 
by Ba'i'erC5J and by Khe'ifets (thesis). In our case, 
as has been demonstrated above using the vertex 
as an example, the situation is completely analo-

gous [fi]. Therefore, we can immediately write 
down the final expressions for the desired cross 
section: 

{ 4ct2 ( E E E E ) } da = da0 exp ----;:t In t:.Ee lnm + ln t:.E, In f:L . (18) 

In this formula tl.Ee is the energy emitted by the 
fermions, while tl.E7r is the energy emitted by the 
mesons. 

At the threshold we obtain instead of ( 18) 

( 19) 

Formula ( 19) shows that the threshold effect noted 
in [ 1] also occurs in the case under investigation. 
The latter formula is also valid if all the emitted 
mesons are recorded independently of their energy 
(tl.E7r ~E). 

In conclusion the author wishes to express his 
gratitude for the suggestion of the problem to V. 
N. Ba'i'er, and also to S. A. Khelfets and to I. B. 
Khriplovich for discussions. 
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