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Oscillations in helium II are considered for the low temperature regions in which collisions 
between excitations are unimportant. It is shown that the velocity of sound in this case in
creases with the temperature as T4 In ( const/T), while the absorption follows the T6 law 
and is proportional to the sound frequency. 

THE character of sound propagation in liquid he
lium depends essentially on the value of the dimen
sionless parameter wT, where w is the frequency 
of the sound and 1/ T is the relaxation frequency of 
the system, determined by the interaction of the 
elementary excitations. The value of T increases 
monotonically with decrease in temperature. 

In the region of comparatively high tempera
tures, the inequality wT « 1 is satisfied. Here the 
oscillations of the density of the liquid take place 
slowly in comparison with the relaxation time and 
all quantities, in particular the pressure, are prac
tically equal to their equilibrium values. The sound 
velocity in this region is determined in the well
known way from the compressibility, while the ab
sorption is small and is proportional to T. Upon 
decrease in temperature, T becomes of the order 
of 1/ w. This means that upon propagation of sound 
in the liquid intensive processes take place in the 
approach to equilibrium. This region of tempera
tures is therefore characterized by absorption and 
by dispersion of the sound velocity. 

Finally, for still lower temperatures ( WT » 1 ), 
the relaxation processes generally cease to play 
any sort of a ~ole and the sound again becomes 
weakly damped. The sound vibrations in liquid 
He3 in the region WT » 1 were considered by 
Landau. [l] We shall consider sound in He4 close 
to T = 0. 

For ordinary frequencies (107-108 cps) the 
inequality 

Wt~l (1) 

begins to be satisfied in the region of temperatures 
in which the contribution of the roton to all phe
nomena can be neglected. We note that collisions 
between phonons can play the decisive role even 
upon satisfaction of the inequality (1). Let us con
sider this by an example of sound absorption. We 

write down the connection of the phonon energy E 

and its momentum p in the form 

e(p) = cp(l - yp2), (2) 

where c is the sound velocity at absolute zero. 
A quantum of the sound wave cannot be absorbed 

by a free phonon with the dispersion law (2), since 
such a process is forbidden by the laws of conser
vation of energy and momentum. However, if the 
phonon possesses an energy uncertainty ti/ T 

"' cYihtiw/c ), then the indicated process will take 
place with an appreciable probability. Since yp2 

» 1, the inequality (1) is satisfied here. In what 
follows we consider sufficiently low temperatures 
( wT » 1/yp2 ) and neglect collisions between pho
nons. We also assume that tiw « kT. This allows 
us to consider the sound wave classically. 

In the temperature region under consideration, 
the free path of the phonons is significantly larger 
than the wavelength of the sound. Therefore, it is 
not possible to apply hydrodynamic equations to the 
normal part, and one must make use of the kinetic 
equation for the phonon distribution function 
n ( p, r, t), in which one can neglect the collision 
integral: 

an + an aH an aH _ O 
Tt -arap--ap--ar-· (3) 

Here H = E(p) + p·vs, where E(p) is the energy 
of the phonon and depends on the liquid density p, 
while Vs is the velocity of the superfluid part. The 
quantities p and Vs play the role of external con
ditions for the phonons. 

In order to obtain a complete set of equations, 
it is necessary to write down two other equations 
for p and Vs. These equations have the form [2] 

apJat + div j = o, 

av.;at + v (f.t + v;/2) = 0, 

(4) 

(5) 
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where j is the momentum of a unit volume of the 
liquid, and J.L = BE/8p, E being the energy per unit 
volume in the system of coordinates in which v s 
= 0. The derivative with respect to the density is 
taken for a constant distribution of excitations, i.e., 
for constant n(p). 

To determine j we note that in the system where 
v s = 0 the momentum is 

~ pnd,; (d,; = d3p/(2nn )3). 

Using the well-known Galilean transformation 
formula, we get 

j = pv, + ~ pnd't. 

For the energy E we have, obviously, 

E = £ 0 + ~end,;, 
where E0 is the energy when T = 0. 

(6) 

Taking the derivative and making use of (4), (5), 
and (6), we get the desired equations: [ 3] 

~~ + div(pv, + ~ pnd,;) = 0, (7) 

~:s + V ( [lo + ~ ~: n d,; + v; ) = 0, (8) 

where J.Lo is the chemical potential at absolute zero. 
We set n = n0 + n', p =Po+ p', where n0 and Po 

are equilibrium values. Assuming n', p', and Vs 
to be small quantities proportional to ei<k-r-wt), 
and linearizing Eqs. (3), (7), (8), we get 

(w - kv) n' + (vk) ~:o ( g~ p' + pv,) = 0, 

wp' -kpv, -k ~pn'd,; = 0, 

- wv, + k ( ~ + ~ n0 ~~~ d-r:) p' + k ~ ~: n' d,; = 0, 

where v = 8E/8p. We have left out the zero sub
script on the density and have used the fact that 
df:.Lo = dp0 /p = c2 dp/p. 

(9) 

We introduce a spherical set of coordinates with 
the polar axis along the k vector. The angle be
tween k and p is denoted by 8. From the first of 
Eqs. (9) we find n': 

I Ono V COS ij ( OC I 8) 
n =-ae-Pwfk-vcos6 ap-P +v,cos . (10) 

Substituting (10) in the first two equations of (9), 
and carrying out the integration over 8, we get 1> 

1>ilere we keep only terms containing the logarithm, which 
is large inasmuch as v "' c and, as we shall see, w "' kc. 

00 

[-~-~~ p•dp iJn0 (~)2 ln ffi+kv ]u 
k op .) 4n21i3 OE kv (t) - kv s 

0 

00 

+ I~- (~)2 (' p4 dp ono ~ In (t) + kv J I= 0 l. p iJp ~ 4n2Ji 3 iJ8 kv Ul - kv P ' 
0 

[ r r4 dp a no ( w )3 I (t) + kv ] 
p - ~ 4n21i3 ae kv n w:_ kv v, 

0 

00 -r~ + ~ \ p4 dp Ono (_!!l__·)· 2 In ~ + kv J I = 0 
k ap ~ 4n21i3 ae kv (i) - kv p . 

0 

(11) 

We have neglected the term with n0 in the first of 
Eqs. (9), since, as is easily seen, it is small in 
comparison with the terms containing n'. 

The system (11) is a system of two linear 
homogeneous equations. The condition for the ex
istence of a nontrivial solution is defined by setting 
the corresponding determinant equal to zero: 

(~)2- e2 = - f r• dp ono In (t) + kv • ~ (u + 1 )' 
k j 4n21i3 iJ8 w - kv p ' 

0 

p iJc 
u=car· (12) 

For T = 0, the term on the right hand side of 
(12) vanishes and one gets w = ck, as one should. 
At low temperatures, we assume w = ck + koc, 
oc « c. For oc we have then 

00 

c . 2 \ p4 dp an. I 2 
be=- 2p (u + 1) .\ 4n•1i" 88 n 3rr". (13) 

The integral here is transformed in the following 
fashion: 

00 00 

(' p4 dp on0 2 T a (' p3 dp I 2 
- j 4n21i" ae In 3yp2 = c lJr.) 4n'1r" 170 n ::~rp2 • 

0 0 

The integrand has a maximum for p ~ 3kT/c. The 
slowly changing logarithm can be taken out from 
under the integral sign, with p = p set in it. The 
remaining integral is easily calculated. As are
sult, we get 

be= 30~:P (k~ r (u + 1)2 In [2;, (k~ n. (14) 

Thus at sufficiently low temperatures the sound 
velocity is larger than at absolute zero. This cir
cumstance is important, since in the opposite case 
the logarithm in Eq. (12) would become complex 
and this would mean that the sound is strongly 
damped. Substituting numerical values of all pa
rameters in (14), in particular, (Be/ Bp )( p/ c) 
~ 1.8, y = 3 x 1037 , [ 4] we get 
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(15) 

The dependence oc(T) given by Eq. (15) is 
shown in the drawing. The points denote the ex
perimental data of Whitney and Chase [5] for the 
temperature below 0.4° K. 

tfe. em/sec 
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In [ 5] the measurement of the sound velocity is 
carried out in the temperature range from 0.1 to 
1. 7°K. Upon decrease in temperature, the sound 
velocity increases. However, at T = 0.65°K, the 
character of the temperature dependence changes 
and increase alternates with decrease. It seems 
to us that this is evidence that at temperatures 
below 0.65°K we have the situation described above. 

We now consider the question of sound absorp
tion in the region of temperatures under study. As 
has already been pointed out above, the absorption 
of a sound quantum by thermal phonons as the re
sult of a three phonon process is forbidden by the 
laws of conservation of energy and momentum. 
Therefore the absorption takes place fundamentally 
by means of a four-phonon process, i.e., a process 
as the result of which the sound quantum and the 

thermal phonon are converted into two thermal 
phonons. The time rate of change of the number 
of phonons N in a sound wave is determined by 
the equation 

iJN!iJt = -NIT. (16) 

The time T characterizing the four-phonon 
process was previously computed [4] in connection 
with the problem of the time for establishing equi
librium in a phonon gas. The following result was 
obtained: 

1 (u + 1)4 6! (kT)6 liCil 
-,; = (12/i2p)2 cr (2n/i)3 c c . (17) 

From this, it is easy to determine the acoustic ab
sorption coefficient: 

1 (u + 1)4 6! nCil (kT) 6 ( ) 

()(, = u = (12/i2pc)2 r (2n/i) c c . 18 

Thus, for sufficiently low temperatures, the 
sound absorption is proportional to the frequency 
and to the sixth power of the temperature. 
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