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The usual definition of the symmetry group as the group of unitary operators which commute 
with the Hamiltonian is insufficient. The concepts of maximal, minimal, incomplete and ex­
cessive symmetry groups are introduced. A prescription is given for the construction of the 
minimal symmetry group. It is sufficient for this purpose to choose a group with the neces­
sary dimensionalities of its irreducible representations. As an example, a solution is found 
of the problem proposed by Jauch and Hill, that of finding the symmetry group for the aniso­
tropic oscillator. 

1. THE DIFFERENT TYPES OF SYMMETRY 
GROUPS 

WE may consider the symmetry group of a quan­
tum mechanical system to be the group of unitary 
operators commuting with H, the energy operator 
of the system. But such a definition is insufficient 
and requires more exact statement. 

We shall call such a group consisting of all such 
unitary operators the maximal symmetry group S. 
It is then easy to see that this group is ''too gen­
eral," and is therefore not of interest. In the sim­
plest case, when all the energy levels En are non­
degenerate and numbered by an index n, every 
unitary operator U which commutes with H will 
be diagonal in the energy representation, its ma­
trix elements will have the form Unn' = Onn' 
exp (ian), and thus the maximal symmetry group 
will be isomorphic to the direct product of one­
parameter cyclic (one-dimensional unitary) 
groupf!-one for each energy level of the system. 

If the energy levels are degenerate, with degree 
of degeneracy A.n for level En, the matrix of U 
will be quasidiagonal in the energy representation; 
unitary matrices Un of dimension A.n will be along 
the diagonal, and the maximal group will be iso­
morphic to the direct product of the unitary groups 
of dimension A.n, which give independent unitary 
transformations in the subspaces of eigenfunctions 
corresponding to a given energy level: 

S = U1 X U2 X ... X Un X •••• 

From these remarks we see that the group S 
is trivial in nature and in no way "explains" the 
degeneracy, but rather merely "describes" it. 

Of the whole set of irreducible representations of 
the maximal symmetry group, only a small part is 
realized in a quantum mechanical system. 

In fact, the irreducible representations of a 
direct product of groups are the direct products 
of the irreducible representations of the group 
factors. Consequently to each energy level there 
corresponds a very special form of irreducible 
representation of the group S, where we choose 
the identity representation for all except one of 
the group factors, while for that one we take the 
representation by the unitary matrices themselves. 
All the other representations of the maximal group 
do not correspond to any energy level of the sys-
tem. Such groups, which contain "superfluous" 
representations, may be called "excessive." We 
see that the maximal group is "extremely" ex­
cessive. An example of an excessive group is 
Fock's [i] four-dimensional rotation group, with 
respect to the discrete part of the hydrogen spec-
trum: the representations of the four-dimensional 
rotation group have dimensionality ( 2l + 1 ) ( 2l' + 1 ) , 
where l and l' are integral or half-integral, 
whereas in the hydrogen atom only the case of 
l = l' is realized (four-dimensional spherical 
functions ) . 

Usually when one speaks of the symmetry group 
of a system one means some subgroup of the maxi­
mal group S. By the minimal complete or simply 
minimal symmetry group 1: we mean a subgroup 
of S for which 1) to each irreducible representa­
tion of the group there corresponds at least one 
energy level of the system; 2) every subgroup of 
the group 1: no longer completely explains the 
degree of degeneracy of all the levels, i.e., there 
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is at least one energy level to which there corre­
sponds a reducible representation of the subgroup, 
i.e., every subgroup of ~ is an incomplete sym­
metry group. An example of an incomplete sym­
metry group is the rotation group in the case of 
the hydrogen atom. 

Thus, for example, from this point of view the 
n-dimensional unitary group defined in various 
papers [2•3] for the n-dimensional isotropic oscil­
lator will not be minimal; but the n-dimensional 
unimodular unitary group will be minimal. 

The conditions defining the minimal symmetry 
group are obviously sufficient to explain the de­
generacy. But in general the symmetry group de­
fined in this way is not unique, and one can some­
times construct several minimal groups, where 
these groups of operators are not isomorphic, i.e., 
they differ by more than a unitary transformation. 
This is especially easy to follow on an e,xample 
where the degree of degeneracy of all levels is 
finite, so that the minimal group contains a finite 
number of elements. For a unique definition one 
requires auxiliary conditions, related to a more 
detailed description of the system, for example 
locality of the transformations of the group in co­
ordinate, momentum, or some other space, i.e., 
the requirement that the operators of the group 
have the form 

Of course such a formulation of the problem, 
where one knows the energy levels and wave func­
tions, while the symmetry properties of the system 
are unknown, is artificial in most cases. Usually 
it is very much easier to establish the symmetry 
of the system than to solve the Schrodinger equa­
tion. That this is not always the case is shown by 
the examples of the hydrogen atom and the iso­
tropic oscillator. 

We shall now show that by using the apparently 
trivial scheme described here, one can solve the 
problem of the symmetry group of the anisotropic 
oscillator with commensurable frequencies. Nu­
merous attempts have been made to solve this 
problem ( cf., for example, [2]). 

2. THE ANISOTROPIC OSCILLATOR 

Let us consider an anisotropic oscillator with 
the ratio 1:2 in the frequencies. We use the sys­
tem of units in which h = m = w1 = 1, w2 = 2. The 
energy operator then has the form 

H = + (p~ + p~ + x~ + 4x~). 
The wave functions ¢n1n2 = ¢n1 ( x1 ) ¢n2 ( x2) of the 
system are determined by the two quantum num­
hers n1 and n2, which take on values 0, 1, 2, ... , 
while the energy is 

E = n1 + 2n2 + 3/ 2 = n + 8/ 2; n = 0, 1, 2, .•.. 

Uljl(x, y, z) = C(x, y, z)ljl[II(x, y, z), Mx. y, z), fa(x, y, z)l. It is easy to see that the first two levels are non-

This requirement is satisfied by rotations, reflec­
tions, translations, various similarity transforma­
tions, i.e., by almost all the symmetry operators 
which are usually used in physics. 

. From these various arguments we arrive at the 
following method for constructing the minimal com­
plete symmetry group of a system. 

1. We determine the degree of degeneracy of the 
energy levels of the system. 

2. We look for a group for which one finds irre­
ducible unitary representations with just these di­
mensionalities and no others. In general this part 
of the solution is not unique. 

3. We construct unitary (or infinitesimal Her­
mitean, if the group is continuous) operators, each 
of which gives a unitary transformation in the sub­
space of the given energy level according to an ir­
reducible representation of the appropriate dimen­
sionality. This part of the problem is solved 
uniquely, to within a common unitary transforma­
tion of all the operators. 

4. We express these operators in terms of 
canonical variables, going over from the energy 
representation to the one which interests us. 

degenerate, there are two wave functions corre­
sponding to the next two, three each for the next 
two, etc. To the level with quantum number n 
there correspond the [ n/2] + 1 functions l/ln 0, 

l/ln -2 1> • • • l/ln -2k k ... , (the sign [ ] denotes' the 
' ' integral part of the number). 

A group having representations with these di­
mensionalities is well known. It is the two-dimen­
sional unitary unimodular group, which is the cov­
ering group of the rotation group. 

The infinitesimal operators of this group can be 
chosen as usual: 

where i, j, k are a cyclic permutation of the num­
bers 1, 2, 3. If the representation has dimension­
ality 2Z + 1 (where l is integral or half-integral), 
one can choose the basis vectors to satisfy the 
equations 

L 3ff!m = mfj!m, m = - l, - l + 1, ... , l; 
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Assuming that the set of functions IJ!n,O• IJ!n-2,1o ... 
form such a basis, where the first function corre­
sponds to the lowest value of m, and the last to the 
largest, we get 

l = [n/2]/2, m = n 2 -l. 

Thus we have defined the operators L by giving 
their effect on any of the functions IJ!n1n2• 

In order to express L± and L3 explicitly in 
terms of canonical variables, we introduce the 
creation and annihilation operators: 

b 2-•;, ( . ) b+ 2-'/. ( . ) . 
1 = X1 + 'P1, 1 = X1- 'P1 , 

b2 = X 2 +- ip2/2, b; = X 2 - ip2 I 2, 

whose effect on the wave functions is defined by 
the equations 

bk'\(lnk = Jfn,; '\(lnk-1> bt '\(lnk-1 = v nk 'ljlnk' 

b"k bk'ljlnk = nk'ljlnk' k = I, 2. 

Using all these formulas, we get for even n: 

and for odd n: 

L: = 2-·;. bl (b1b~ r'/, b1b;; L~ = 2-·;, b~ (b1bn-·;. b~b2; 

L; = (2b2b; - b1b~) I 4. 

Using the projection operator for states with 
even n 

P = cos2 ~ (b~ b1) , 

we can write in general form for each of the pairs 
L~, L!; L~, L~; L3, L3: 

L = L' cos2 ~ (b~ b1) + L" sin2 ~ (b~ b1). 

From the method of construction it is clear that 
these operators commute with H and satisfy the 
necessary commutation relations. 

In the classical approximation the quantities L' 
and L" coincide, since they differ only in the order 
of the factors, and we get the classical integrals of 
motion of this system which were found in the paper 
of Hill and Jauch.C2J These authors tried to gen­
eralize their result to the quantum region, but did 
not succeed, apparently because they did not treat 
even and odd values of n separately. 

We have thus shown that the degeneracy in the 
anisotropic oscillator can be explained using the 
two-dimensional unitary unimodular group. The 
fact that this same group explains the degeneracy 
for the case of the isotropic oscillator was shown 
earlier. [2•3] 

The very simple example considered here can 
be generalized to the case of any rational ratio of 
the frequencies and to an oscillator with any num­
ber N of degrees of freedom. In the latter case 
the minimal symmetry group will be the N-dimen­
sional unitary unimodular group. 

The anisotropic oscillator and, in particular, 
the case of any rational frequency ratio w1/w 2 will 
be treated in more detail in a paper of L. A. 
Il'kaeva, to appear in the "Vestnik" of the Lenin­
grad University. 
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