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A theory of the galvanomagnetic properties of graphite is developed and formulas are derived 
for the limiting case of high temperatures using the relaxation-time approximation and the en
ergy spectrum of graphite obtained by Slonczewski and Weiss. An analysis of the experimental 
data on the temperature dependence of the resistance, Hall coefficient and magnetoresistance, 
ranging from room temperature to 150°C, yields a simple dependence of the relaxation time 
on temperature and on quasi-momentum. The combined quantity Q of Eq. (6.1) is independent 
of temperature and depends only on the energy spectrum parameters. Up to pressures of 
10,000 atm Q remains independent of temperature, and this can be used to find the depend
ence of the energy spectrum parameters on the distance between the layers, using measure
ments of the resistance and galvanomagnetic coefficients as functions of pressure and temper
ature. Hence the deformation of the energy spectrum of graphite under pressure can be deter
mined. At 10,000 atm the total number of carriers in graphite increases by 23%. At this pres
sure the relaxation time increases by 3%. 

1. INTRODUCTION 

UsiNG the methods of group theory and perturba
tion theory, Slonczewski and Weiss [i J (see also [2]) 

described the band structure of graphite completely 
by means of a model with few parameters. Graphite 
is the only metal for which the band structure has 
been analyzed completely on the basis of general 
principles, and the experimental data are used not 
for empirical establishment of the energy spectrum 
(the Fermi surface) but only for the determination 
of its parameters. 

On the assumption that a relaxation time exists, 
a theory of galvanomagnetic effects in graphite is 
developed in the present work. Comparison with 
the experimental data gives the form of the depend
ence of the relaxation time on temperature and 
quasi-momentum. The formulas obtained allow us 
to form combined quantities from the expressions 
for the galvanomagnetic effects, which depend only 
on the electron spectrum parameters. Investigation 
of the dependence of such quantities on hydrostatic 
pressure allows us to find the variation of these 
parameters with pressure. 

2. ENERGY SPECTRUM OF GRAPHITE 

Graphite has a layered hexagonal structure. 
Within a layer the atoms are distributed in hexago-

nal sites and are bound to one another by very 
strong covalent bonds. The distance between the 
atoms in a layer is 1.42A, and the lattice param
eter is a0 = 2.46 A (elementary translation). [JJ 

The layers are weakly bound to one another and 
the distance between them is 3.35 A. In the adja
cent layer the atoms are displaced so that the 
center of a hexagon lies above an atom of the 
lower layer. The period along the hexagonal axis 
c0 is 6.70A. 

The Brillouin zone of graphite is a six-sided 
prism with a base of side 21r/a0 and a height (edge) 
21r/c0• Charge carriers occupy a narrow region 
near the Brillouin zone edges. The transverse 
dimensions of this region amount to about 1% of 
27r/a0• 

In the limit of vanishingly weak interaction be
tween the layers the Fermi surface degenerates 
into a system of lines coinciding with the edges 
referred to above. The dependence of the energy 
on the quasi-momentum with components kz and 
K, which is the distance from an edge of the 
Brillouin zone, was given by Slonczewski and 
Weiss [i] by formulas which have sufficient accu
racy for our purpose ( see below ) : 

£1 = ~ + 2 rl cos cp + fi2y}j2m*(cp), 
£2 = ~- 2y1 cos cp- fix2j2m*(cp), 
Ea1 = 2y2 cos2 cp + fi2x2j2m*(cp), 

(2.1) 
(2.2) 
(2.3) 
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(2.4) 

where cp = kzco/2 and the effective mass is 

m*(cp) = 4/a (nfao) 2 (rdr~) cos cp. (2.5) 

Here Yo ( 2.8 eV) is a parameter of the two-dimen
sional model and represents the interaction of con
duction electrons in the plane of the layer; y1 
(0.27 eV) represents overlapping of the wave func
tions of neighboring nonequivalent layers, separated 
by a distance c0 /2 from one another; and y2 
(0.02 eV) represents the interaction of equivalent 
layers, separated by a distance c0 from one an
other. The quantity .6. is of the order of y2 and 
will not be included in our calculations. The quan
tity Yo is determined from the diamagnetic suscep
tibility, y1 from cyclotron resonance and the prod
uct YtY2 from the de Haas-van Alphen effect. (We 
shall use throughout the numerical values of the 
parameters given by McClure. [2]) 

The Fermi level (at nonzero temperatures, the 
chemical potential) 1J of graphite free of donor or 
acceptor impurities is found from the condition of 
electrical neutrality: the number of electrons N_ 
is equal to the number of holes N +. 

We shall consider in greater detail the calcula
tion of integrals which determine the number of 
carriers, since the expressions given later for the 
galvanomagnetic properties have similar structure. 
The number of electrons and holes per unit volume, 
with allowance for the two spin orientations, is 
given by the formulas 

Here 
fo = [exp ((E- TJ) fkT) + 1)-1 

is the Fermi distribution function, and d3k 
= dkxdkydkz is an element of volume in wave 
vector space. 

(2.6) 

Integration should be carried out for four 
branches of the energy spectrum ( E1, E2, E31• E32 ). 
Essentially the energy branches E1 and E2 make 
an exponentially small contribution to the integrals 
in Eq. (2.6) when y2 « y1 and Y1 » kT. Only in 
the region of the points kz = ± 1r I c0, where E1 RJ E2 
RJ E3, are the effects of all the spectrum branches 
comparable; however, this region extends over a 
distance of the order of y2 /y1; its contribution to 
the integral should be neglected within the accuracy 
accepted here. 

In integrating along the branches E31 and E32 
with allowance for the axial symmetry of our prob
lem it is convenient to make the replacement 

dkx dky = 2nxdx = nd I X I, 

where x = K2 in defined by Eq. (2.4): 

sr, cos <p (E 2 2 ) X = 2 2 - Y2 cos cp, 
3ao 'l'o 

(2. 7) 

so that x is positive for electrons (branch E31) 
and negative for holes (branch E32 ). Integrating 
Eq. (2.6) once by parts we obtain 

(2.8) 

and the condition of electrical neutrality is written 
in the form 

(2.9) 

Introducing the variable cp = kzco/2, going over 
from integration with respect to x to integration 
with respect to E, and extending the integration 
limits to infinity, we obtain in place of Eq. (2.9) 

1t1·2 +co 

~ dcp ~ X~~ dE = 0 
0 -00 

or, finally, 

,-,;2 +oo 

~ cos cp dcp ~ (E - 2y 2 cos2 cp) ~~dE 
0 -00 

:t/2 

= ~ cos cp (TJ - 2y 2 cos2cp) dcp = 0. 
0 

(2.9a) 

(2.9b) 

Hence it follows that the chemical potential 1] is 
independent of temperature and equal to 1> 

(2.10) 

Allowing for spatial degeneracy (two regions of 
carriers per unit cell of the reciprocal lattice ) the 
total carrier density, N = N+ + N_, is found to be 

"/2 +oo 
2 (' \ ofo 

N -=- - :rr"co .\ dcp ~ I X I iJE dE 
0 -00 

~.·2 +oo 
16"(, \ d \' IE 2 2 I ofo dE 
, 2 2 .l cos cp cp .\ - r 2 cos cp a£ . 

3Jt Ccao "( 0 ll -'oo (2, 8a) 

The result for N can be conveniently repre
sented as 

where N0 is the total carrier density at T = 0. 
A plot of the function w(T/y2) is given in Fig.l. 

It is easy to obtain the asymptotic expansions for 

l)If we use the nonapproximate electron spectrum, then 
terms of order y~/y,. y2kT /y,. (kT)2/y, are added to Eq. (2.10). 
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FIG. 1. Plot of the dependence of the quantity 
w = (N_ + N+)/(N"_ + N~) on kT/y2 • The thick line represents 
the function w(T); the dash-dot and dashed curves give its 
asymptotic expansions: 1) at low temperatures; 2) at high 
temperatures. The thin continuous line shows the depend
ence 2.70 kT/y2 • 

w(T) in the limits T- 0 and T- oo 2>: 

w (Tiy 2)T->() __.. 1 + 2,77 (kT!y2)~, 

w (T/y2)T~oo-> 2.70 kT!y2 + 0.173 Y2lkT. 

Figure 1 shows that the asymptotic expressions 
do indeed determine the dependence w ( T ) for the 
whole range of temperatures. In particular at T · 
= 300°K the total number of carriers is found to 
be N = 16.8 x 1018 cm-3• Figure 1 shows that the 
temperatures beginning from 150°K can be regarded 
as ''high.'' 

The Fermi surface shown in Fig. 2 has complex 
trigonal structure in the region of self-intersection. 

FIG. 2. Fermi surface of pure graphite. The 
central region contains holes, the two outer 
ones contain electrons. 

Slonczewski and Weiss, by analyzing the complete 
spectrum which is more complex than that given 
by Eqs. (2.1)-(2.4), showed that this trigonal 
structure is governed by the parameter y3 f'::i 0.1 
eV. The corresponding correction H33 ~ y1 x 
( y3 /y0 )2 should be referred to the energy ~y2 • At 

2>Here and later the expansion is taken actually in terms 
of the parameter (2y/3kT)2 ; at room temperature (2y/3kT)' 
= 0.25. 

the end of the present paper it is shown that y2 

~ Yt /y0• Since y3 ~ y1, we obtain H33 h 2 ~ 'Yt ho
The contribution of this region to the integrated 
effects which are of interest to us will be neg
lected. 

Here and later we shall also neglect the ratios 
'Yti'Yo. 'Yd'Y1, kT/y1. They are all of the order of 
10%. This is the error committed in replacing the 
exact energy spectrum with the expressions (2.1)
(2.4). 

3. FORMULAS FOR THE GALV ANOMAGNETIC 
EFFECTS 

We shall use the solution of the carrier trans
port equation in the T-approximation, assuming 
that it is possible to introduce an effective relaxa
tion time which describes the interaction between 
carriers. As is known, the principal mechanism 
which determines the resistance at high tempera
tures is the scattering by phonons. At not too low 
temperatures the wave vector of the great major
ity of phonons is of the order of the reciprocal lat
tice period. Carriers which in the reciprocal lat
tice space occupy a narrow region with a cross 
section of ~ 1% of the distance between two sepa
rate carrier regions are removed from such a 
region by every collision with a phonon. 

Qualitatively the situation is similar to that 
considered by Azbel' and Kaner [4] for the anoma
lous skin effect in a metal. Then the main con
tribution to the collision integral comes from the 
part related to the loss of carriers from a given 
point in phase space. In that case we can intro
duce a relaxation time depending on quasi-mo
mentum and temperature 3>: T = T( T, k). In gen
eral, the relaxation time thus introduced is a 
function of all three components of the wave vec
tor. However, in graphite the carriers occupy only 
very narrow regions in phase space near the edges 
of the Brillouin zone. This makes it possible to 
expand the function T near these edges and to con
fine the expansion to the first term with an accu
racy ~ 'Y1'Y2 /y~. At sufficiently low carrier den
sities we can expect the converse effect of car
riers on the phonon spectrum to be small and we 
can seek a function of the form T = T( T, kz) 
= T( T, q; ) ; the experimental data wi'Pl. be used be
low to consider the absence of singularities or 
zeros of K in the function T. 

In the limit of a weak magnetic field (directed 
along the trigonal z axis) the following relation
ships apply to the conductivity tensor components: 

3) A more rigorous analysis of the collision integral is 
being carried out at present. 



1324 R. G. ARKHIPOV, et al. 

Oxy = aH, (3.1) 

where 

(3.2) 

Here and later the z axis is directed along the 
trigonal axis, the x-axis coincides with the direc
tion of the current, and the component of the oper
ator Uz of interest to us is 

a£ a a£ a 
Qz = (fk(Jk - (ik (ik . 

X y y X 
(3.3) 

The experimentally determined resistivity p0, 

Hall coefficient R and magnetoresistance .6.pH I Po 
= - .6.uH I <TH, is in the limit of weak fields related 
to the components uxx and uxy by the relationships 

0= 
1 

Po= cro, 

(3.4) 

Working as in the calculation of the number of car
riers, we find for Eq. (3.2) 

2 2 r.;2 +oo 
3e•a r \ ~ ~ at o - - 0 0 -'- _!l dE d 

o - 2 •n• cos (jl I X I a£ cp, 
Cc1t 11 0 ~oo 

(3.5) 

4. RELAXATION TIME 

Further specification of the form of the function 
T can be obtained by using the experimental data 
on the galvanomagnetic effects. We seek T in the 
form of the series 

00 

(4.1) 

where { q,n(cp)} is any complete system of func
tions with a period 1f in the interval cp = ± 1rl2. 
Any term of this series substituted into Eq. (3.5) 
gives the following temperature dependence for 
high temperatures kT » Y2: 

(4.2) 

where ( )cp denotes averaging over cp = kzcol2. 
Let us form a combined quantity 

!J. PH I p0H2a~ = (~a0 - a2 )/a~;::::; ~Ia~. (4.3) 

Since the experimental data show that {3u0 » a 2, 

the substitution of Eq. (4.2) into Eq. (4.3) leads to 
a temperature dependence of the type 1IT2• 

Figure 3 shows the quantity Q = Tp0(.6.pHI p0H2)":_0 
as a function of temperature for different samples 
of natural graphite. The constancy of Q shows that 
the 1IT2 law is obeyed very accurately in rather a 
wide range of temperatures. If we take at least two 
terms from the expansion (4.1), for example the 
n-th and m-th terms, we arrive at the expression 

!J. pH I PoH2a'fi = T < (en <I>n + em <I>m)3) IP <en <I>n + em <1>m) 3 • 

(4.4) 

It is easily seen that the coefficient of 1IT2 is con
stant only in the case when the functions ®n ( T) and 
®m ( T) are proportional to each other. 

FIG. 3. Temperature 
dependence of the quan
tity Q: 1) sample Ts-12; 
2) sample Z-11; 3) sample 
Z-6. 
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The relaxation time can thus be represented in 
the form 

-r = e (T) <I> (cp). (4.5) 

The formula for the Hall coefficient (3.5), with al
lowance for (4.5), leads to the dependence R 
~ 1IT2• However, the measured temperature de
pendence shown in Fig. 4 indicates that at high tem
peratures the Hall coefficient is almost independent 
of temperature and its absolute value is consider-

FIG. 4. Temperature de
pendence of the relative 
Hall coefficient: +, x -Kin
chin's results,[7] 0, •-our 
samples. 
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ably smaller than the value at low temperatures. 
This forces us to assume that in the approximation 
considered the Hall coefficient is in general zero 
and its nonzero value is related to the influence of 
the rejected terms of order kT/y1 and ydy1. At 
present it is not possible to allow for these terms 
since their calculation would require consideration 
of the contribution of the energy spectrum branches 
E1 and E2 and consideration of the dependence of 
Ton K. 

The zero value of the Hall coefficient in our ap
proximation means that the integral in the expres
sion of Eq. (3.5) for a should vanish. The inte
grand in that integral is the integrand of Eq. (2.9a) 
multiplied by (T/cos cp )2• We can therefore as
sume that T/cos cp is a constant and the anoma
lously small value of the Hall coefficient is due to 
the specific relation 

1' = E>(T)cos (kzcr/2). (4. 6) 

5. FORMULAS FOR THE GALVANOMAGNETIC 
EFFECTS 

The relaxation time obtained in the form of Eq. 
(4.6) for the one-phonon interaction allows us in 
principle to expand the general formulas (3.4)-(3.5). 

In the limit of high temperatures kT » y2 we 
obtain the following asymptotic formulas: 

0 = _8 In 2-e28 (T) kT {I + O (~ (l'_ )2 )} (5.1) 
0 coh2n 2 1'1 ' kT ' 

In fact the expansion is in terms of ( y2 /kT )2 with 
numerical coefficients. Thus for example for a0 

the quantity O(ydkT) 2 >:::: fi/15(kT) 2• 

The corresponding correction is smaller than 
the expected inaccuracy of the formulas ( >:::: 10% ). 
In the temperature region of the order of (and 
much less than) the degeneracy temperature the 
one-phonon process is obviously not the only one. 
As shown by studies at high pressure, considerable 
hysteresis occurs in the region of nitrogen tem
peratures. This indicates the considerable impor
tance of scattering by crystal structure defects. 
Consequently when kT « y2 the mechanism of 
scattering by defects may be the main one. The 
theoretical formulas obtained for low tempera
tures will be published later by the present authors, 
together with the experimental data. 

6. RESULTS OF MEASUREMENTS 

Measurements of the galvanomagnetic coeffi
cients of graphite under pressures of up to 10,000 
atm and at temperatures up to + 90°C were carried 
out using a method similar to that described ear
lier.C5J At the same time the temperature depend
ence of the coefficients was obtained up to + 150°C 
at atmospheric pressure. 

Since it is not possible to obtain good single 
crystals of graphite (whether natural or synthetic), 
we used flakes (platelets ) of Ceylon graphite and of 
graphite from the Zaval'ev deposit in the Ukraine. 
X-ray investigation of these flakes showed that they 
consist of crystallites whose hexagonal axes make 
a small angle with the normal to the plane of the 
sample. Since the properties of graphite samples 
(or at any rate the properties governed by the ma
jority carriers ) depend only on the direction with 
respect to the hexagonal axis, measurements in the 
plane of the flakes give values of the resistance 
Hall emf and magnetoresistance which do not differ 
from the values for single crystals. 

The purity of the samples was judged from their 
resistivity at room temperature p0• This criterion 
was used to select the flakes. In the case of flakes 
available to the authors Po ranged from 6 x 10-5 to 
12 x 10-5 n-ero and only one flake of the Zaval'ev 
graphite (sample Z-6) had Po= 3.8 x 10-5 n-ero, 
which is in agreement with the Po values of the 
best single crystals of Soule. [G] The other flakes 
investigated Ts-12 and Z-11 had p values of 7.8 
x 10-5 and 6. 7 x 10-5 n-ero, respectively. In spite 
of the differences of p 0, the temperature depend
ence of the resistance, of the Hall emf and of the 
magnetoresistance was the same for all the flakes. 
In our analysis we also used the data of Kin chin [7] 

on the temperature dependence of the Hall coeffi
cient of single-crystal graphite and the very good 
results of Soule[G] on the galvanomagnetic effects 
in graphite at 300, 77.3, and 4.2°K. 

A. Results of Measurements at Atmospheric 
Pressure. The resistance in a magnetic field was 
measured in fields up to 5000 Oe, and the value of 
the coefficient ~.PH I p0H2 was extrapolated to H 
= 0. Then for each sample we calculated the quan
tity 

( ~p )'/, Q = Tpo -4 = 
,poH H~o 

3con2 a~r~ 
32ln 2-ecr1 

(6.1) 

As pointed out earlier (Fig. 3), at atmospheric 
pressure the quantity Q is indeed independent of 
temperature. 
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From the value for the best graphite sample 
(Z-6) we find the ratio y~/y1 = 36 eV. If McClure's 
parameters [ 2] are used we obtain 29 e V. The dif
ference amounts to about 20%, which is within the 
limits of the expected error in the theory devel
oped here. The latest results of an analysis of the 
data on cyclotron resonance[S] give y~/y1 = 31 eV. 
This agreement indicates the absence of marked 
singularities of K in the function T(k). The pres
ence of a singularity in the form of Ks would have 
led to quite a different numerical coefficient with
out altering the temperature dependence Q( T). 

The temperature dependence of ® is determined 
from the temperature dependence of the quantity 
(~PH I PoH2 )H -o· Figure 5 shows the dependence 
on a double logarithmic scale for the sample Ts-12 
at atmospheric pressure (curve 1). It follows the 
empirical law that e ~ T-312• The same tempera
ture dependence is obtained, with a slightly differ
ent value of the numerical coefficient, from the 
temperature dependence of the electrical resist
ance of the test samples of graphite. Thus for 
sample Z-6 at room temperature we find that ® 

= 3.2 x 10-13 sec from the electrical resistance 
data and 4.1 x 10-13 sec from the magnetoresist
ance. 

FIG. 5. Temperature de
pendence of the quantity 
(~pHI p0H2 )fl_,o in loga
rithmic coordinates: 1) p = 1 
atm; 2) p = 8800 atm. 

B. Results of Measurements Under Hydrostatic 
Pressure. Figure 6 shows the temperature depend
ence of the Hall coefficient at 1500 and 8800 atm. 
The nature of the temperature dependence of the 
Hall coefficient is not altered by pressure and the 
coefficient remains small. 

Under high pressure the quantity Q is also in
dependent of the temperature. Figure 7 shows the 
dependence of Q on pressure for samples Z-11 
and Z -6 (b). It is seen that the values of Q for 
different temperatures lie on the same Q(p) curve 
within the limits of experimental scatter. The rel
ative change of Q with pressure gives directly the 
pressure dependence of the combined quantity 
coah~ht· 

From x-ray measurements of the compressibil
ity of graphite, carried out by Vereshchagin and 
Kabalkina, [S] it is known that the deformation of 

R, c m 3 /C 

-(),01 

'- 2 -o.oz 
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FIG. 6. Temperature 
dependence of the Hall 
coefficient: 1) p = 1500 
atm; 2) p = 8800 atm. -O.OJ 
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FIG. 7. Pressure dependence of 
Q. Sample Z-11: o, •- T = 292.4°K; 
t:., &- T = 336.1°K; o, •- T = 354.9° 
K. Sample Z-6(b): -. o- T = 293.0° 
K; e, 0- T = 353.2°K. The open 
symbols represent points for rising 
pressure, the black symbols repre
sent decreasing pressure. 

0 5000 /0000 
p, atm 

the lattice in the plane of a layer (variation of a0 ) 

is negligible, and the variation of the distance c0 

between the layers is 

- ~Cp/Co = 28 · lQ-7 p- 45. J0-12p2 

where p is in atm. Therefore, we may assume 
that a 0 and Yo are independent of pressure and 
we can find the dependence of y1 on c0• 

Since the small parameters y1 and y 2 appear 
as a result of overlapping of the layer functions, 
which decrease exponentially at large distances, 
their dependence on the distance between the lay
ers should obey the law 

rl ~ r* exp (-Co/a*), Yz ~ r* exp (- 2co/a*) 

with the same parameter a*, which is of the order 
of the distance between the carbon atoms in a layer, 
and a coefficient y* of the order of y0• The pa
rameter a* is calculated from the pressure de
pendence of Q (Fig. 7); it is 0.98 A. Knowing a* 
we can calculate the pressure dependences of y2, 

the Fermi energy and carrier density. We have 

p, atm : 
11. eV: 
12. eV: 
1'], eV: 

N ( at 300°K), em-•: 

1 
0.27 
0,020 
0.027 

16.8·1018 

10 oco 
0,32 
0,028 
0,037 

21 ~ 1018 

According to Eq. (5.1) the electron spectrum 
parameters disappear from the expression for 
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the electrical conductivity a0 of graphite at "high" 
temperatures and a0 depends only on the relaxa
tion time. From measurements of the pressure 
dependence of the electrical conductivity of graph
ite at high temperatures it follows that the relaxa
tion time increases by 3% at a pressure of 10,000 
atm. As expected, the change in the phonon spec
trum is of the order of the change in the elastic 
constants and much smaller than the change of 
the electron spectrum parameters. 

7. CONCLUSIONS 

On the basis of the theory developed here it has 
been possible to explain the influence of the elec
tron spectrum parameters on the integrated char
acteristics of graphite: its galvanomagnetic prop
erties. This made it possible to separate the ef
fects related to the lattice (the relaxation time ) 
and to the conduction electrons. Measurement of 
the galvanomagnetic effects gives satisfactory ac
curacy and is technically much simpler than the 
use of cyclotron resonance, de Haas-van Alphen 
effect, absorption of ultrasound and other standard 
methods of determining the energy spectrum. Be
cause of the characteristics of the electron spec
trum of graphite the pressure dependence (the 
dependence on the distance between the layers ) 
of the parameters in the Slonczewski and Weiss 
model is governed by a single constant a*. Meas-

urement of the galvanomagnetic effects of graphite 
at low temperatures would make it possible to de
termine independently the variation with pressure 
of other energy spectrum parameters apart from 
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