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For the investigation of problems dealing with energy in the general theory of relativity a 
method of covariant comparison of the space-time under investigation with an auxiliary com­
parison space (flat space is the most convenient) is utilized-i.e., comparative differential 
geometry is employed. Conservative tensors are derived from the invariance of action with 
respect to the motion of the comparison space. The coordinate conditions are replaced by 
completely covariant correspondence conditions. The relations thus derived are used to in­
vestigate the energy of closed systems and of the Einstein-Rosen waves. 

FoR a covariant definition of conservation laws in 
the general theory of relativity we use in addition 
to physical space-time a certain flat Minkowski 
space-a "comparison space"-the concept of 
which, as well as the idea of the method of com­
parative analysis of two Riemann spaces-"com­
parative differential geometry," originates in the 
papers of Gutman [i] and of Pugachev [2]. Conser­
vative tensors are derived from the invariance of 
action with respect to motions of the comparison 
space.. This method can be utilized if physical 
space is topologically isomorphic with Minkowski 
space. 

1. THE COMPARISON SPACE 

We postulate a one-to-one correspondence be­
tween points of two topologically equivalent Rie­
mann spaces, and a coordinate system in one of 
them. Then the objects belonging to the second 
space can be described in the same coordinate 
system with the corresponding points having the 
same coordinates. In the problems considered by 
us one of these spaces is given, while the second 
is defined by comparison with the first, and there­
fore we shall refer to the first space as the com­
parison space. 

We denote the metric tensor of the, comparison 
space in the given system of coordinates by £ab(x). 
Then the metric tensor of the second space in the 
same system of coordinates can be regarded as 
simply a tensor of the second rank defined in the 
comparison space independently of the tensor 
bb(x). We denote it by gab(x). 

A parallel translation in each of the two spaces 
defines covariant differentiation with respect to 
the given space: the basic space 

(1) 

and the comparison space 
0 . . . k 0 i . 
\'kA' = A'1 k = oA'Iox = r 1kA', (2) 

. 0. 
where rjk and rjk are the Christoffel symbols 
expressed respectively in .terms of. gab ( x) and 
~ab(x). Both quantities A~k and Atk are tensors 
of the same nature and, consequently, their differ­
ence is also a tensor of the same nature, and there-

. . 0. 
fore the quantity rrjk = rjk- rjk is also a tensorC2J. 

0 0 
Since Y'~ij = 0 and Y'kgij = 0, it follows that 

0 0 0 0 

llkgti = IIJkgsi = Iljkg,,, llkgti =- IIJkgsi- IIJkgt" (3) 

from which it follows that 

nJk = fg''(g:skli + gsflk- gikls) 
0 0 0 0 

= - + gis (gsk; j + gsj;k- gjk)' 

The relative curvature of the space at corre­
sponding points is characterized by the tensor: 

(4) 

The determinant I gij I = g is a relative invariant 
of weight 2, and so is the determinant I ~ij I = ~. 
and therefore the quantity II = ( g/ £ ) 1/ 2 is an ab­
solute invariant. 

The following formulas also hold: 

0 .. kl . v, (IIg'') = - g m~. 
0 

I!,II = IIIIJ,. 
0 

lltAk = v,Ak + rr:tA', 

which differ from the corresponding formulas of 
tensor analysis by the replacement of ajaxi by 

(6) 

(7) 

(8) 
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.g,i• ..fg by II, r}k by rr}k· We shall say that these 

formulas refer to the comparative differential ge-

ometry of Riemann spaces. 

2. THE COMPARATIVE SPACE IN THE GENERAL 
THEORY OF RELATIVITY 

For the discussion of conserved quantities in the 
general theory of relativity it is convenient to 
choose a flat comparison space. In this case we 
have 

,. ,. s its,. R Sikt = Rrkt. == g iit = , (9) 

while the covariant derivatives with respect to the 
comparison space commute. 

3. COORDINATE CONDITIONS AND CORRESPOND­
ENCE CONDITIONS 

As is well known, the Christoffel symbols are 
not components of a tensor, and by a suitable trans­
formation of coordinates can all be simultaneously 
made to vanish at an arbitrary _(in the general case 
a single) point. As a tensor II}k can be equal to 
zero either in all coordinate systems or in none of 
them. "Pseudotensors" in the general theory of 
relativity are formed with the aid of the ''pseudo­
tensor" rik, and, therefore, can also be made to 
vanish at k_y arbitrarily prescribed point by a suit­
able transformation of coordinates. Therefore, in 
the discussion of problems of energy the coordinate 
conditions turn out to be essential, and they are 
usually chosen in such a way that all the pseudo­
quantities would have the most natural meaning. 

The use of comparison geometry does not re­
move this ambiguity, but the auxiliary conditions 
take on a completely covariant form and meaning. 
This ambiguity manifests itself in the following: 
we can establish the correspondence between the 
points of two spaces in an infinite number of ways; 
but this is done independently of the coordinate 
system, and, therefore, having cho_sen a c~rre­
spondence (and having replaced r}k by II}k• etc. ) 
we are then dealing only with tensors. Thus, the 
noncovariant coordinate conditions are replaced 
by completely covariant correspondence conditions. 

As an example, we refer to the harmonic corre­
spondence which agrees with the deDonder-Fock 
harmonicity condition if we select Cartesian co­
ordinates in the comparison space 

(10) 

It is covariant in form. 

4. CONSERVATION LAWS 

Action for a system consisting of the gravita­
tional field and other matter can be written in the 
following form [a]: 

(11) 

where ;e is the Lagrangian for nongravitating mat­
ter, while R is the scalar space curvature: 

kl i ·; nsni nsni) R = g (Ilk/ I i - nki ll + kl si- ki Is • (12) 

The terms in R containing second derivatives 
can be put in the form of a divergence [a]: 

nR = v1 (ng'"kn;k- ng'"1n7k) +no 
0 0 il ik nmnt nt nm ) = \1 1 (DVtg ) + Dg ( u km- tk tm · (13) 

Since in discarding terms of the form of a diver­
gence the equations of the fields obtained from a 
variational principle are not altered, the conserved 
quantities are altered only by terms which are 
identically conserved, and since the Lagrangian of 
the nongravitating fields depends on derivatives of 
order not higher than the first, then this identically 
conserved term is expressed only in terms of 
quantities describing the gravitational field, and, 
consequently, does not describe the conversion of 
energy-momentum, and therefore we can neglect 
the first term in (13). Thus, we have 

S = ~ [ 1 ~:k G + 2] n v- ~ dw = Sg + S 2 . (14) 

0 We note that no terms in (11) depend on gik. 
while in (14) IIG does depend on this quantity, 
since it differs from IIR, which does not depend 
on ~ik• by a divergence term which contains this 

0 tensor ( gik). 
We now consider infinitesimal transformations 

of coordinates [4]. Since 2 is a scalar, G involves 
only completely contracted tensor expressions, 
and (- ~) 112 dw is an invariant element of volume 
of the comparison space, the increments of each 
of the terms in (14) resulting from a variation of 
coordinates must be equal to zero. 

The transformations of coordinates can be writ­
ten in the form 

(15) 

where pi is an infinitesimal vector. In this case 
the geometrical quantities at points having the 
original coordinates acquire so-called Lie-incre-
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ments ( cf. [sJ). Thus, for example, 

6Lgii = - (gtsPfi + g,iPf, + g,n,P'), 

Now on substituting the expressions (16) for oLgik 
and OL~ik and on integrating by parts we obtain 

0 0 0 

6Lgij = - (g,,pli + g,ipl). 
16nk .. \ ik 0 1 1 (16) ~uSg = J [TIG g,k/s- Vt (TIGs + TIGs) 

The variation of action consists of increments 
of the integrands and of a change in the region of 
integration: 

16nk f [ ~ 1 - ,.h -. I o 
--;;:;- 6Sg = ~ 6L G r - g] dw + ';Y GTI V - g p'da,, (17) 

6L [G v- g] =a (G V=i?l 6 --'- a (G V=i?l 6Lg,.k,' 
r ag,.k Lgtk ' ag. 

tk, s 

= [ o(G y=g) __ a_ o(G y=g) J 6 g. 
ogik OX5 ogik, s L tk 

(18) 

Here we have utilized the fact that the ordinary 
(not the covariant!) differentiation commutes with 
the Lie derivative. The quantity 

_!}__ a (G y=g) _ a (G y=g) = V _ gGtk (19) 
ox' ogtk., ogtk 

is the Einstein tensor which appears in the field 
equations [a]: 

(20) 

where Tik is the symmetric energy-momentum 
tensor of nongravitating matter. 

We introduce the notation 

a (G V=i?l _ _!}__ a (G y=g) = _;._ y _ ~ -a-'k (21) 
0 ox' 0 ~ 

ag,k og'"·, 

and we shall call c4Jik/167Tk the totally symmetric 
energy-momentum tensor (Jik = Jki ). 

We now substitute (18), taking (19) and (21) into 
account, into (17): 

16;k 6Sg = ~ [ f -frtk6L~ik- IIG'k6Lgik J Y-; dw 

f 0 ( aarr aorr 0 ) -. ;-o 
+ j V s ag.-- 6Lgik + -o-- 6Lgtk + GTip• V - g dw. 

lk,' ag,k. s (22) 

We have taken into account the fact that 

V- v--a o oo 
-, ( -gAs)= - gVsAs. 
OX 

(23) 

o o lk -.1--o + V (gks-fr )] ps V - g dw 

Since we have taken pz to be arbitrary and lin­
early independent of pf i and pf ij, then in (24) the 
term which goes over into a surface integral 
(containing the divergence under the integral) 
and the remaining term must vanish independently 
of each other, since we can select an infinitely 
large number of vectors pZ which are equal to 
zero on the boundary of the region of integration. 
We obtain 

ik 0 / 0 l 
TIG gtkJs-Vt(2TIGs)+Vt'frs= 0. (26) 

On utilizing (7) and on differentiating the second 
term we obtain 

TI (Gik nt Gik nt 2Tir Gl 20 / I 0 I gu ks + gkl is- lr s- VtGs) 1 VtDs 
0 0 

=- 2f1 ('VtG; + n;rG1-+- ni,Gi') + v,-a-; 

(27) 

Since the Einstein tensor satisfies the relation 

V'tG; = 0, (28) 

then the following relations must hold 

(29) 

For the convenience of manipulating the second 
term in (24) we introduce the notation 

GTI .. s oGIT s 
U[- --gikj/ = ft 1 ag,k., 

(30) 

oGIT t . t oGIT 0 t . 0 t s•t ag.-- (gil6k T gtk6i) + -0-- (gil6k + gtk6i) ==: I • (31) 
lk,' agik, s 

Here c4sft/167Tk and c4tf /167Tk are respectively 
the spin tensor and the canonical energy-momen­
tum tensor of the gravitational field. Then we have 

0 sf l s s s l ::c.t l 1 st t 
V, [St Pit+ (tt + 2f1Gt-'fri)P l = St Pits 'l- (StJs + ft 

() 

+ 2TIGi- 'fri) p( t + [V,[I) ·+- 2f1G) -'fr))] p1 = 0, (32) 
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from which as a result of the arbitrary nature of 
pl and of the commutativity of the covariant deriv­
atives in the flat comparison space we obtain 

0 0 

(33) 

(34) 

(35) 

V, (t/ + 2f1G~- ft~) = V (t/ + 2f1G/) = 0. (36) 

[The relations (35) and (36) are obtained by taking 
into account (20) and (29) respectively.] 

If we introduce the notation 

(c4/16nk) (ti + S}~,) = ·d, (37) 

then (35) yields 

(c4/16nk) ttl = ,; + nri, (38) 

i.e., we achieve a division of the total energy into 
the energy of "matter" and purely gravitational 
energy. On carrying out analogous calculations 
for the action of the nongravitational matter we 
shall obtain the well-known relations between the 
symmetrical and the canonical energy-momentum 
tensors. 

5. THE EXPLICIT FORM OF TOTAL ENERGY­
MOMENTUM TENSOR 

We calculate .JSt by means of formula (21). We 
obtain 

V- ~ftst = 2 ( aa ~=g - f- aG r=g) . (39) 
agst X agst, r 

~ik appears in G(- g )112 only as a component part 
of rr}k• and therefore 

11 st = 2 [n ~ ~f" __ t ___ a_(~ arrfk V _g)] 
anfk a 0 -. /-o axr au,'-k a 0 • 

g,, r - g gst.r -

We introduce the notation 

ngii = bii, nao;anjk c= +A[.k. 

Calculations then yield 

1 Ail!-~_ bill -j- _!_ ["''b"'i -j- ;..ilmk] 
~ t - It 2 Ut 1m Ut 'I m , 

On substituting this into (40) we obtain 
0 0 0 

"'t _ 1 V ( 4s/, t J All, s 4sl, /) _ g'tblm -j- glmbst 
1r - 2 l • ,- - • - lim lim 

0 t mbsl 0 smbt l _ Vo Vo (go stblm -j- go lmbst - g I lm - g lim -- l m 

0 tmbsl 0 slbtm) _ VO VO Bsm, It -g -g = l m • 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

The relation (29) is satisfied in virtue of the 
symmetry properties of Bsm,tl. Since 

nsm, It = -- ams, II = - Bsm. If. (46) 

then because the derivatives commute we have 

In the case of a harmonic gauge the energy­
momentum tensor assumes a very simple form 
( cf., the result of Papapetrou.!S] ): 

tti" = ~~mvl v mbik = - obik, (48) 

and if we investigate .Jik in accordance with for­
mula (38), then (48) play the role of field equations. 

On carrying out analogous calculations for the 
spin tensor we obtain 

6. ENERGY OF A CLOSED SYSTEM 

If material processes occur principally within 
a restricted volume of space and sufficiently slowly 
(so that gravitational radiation can be directed) 
then on going far away from this volume the space 
gradually goes over into Minkowski space. 

We shall establish a harmonic correspondence 
such that the point in comparison space correspond­
ing to the center of mass of the system should de­
scribe a timelike straight line. As time we shall 
choose the Cartesian coordinate in the direction of 
this straight line, and we shall choose the remain­
ing (space like ) coordinates orthogonal to time in 
the comparison space: 

0 0 

g 00 = -c- 2 , goi = 0 for i=f=O. (50) 

-- Then at distances from the center of mass large 
compared to the dimensions of the region b 00 can 
be expanded into a series in 1/r: 

while the energy of the system is given by 

(51) 

(52) 

E = c ~ T~k ttoo dU = l~k ~Moo dU = 1~~k ~ Vboo da. 
(53) 

On substituting (51) into (53) and on calculating 
the energy inside a sphere with r - oo , we obtain 

(54) 

If we set a= 4km/c2, then formula (51) deter­
mines the mass (m) as the source of the gravita­
tional field, while formula (54) determines it as the 
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quantity defining the total energy of the system: 

E = nu?, 

as is already required by the special theory of 
relativity. 

(55) 

For a static spherically-symmetric space (i.e., 
a space possessing a three dimensional rotation 
group about one point and a one dimensional group 
of time translations ) the general form of the metric 
in the spherical polar system of coordinates has 
the following form: 

di" = u (r) c2 dt2 - u-1 (r) [a2 (r) dr2 

+ b2 (r) (d'fi-2 + sin2 '6- dq;2)]. (56) 

The metric of the comparison space is given by 
0 

ds2 = c2 dt2 - dr2 - r2 (d'fi-2 + sin2 '6- dq;2). (57) 

In the case of harmonic correspondence the fol­
lowing condition is satisfied C7J: 

d (b2/a)ldr - 2ar = 0. 

In particular, the metric of the space around a 
single charged particle has in the case of har­
monic correspondence the form 

(58) 

ds2 = Uc2dt2 - u-1dr2 - (r + a)2 (sin2'fi' dq;2 + d'fi-2), (59) 

U = (r - a)/(r +a) + eN(r + a)2 , 

(60) 

For e:2 = 0 it goes over into the metric calculated 
by Fock[ 7J for an uncharged particle: 

di" ='-a c2 dt2 -'+a dr2 - (r + a)2 (sin2 'fi'dq;2 + dfP). 
r+ct r-CL 

(61) 
Since 

rf0 =- c2/U, TI = c (r + a)/r2 , 

-b00 = c-1 [1 + 4a/r + 0 (r-2)], (62) 

then the energy of a charged particle is equal to 

E = ac4/k = mc2 (63) 

and does not depend on the charge (on e: 2 ) , if e: 
and a are independent. 

We recall that the arguments given above hold 
only for spaces which are topologically equivalent 
to a Minkowski space, i.e., not for the exact met­
rics of Nordstrom and Schwarzschild, but for par­
ticles which have these metrics at distances which 
are at least greater than the gravitational radii, 
but whose internal structure does not permit a de­
viation of the space from a pseudoeuclidean top­
ology. 

7. EINSTEIN-ROSEN WAVES 

From formula (48) it can be seen that in order 
for transport of energy to occur ( ~oi with i ,.._ 0 
should differ from zero) it is necessary that in 
the case of a harmonic gauge and in terms of co­
ordinates in which ~oi = 0 for i ,.._ 0 the following 

• 0 • 
expressions should hold: b01 ,.._ 0 and Ob01 ,.._ 0. It 
is exactly this situation which contains the reason 
for the paradox of the Einstein-Rosen waves dis­
covered by Rosen (cf., [BJ), that cylindrical waves 
do not transmit energy and, moreover, if electro­
magnetic waves are also present the total energy 
flux is still equal to zero. 

The metric for the cylindrical waves has the 
form 

(64) 

where u and v depend on r and t. Calculations 
yield 

TI = v gj~ = eu-v, bOO= TirfO = - 1, 

b0i = 0, i =/= 0, 

bll = Tigll = 1, 
(65) 

from which it follows that the gauge is harmonic: 
bfi = 0 for any arbitrary i (there is ,no summation). 

However, we also have ~00 = 0, ~01 = 0 for any i, 
which follows immediately from (65) and (48). This 
means that the general form of the metric has al­
ready been chosen in such a way that energy is 
neither contained nor transported. But the fact 
that the waves are real is manifested in their spin. 
Thus st;J, S~cp, siz, Siz all differ from zero. In­
deed, on taking into account the fact that b(/J(/J 
= eu/r2, it can be easily verified that in accord­
ance with (49) we have: 

0 0 
S~'" = bjt (gtt g<o<o- bttb'"'") = r 2eU (e-u - 1) r 2 au/at 

= (1 - eu) au/at =I= 0 etc. (66) 

We note that the vanishing of the energy-momen­
tum tensor is not an exceptional case in the general 
theory of relativity, since formula (48) does not re­
quire a positive definite value for the energy den­
sity and even admits a negative density. 
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