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The method of temperature Green's functions is used to determine the probability f of the 
Mossbauer effect for an impurity nucleus in solid solution, and the temperature shift oE of 
the Mossbauer line. General equations are found which give f and oE in terms of parameters 
of the ideal solvent lattice and the mass ratio of the impurity and crystal-solvent atoms, as 
well as quantities characterizing the interaction of the impurity atom and the atoms of the 
solvent. Specific computations are made for a monatomic cubic crystal-solvent in the Debye 
approximation. The computed values of f and oE are compared with the available experi­
mental data. 

INTRODUCTION 

THE study of the Mossbauer effect[!] for impurity 
nuclei in solid solution is of considerable interest 
since it offers some possibility of changing the in­
tensity of the Mossbauer line from a single radio­
active nucleus by a suitable choice of the crystal­
solvent. 

A complete computation of the intensity of the 
Mossbauer line and its temperature shift for the 
general case is possible if the solution of the vi­
bration problem of the solvent lattice is known. 
Attempts at such a solution for certain models have 
been made previously (cf. [2- 4J). Kagan and Iosi­
levskil [ 5] tried to solve the dynamical problem of 
a substitutional solution in a monatomic cubic 
crystal; the solution was then used to determine 
the Mossbauer fraction. But there are many dif­
ficulties in doing this. 

It has been shown earlier [S-7] that the method 
of temperature Green's functions [S-iO] enables one 
to avoid solving the dynamical problem for a sub­
stitutional solution (except for the determination 
of the local frequencies, if any are present, and 
this only for the determination of the temperature 
dependence of the intensity of the Mossbauer line); 
all the quantities of interest are expressed in terms 
of the dynamical parameters of the ideal solvent 
lattice. 

If we write the Hamiltonian for the vibrations of 
the nuclei of the lattice containing the impurity nu­
cleus as 

H = H 0 + V, (1) 

where 

p~ 1 1 ~ Cl a.a.' a.' 
H o = ~ 2M 1 2 ~ Un Ann' Un' , 

n n, n' 

P~ ct. ct..ex.' a.' 'X a: eta.' a.'. 
V = 2M f.t + X ~ Uo Aon Un - 2 Uo Aoo Uo , 

n 

Un, Pn are the displacement and momentum of the 
n-th nucleus, ARtiq' are the force constants of the 
ideal lattice, K is a factor which takes account of 
the change in the force constants when an atom of 
the ideal lattice with mass M is replaced by an 
impurity atom of mass m, JJ. = M/m -1, then the 
expression for the probability of a y-transition in 
the impurity nucleus with emission of a y quantum 
of energy E is expressed as 

2\ L \2 r { rt) 
W(E)= ~' 1' Re.)dtexp it(£0 -E)-yf 

x exp {k"-k"-' (u"- (t) u"' (0))- k"-k"-' (u"- (0) u"-' (0))}. (2) 

Here 

(u"- (t) u"-' (0}) = z-1 Sp {e-~H u"- (t) u"'' (0)}, 

(3 = 1/kBT, kB is the Boltzmann constant, Z is the 
partition function for phonons, E0 is the difference 
in energy between the ground and excited states of 
the impurity nucleus, k is the wave vector of the 
radiated y quantum. 

1. INTENSITY OF THE MOSSBAUER LINE FOR 
IMPURITY NUCLEI 

The expression (2) determines the shape of the 
spectrum of emission of y quanta by nuclei for an 
arbitrary temperature and an arbitrary form of 
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the operator H in the harmonic approximation; its 
form is independent of the symmetry of the crystal 
and of the number of atoms per unit cell. In par­
ticular, if the crystal has translational symmetry, 
kaka' (ua(t) ua' ( 0)) determines the phonon part of 
the emission spectrum, while kaka'(ua(O)ua'(O)) 
gives the Mossbauer fraction. 

If, however, the lattice contains an atom with a 
y-emitting nucleus, then because of the appearance 
of local vibrations, the term kaka' (ua (t) ua' ( 0)) 
in (2) will also contribute to the intensity of the 
Mossbauer line, and one can easily show that the 
Mossbauer fraction is then given by 

(3) 

where 

{ 1 = exp {- ka.ka.' (ua. (0) ua.' (0)) }, 

w~ ( A. 0 ) are coefficients relating the operators un 
to the operators for creation and annihilation of 
elementary excitations of the nonideal crystal, 

ii71.0 = ( e/ltiWA.o - 1) -t, w71.0 is the frequency of the 
local vibration, I 0(z) is the Bessel function of 
zeroth order and imaginary argument. For T = 0 
the second factor in (3) is equal to unity, so that 
knowledge of (ua(O)ua'(O)) is sufficient to de­
termine the Mossbauer line. 

To calculate ( u a ( 0) u a' ( 0 ) ) we note that this 
function is the boundary value of the Green's func­
tion: 

aa.a.' ('r, -r') = (Tu"- (-r) ua.' (-r') S (~))/(S (~)); (4) 

u"' (-r) = e'Ho u"- (0) e--rH,, V (z) = ezH,Ve-zH,, 

!l 

S(~)=Texp{-~ dzV (z)}. (5) 

Using the temperature form of the generalized 
Wick theorem, [U] we get the following system of 
equations for the Fourier transform of Gaa'( T, T'): 

Qxa.'(e,) = C~a.· (en)- (fl/M)Dn(en) D~'y(- en) 

-xXa.'~(en) G[;'Y(-en) 

(6a) 

aa' aa' aa' D 0 (En), X (En), G0 (En), etc are the 
Fourier transforms of the functions 

' ,....---, ,....---, 
G~a. (-r, -r') = ua. (-r) u"-' (-r'), D~a.' (-r, -r')= ua. (-r)p"-'(-r'), 

' ,....---, 
MF~a. (-r, -r') = pa. (-r) pa.'(-r'), 

' ' ,....---, 
X~a. (-r, -r') = ~ A~ny ua. (-r) u~ (-r'), 

n 

Da.a.' ( ') _ (Tua. (T) p"-' (T') S (~)) 
't',T- <S(J3)> ' 

a.a.' , _ 'V a.'y <Tu" (T) u~ (T') S (~)) 
X (-r, 't')- LJAon <S(J3)> 

n 

,....---, 

y~a.· (-r, -r') =~A~~ u~ (-r) pa.' (-r'), 
n 

Za. .. • (-r -r') - 'V Aa.'yxya. (-r -r') o , - .LJ on no , ' 
n 

,....---, 

X~~ (-r, -r') =~A~~; u~ (-r) u~: (-r'), 
n' 

(7) 

If the dynamical problem is solved for the ideal 
crystal-solvent, the system (6) completely deter­
mines the Mossbauer fraction as a function of J..t 

and K. But in the overwhelming majority of cases 
the solution of this problem is not known for the 
crystal-solvents in which the Mossbauer effect on 
impurities is studied. sO for a qualitative estimate 
of the intensity of the Mossbauer line and its tern­
perature shift we treat the Debye model of a crys­
tal with degenerate branches, assuming that K = 0. 

The system (6) then has the form 

G~a.' (en) = G~a.' (en)- (!liM) Da.y (en) D~'y (-en), 

Da.a.' (en)= D~a.' (en)- flDa.y (en) F~'y (en), (8) 

where for the model under consideration 

xa' 1 'V i\a.• ei (9) Fo (en)= - LJ - 2--2 = Da.a.'Fo (en), 
Da.a.' (en) = D~a.' (en) -1-"D"-Y (en) F 0 (- en) - xX"'Y (en) Dt' (en) N 1 en+ ef 

- xG"-Y (en) IY6a.' (en) -AooD~a.· (en)], (6b) where Ef = tiwf, and N is the number of atoms in 

- ~D"-Y (en) y~'y (-en)- xX"Y (en) Xt' (en) 

- xGa.y (en) [ZJ""' (-en)- A 00X6a.' (en)l, 

where En = 27rn/b, n = 0, ± 1, ± 2, ... ; Daa' (En), 

the fundamental unit of the crystal. 
From (8) we find 

f1 D0 (en) D0 (-en) 
G (en)= G0 (en)- M 1 + J.l.Fo (-en) (lOa) 

substituting the values of D0( En), F 0(- En), and 
G0( En) from (9), we get 
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The expression for the Mossbauer fraction is 

-ex J- 3R ~ ljJ (en) } • (11) 
f- p \ [3 n=oo 1 + fl- f1s;, ljJ (en) 

By elementary transformations this can be brought 
to the form 

f = exp {- 3RA (s)/2eo}, R. = 1i2k2/2m, 
00 1- n; arc tg (1/n£) A (t) =~ ~ 

"' .. L.J 1 l--f1-3r-t(n£)2 [1-n£arctg(1/ns)]' 
n=-oo 

(12)* 

The dependence of AU; ) on TIe is shown in Fig. 1. 
The computation of the Mossbauer fraction using 

(12) for Fe 57 nuclei in a Be lattice [12] gives the 
following results (®Be = 1160oK) 

f(2WK) 
f (80" K) = 0,895, 

t (425o K) = 0 828 
f (80° K) . . 

We note that for J.l. < 0 (no local frequencies 
present) in the limiting case of a heavy nucleus, 
when J.l.- - 1, the main contribution to the sum 
over n in (11) comes from small En· Using this 
one can bring the expression for f to the form 

f = exp {(R/f.te') [2 (e~··- 1)-1 + 1]}, 

where E 1 = [- (1+J.1.)/J.1.1/J(0)] 112. Thus for T 
> (M/m )1/2 e and J.l. < 0 the intensity of the Moss­
bauer line drops exponentially with increasing 
temperature; this agrees with the conclusions of 
of Kagan and Iosilevskil. [5] 

To determine the Mossbauer fraction when 
J.l. > 0, when a local frequency is present in the 

J5 A(~} 

40 

J5 

FIG. 1 

*arctg =tan-'. 

frequency spectrum of the nonideal crystal, one 
must find the quantity I at.,0 1

2, which gives the con­
tribution of the local frequency to the time corre­
lation function ( u a ( t) u a 1 

( t 1 ) ) • It is known that [13] 

co 

(u"- (t) u"-' (t')) = ~ dee-t•(t-1') J"a: (e), (13) 
-oo 

where 
J",_. (e)=- i (1-e-0')-1 [!(~"· (e + ib) 

- K.~a.· (e - ib)], 6 - 0, (14) 

while Kaa 1 (E) is the analytic continuation of the r,a . 
Fourier transform of the functiOn 

!(~,_· (t, t') = ie(t -t') ( [uo.(t), u"' (t')l>, /(~,_· (t,t') 

=-iS (t -t')( [ua. (t), uo.'(t')). 

On the other hand one can show that the func­
tions Ka a 1 (En) are the analytic continuation of r,a 
the Fourier transform of the temperature Green's 
function Gaa 1 (En) into the upper and lower half­
planes, respectively, i.e., the equations [10J 

K.~,_· (e)= G,_,_. (- ie) 12n for Im e > 0, 
K.~"· (e) = ao.a.' (- ie) /2n for Im e < 0; 

hold, so that, using (lOb), we find 

,_,_. li" lTJ (e) f I =f= 0 (15) 
Kr,a (e) = bCLo.' 2nm 1 + f1r (E) or m 8 ' 

Here 

"" ( ) 1 "' ( 2 '')-1 '-" e = N L.J e1 - e- , 1 '1 0 ( 0 2) 1 r (e) = fli L.J e, e1 - e - . 
f j 

The functions K~~~ (E) form one function, ana­
lytic in the whole E 'plane, except for a possible cut 
along the real axis; [13] the poles of this function on 
the real axis determine the spectrum of the elemen­
tary excitations of the system. In our case for de­
termining the vibration frequencies of the lattice 
we get the equation 

1 + [lf (e) = 0. (16) 

To determine the time correlation function, we 
substitute (15) and (14) in (13); then, computing the 
integral by the method of residues, we get 

(u"- (t) u"-' (t')) = lJ (e1) [n,,e1•·U-t') + (ii,, + 1) e-1•·<1 t')] +K; 
li2<t> (Bt) - - (e~··- I rl (17) lJ (e1 ) = ~2~m-£I-f1-,-(a,-r-,--(s7-:)/ae"),~,, ' n,, - ' 

where E1 is the energy of the localized vibration, 
determined by (16); K gives the contribution to the 
time correlation function of all frequencies except 
the localized one. 

Using (16) we also find that 
hJ (1 + f1) a In ei 

T] (ei) = :>.ms1 af1 ' 

From (17) and (18) one can show that 

(18) 
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R (1 + !L) a In si 
I a 12 - --

., - s1 a11- (19) 

Thus for JJ. > 0 the Mossbauer fraction is given by 
the expression 

f "'' exp ~- 2R ~ ljJ (en) \ 
\ f3 " 1 + fL- fL€~ IP (en) J 

x I 0 Y n,, (n,, -t- I)-- . {
2R (1 + fL) a In ei} 

s1 a11-

Finally we proceed to consider the general case 
when JJ. ;;e 0 and K ;;e 0. If we start from the model 
of a crystal with degenerate branches, Eqs. (6) can 
be solved easily. In this case we find for G( En) 
the expression 

li,2(1+fLl { 
G (en) = M (1 + x) 'ljJ (e") (l + !l) (l + x) 

treated by Josephson. [l4] Here we consider this 
problem for an impurity nucleus. 

When a y quantum of energy E is emitted, the 
mass of the impurity nucleus changes by an amount 
om = - E/ c2• According to (I), the vibrational en­
ergy of the solvent changes by 

6£ = <6H) =- (p2) E/2 m{2 , 

(p2) = z-1 Sp {e-~H ~ p"- (0) p"- (0)}, (22) 
• 

where p is the momentum of the impurity nucleus. 
Just as in the preceding section, we find 

(p2 ) = '1\;l <S ([3) p"- (0) p"- (0)> (23) 
~ <S ([3)> ' 

C1. 

where S(f3) is given by (5), while the statistical 
averaging is done with the Hamiltonian H0• 

- [x (l + !l) + 11 + 1 +x x] e~ ~(en) -x (1 +fl.) a2 'ljJ (en)\. -1 , To calculate (23), we consider the Green's 
f function 

a2 =n2A 0ofM. 

If the spectrum of normal vibrations includes a 
localized frequency, its contribution to the time 
correlation function is given by the coefficient 
I aE1 12, which in the case of K ;;e 0 is determined 
from the equation 

(1 + ~-t) (1 + x) + [x (1 + ~-t) +fl. + x/(1 + x) ei<I> (e1) 

- x (1 +fl.) a2 <1> (e1) = 0. (20) 

Thus the intensity of the Mossbauer line is given 
in the general case by the expression 

{ 2R (1 + fL) a In ei} 
f = I o e1 V n,, (n,, + 1) ~ 

- (X (1 +~-t) +fl. + 1 ~ J e~'ljJ (en) 

-x(l +fl.) a2'1jJ (eu)r}' 
The last expression can be used for numerical 
computations, for example on the Debye model. 

(21) 

In the case of T = 0, the first factor in (21) is 
unity, while the sum over n can be replaced by an 
integral. The position of the localized frequency 
can be computed numerically for arbitrary JJ. and 
K, using (20). We also note that the method of tem­
perature Green's functions also allows one to cal­
culate f for more complicated lattices than those 
considered in this paper. 

2. TEMPERATURE SHIFT OF THE MOSSBAUER 
LINE 

The temperature shift of the Mossbauer line 
from a y-active nucleus in an ideal lattice was 

pa.a.' (T, T') = <Tpa. (T) pa.' (T') S (~)>I<S (~)), 

which differs from (4) only by the replacement of 
ua(t) by pa(t); for T = T' it goes over into (23). 
Obviously, for the Fourier transform of this func­
tion we can get a system of equations similar to 
(6). If the solutions of the dynamical problem for 
the ideal lattice are known, this system is easily 
solved and we can thus calculate Faa' ( 0, 0 ). Thus 
the problem of the temperature shift of the Moss­
bauer line is solved completely rigorously. 

Since, however, the solutions for the ideal lat­
tice are not known, we restrict ourselves to con­
sidering monatomic crystals in the Debye approx­
imation with degenerate branches. We then find 
for Faa( 0, 0) the expression 

where F0(- En) is given by (9). 
Thus in this case 

6£ 3 ~1 F 0 (- e,) 
E = - 2mc"f3 ( 1 + fl.) ~ 1 + fLF (- e ) 

n=-oo o n 

Setting ~ = 27rT/®, we find oE/E = - 3kBx 
®x( ~ )/2mc2; 

X(£)= f {1 + 2 (l + !l) 
00 

'1\;l 1-3 [n£)2 [1- n£ arc tg (1/n£)] } 
X ~ 1 + fL- 3 (n£)2 11- [1- n£ arc tg (1/n£)] · 

n=l 

The dependence of x(~) on the ratio T/® for 
different JJ. is shown in Fig. 2. From it we easily 
determine the temperature shift for Fe57 in a Be 
lattice. Taking ®Be = 1160°K, for changes of tern-
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Tj(; 

0/1 M o.a L. 

FIG. 2 

perature from 80 to 295°K and from 295 to 425°K 
we get, respectively, temperature shifts of 0.118 
and 0.093 mm/sec. 

In conclusion we thank N. N. Bogolyubov for 
valuable comments and his interest in the work. 
We are also grateful to Dr. W. Marshall, who ac­
quainted us with the experimental data of Heberle, 
Parks, and Schiffer. 
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