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The analytical properties are studied of the inelastic scattering amplitude corresponding to 
a fifth order loop diagram with arbitrary masses on the lines. A double spectral representa­
tion of the Mandelstam type is obtained. Several restrictions on the masses and the fixed in­
variants, necessary for this representation to hold, are found. In the physical region even the 
weakest of these restrictions are violated and the representation does not hold owing to the 
presence of singularities in the complex plane of the spectral invariant. 

1. INTRODUCTION 

LET us consider the matrix element for a process 
in which i initial particles go into f final particles 
(for simplicity we deal throughout with scalar par­
ticles): 

<f Is I i) = ori- 2:nio (~Pi- ~p1) II (4EiErr';,pti(Pi, Pt)· 
i, f 

The amplitude Ffi for this process is a relativis­
tic invariant; it can be a function of only relativistic 
invariants constructed out of the four-momenta of 
the initial and final particles. Altogether there are 
2i+f-i_ 1 such invariants; the requirement that the 
momenta be on the mass shell and the conservation 
laws leave independent 3(i+f) - 10 of these invari­
ants. 

The unitarity of the S matrix allows one to show 
where the Im Ffi is certainly different from zero: 
as a function of the total energy (or its square ) in 
the barycentric system Ffi has poles corresponding 
to single-particle intermediate states, and a ("phys­
ical") cut corresponding to multiparticle interme­
diate states in the unitarity relation. 

As is well known, in the dispersion-relations 
method Ffi is studied as a function of the invari­
ants as the latter vary in their complex planes. It 
is assumed that the amplitudes for all crossed 
processes that can be obtained from the original 
by all possible permutations of initial and final par­
ticles are different, generally speaking, boundary 
values of one common analytic function F. Since 
each invariant will turn out to be the square of the 
total energy for some one crossed process, it fol­
lows from the unitarity relation that F will have 
singularities corresponding to poles and physical 

cuts of each invariant. It seems very probable and 
desirable that the analytic properties of F should 
consist of just these singularities so that the ana­
lytic structure of F could be represented on the 
appropriate sheet by a multiple, generally speak­
ing, Cauchy integral. 

The usual methods of quantum field theory make 
it possible to establish spectral representations of 
Ffi in only one of the invariants and in a very lim­
ited region of physical values for the remaining in­
variants, and only for processes where the number 
of particles does not exceed four (see, however, 
[i]). For this reason a number of authors [2- 4] 

have studied the analytic properties of contribu­
tions to the amplitude from perturbation theory 
diagrams. Methods have been developed that make 
it possible to obtain a spectral representation for 
contribution from loop diagrams of third and fourth 
order of perturbation theory. (We call loop dia­
grams those diagrams for which the internal lines 
form one closed loop. ) 

We address ourselves here to the study of loop 
diagrams of fifth order. The question of the exist­
ence, in the physical region of a process with five 
or more particles, of spectral representations 
(even if only double) is of particular significance. 
Double spectral representations are needed even 
for the convergence of the partial wave expansion 
of the inelastic amplitude, as a consequence of the 
more complicated kinematics of the inelastic proc­
ess. A method of investigation analogous to that 
used by Vladimirov[4J in application to loop dia­
grams of fourth order results in a single (13) and 
double (23) dispersion relation. By analytic con­
tinuation in the invariants a number of necessary 
conditions are found for the existence of these re-
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lations. The weakest of these restrictions-condi­
tions of stability-are violated in the physical re­
gion of the process: 2 particles- 3 particles. As 
a result even the single dispersion relations have 
complex cuts and poles. 

Part of our results has been obtained by Kos­
tyrko. [S] After the present work in its first ver­
sion was submitted for publication the authors be­
came acquainted with the work of Cook and Tarski, 
[G] in which the same problem is solved by a differ­
ent method. 

2. LOOP DIAGRAM OF FIFTH ORDER 

It is convenient to start the investigation from 
the a parametrized representation of the contri­
bution to the amplitude of the loop diagram (Fig. 1a): 

D (ak, Xtj) = 1 + 2 ~ a,ajXti· 

l<i~ 
(1) 

The advantage of this representation [1] lies in the 
fact that F<5> explicitly depends only on invariant 
combinations of external 4-inomenta: 

Xti = (m; - mj)2 - p7/2m;mj. 

All of the invariants encountered in Eq. (1) are 
listed in Fig. lb. Encircled are those that, as a 
consequence of the mass shell condition 

(i, j) = (!, 2); (2,3); (3,4); (4, 5); (5,1), 

are constant ("mass" invariants). The remaining 
five invariants defined by the equations 

P;s = (pa4 + Po4)2 , P;s = (plz + Ps1)2 , P~1 = (Pza + Pa4)2 , 

Pi4 = (Pis + P4s)2 , Pia = (Pl2 + Pza)2 

are variable ("dynamic" invariants). 
In place of using the form, Eq. (1), we express 

F<5> as 

(s) ) 2-1 a' F ( ) · · \ .. d d d d v- 1 F (X;j = a?.' " X;_; li.=J, F, =~ a 1 a2 aa a4 ' ; 
t. 

D, = 'A+ 2 L a;UjX;;, 

i<j~5 

(2) 

It is seen that after the integration over a 5 is car­
ried out with the help of the delta function the re­
gion T4 of integration over the remaining param­
eters consists of the single simplex 

Let us consider first the analytic properties of 
FA. with respect to x35 aiming at the establishing 

p,~~m,f @ tJ 14 @ 
@ Z4 25 

p,~=m,~ 

® 35 

@ 
a b 

FIG. 1 

of a spectral representation in x35• It is easy to 
see that for 

Xtj > 0 (i, j) =f= (3,5) 1l. 

(3) 

(4) 

D~1 is analytic in the complex x35 plane cut from 
- CX) to - 21.. and falls off at CX) like I x35 1-1• Con­
sequently, 

-2). 

D~1 (x35) = n-1 ~ () (D') dx;s/ (x;n- Xao). 

-00 

Let us integrate both sides of Eq. (5) over T 4E 

(distinguished from T4 by the condition (3)), in­
terchange the order of integration, and take the 
limit E- 0. We then obtain 

-2'A 

(5) 

F, = n- 1 ~ 11FAdx;" / (x;s - x3.), (6a) 
-00 

!1F1, = ~ da1 da2 da3 da4 6 (D'). (6b) 
T, 

(The prime on D' means that its spectral variable 
is x35 = x35 < - 21..; in cases where no confusion is 
likely the prime will be omitted.) 

In order to evaluate ~FA. we express DA. in the 
form D1.. = c4a~ + 2b4a 4 + a4• Here, obviously, 

b4 = x45 + ~ aliHk4,5• 
k-<,3 

where for brevity we have set 

}ti.iii = X,:i -X;]( - Xjk· 

Having in mind integration over a 4 with the help 
of the 6-function in Eq. (6b) we note that DA. = 0 
at the points at, where 

1lThese conditions have no physical content whatsoever 
(in contrast to, for example, the conditions that are imposed 
on the mass invariants corresponding to stability of the masses 
on the diagram lines Xij > - 2). Since our immediate goal is the 
finding of at least the form of the representation on the physi­
cal sheet we use these conditions to define a region of the phys• 
ical sheet where it is easiest to achieve this goal. All these 
conditions simplify enormously proofs of useful relations of 
positive- or negative-definiteness type. 
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ct.f = b.1 =F Y&!2x4., 

11 = b!- a4c• = 2A.x45 + x~5 - 2x45 L,; a!!H15k 

(7) 

where we have introduced the notation 

C 2 ~ 2 2( ijk = X;j + Xjk + Xi<i- XijXjk + XijXki + XjkXh·i), 

Mnkt = 2x,..tH;jt ·+ HiluHw. 

It turns out that for 

(8) 

(see first footnote ) all .6. > 0 and there exist two 
different roots at, a4. At that a4 always lies out­
side T 4, and at lies inside T 4 if and only if 
a4 ~ 0. Therefore 

l'lF _ (' da.<'> (ct4 - a1) _ r -•;, 
A - J dalda2 daa I aD~. I aa.l - ~ dal da2 daal'l . (9) 

The region of integration in Eq. (9) is given by the 
intersection of T4 with the region a4 ~ 0. To find 
it let us consider a4 = a4( a 1, a 2, a 3 ). It can be 
shown that the conditions 

V x12 >I~. ± v:t;, I (1o) 

(see first footnote ) are sufficient to make the lim­
its of integration over a 3 in Eq. (9) equal to the 
roots ar of the trinomial a4 ( a 3 ). These roots 
lie inside T 3 if they are real. The condition for 
their reality is given by the inequality 

d = d (a1 , a,, A) > 0 (11) 

[where d( a 1, a 2, A.) is the discriminant of the tri­
nomial a4(a3 )], which thus defines the limits of in­
tegration over a 1 and a 2• 

Thus the region of integration in Eq. (9) is de­
fined by 

0 < a 1 < a~. (12) 

* *< * * Here a 2 = a 2 a1o A.) and a 1 = a 1 (A.) are the 
smallest roots of respectively the equations 
d(aio a2) = 0 and d(aio O) = 0. 

By direct examination it is easy to convince 
oneself that the quantities at, a{, a{ satisfy the 
following essential conditions: 

These conditions are sufficient to justify the as­
sertion that if FA. is defined by Eqs. (6a), (9), and 
(12) then the differentiation with respect to A. in 
Eq. (2) need be performed only in the integral 
over a 3: 

. 
-2 ' "l(l) 

~ dx ~ = , 35 dal 
~ X - Xas -co 35 0 

For the integration over a 3 let us write 

bs =- X45H453 + ~ akMks45 
k~2 

and, remembering that everywhere in T3 ..6. > 0, 
obtain 
a; 
~ da3 11-'/, 

"~ 
"+ 

= c~'1'ln{ Vraas + (ba/YG) + VE} J ~ = c~'''In (X';x-) 
"s 

[where we took into account that a4 (at) = 0 and, 
consequently, ..6. (at) = hi]. After transforming 
the fraction in the argument of the logarithm we 
find 

f (al, a2) = Xa&H354- ~ akMk436• 
k-~2 

and d ( a1o a 2, A.) turns out to be the same as in 
Eq. (11). 

3. ANALYTIC CONTINUATION 

And so we have obtained the dispersion relation 
-2 ' a; (1) 

f(5) (Xij) =f.- ~ ~ ~ dct.l 
~n _:co x35 - x35 o 

X 

(13) 

valid under the restrictions (4), (8), and (10). These 
restrictions can be weakened by analytically con­
tinuing the spectral function in the dispersion rela­
tion. Let us note that not only the integrand but 
also the limits of integration over the parameters 
a 1 and a 2 depend on the invariants Xij• (i, j) 
~ (3, 5 ), that are being continued. The form of 
the representation (13) will remain unchanged 
until upon varying Xij one encounters singularities 
of the integrand. It can be shown that the singular­
ities of the logarithm are encountered before the 
singularities of the root. We shall therefore take 
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the condition Ca45 > 0 as satisfied. 
The branch points of the logarithm appear for 

f ±/C;d = 0. To discover the zeros we express 
f2 -cad = cp ( a 1, a 2) in the form cp ( a 1, a 2) = c2a~ 
+ 2b2a2 + a2. Let us consider the free term a2 
= a2( a1 ). We have 

a2 (0) = 4X~sXa4X4s - 2AC345 - 2XasLa.f.s• 

Let us note that 

X 34 > - 2, x45 > - 2 (14) 

is the condition for the existence of a dispersion 
relation (with an anomalous threshold, generally 
speaking) in the invariant xa5 for the diagram of 
Fig. 2a, obtained from ours by collapsing the lines 
1 and 2 to a point, and the smaller root x35 (A.) of 
the equation La45 = 0 is for A. = 1 the threshold in 
this dispersion relation. In this connection the 
condition, Eq. (14), may be given a direct interpre­
tation. 

When condition (14) is satisfied a2 ( 0) > 0, this 
being true for all x35 satisfying x35 < x35(A.). More­
over, a2( ai) = f2( a{, 0) > 0. Consequently, on the 
segment [ 0, a{] the function a 2 ( a 1) has either two 
or no roots, and that number can change only after 
the discriminant R( a2) of the trinomial a2 ( a 1) 
changes sign. At the same time for x35 < - 2.\ and 
x14 - +oo one has R(a2)- 4x~5x~4Ca45d(O, 0)> 0, 
and the roots ar have opposite signs and, conse­
quently, lie outside [ 0, a{]. This situation will re­
main unchanged until, with decreasing x14, R( a2) 
changes sign for the second time. The equation 
R(a2) = 0 defines for A.= 1, as one can show, the 
curve of singularities for the Mandelstam repre­
sentation in xa5, x14 for the diagram of Fig. 2b, 
which is obtained from our five-point diagram by 
collapsing the line 2 to a point. If one requires 

Xij >- 2, (i, j) = (I,3); (3,4); (4,5); (5,I) (15) 

i.e., the stability conditions for the diagram, Fig. 
2b, and also 

~arccos (xzi+ I) <2:rt, {i, j) = (1,3); (3,4); (4,5); (5,I) 
(i,j) 

(16) 

(the condition for the existence of the Mandelstam 
representation for the diagram, Fig. 2b ), then for 

(17) 

where xf4>(.\) is the smaller root of the equation 
R( a2) = 0, one has a2 ( a 1) > 0 preserved every­
where in [ 0, a{], i.e., cp (at> 0) > 0. 

Further, cp ( a 1, a{) = cp ( 0, ai) = f2 ( 0, ai) > 0. 
In a manner analogous to the preceding we con­
clude that cp ( a 2) has no roots in [ 0, ai] till, as 

2 

lk-r 
4. ~~~ 5 !'' 
~J5 

/ v 

n'/ 
!',if,; 

a 

P.~MP,i 
4 I 

J l 
!'.!. p,J 

b 

FIG. 2 

x 24 decreases from + oo , the discriminant R ( cp) 
changes sign for the second time. It can be shown 
that for a 1 = 0 and A. = 1 the equation R ( cp) = 0 
defines the curve of singularities for the Mandel­
starn representation in xa5 and x24 for the diagram 
of Fig. 2c, obtained from ours by collapsing line 1 
to a point. If, in analogy to Eqs. (15) and (16), one 
requires 

X;j > -2, (i, j) = (2,5); (2,3); (3,4); (4,5) (18) 

(the conditions of stability for the diagram of 
Fig. 2c) and 

~ arc cos (x;i +I) < 2:rt, (i, j) = (2,5); (2,3); (3,4); (4,5) 
(i,j) 

(19) 

(the condition for the existence of the Mandelstam 
representation for the diagram of Fig. 2c ), then 
for 

(20) 

where x~4> (A., a 1) is the smaller root of the equa­
tion R(cp) = 0, one has cp(a1, a 2) > 0 everywhere 
in [ 0, ail. 

Consequently the logarithm in Eq. (13) will have 
no singularities at least as long as the restrictions 
(15)-(20), which have simple physical meaning, are 
satisfied. The representation (13) may be analytic­
ally continued to values of Xij satisfying these re­
strictions. Let us note that the threshold of the 
representation will, generally speaking, change, 
becoming dependent on all the other Xij• (i, j) 
r= (3, 5). The changed value x~~hr) > -2 (anoma­
lous threshold!) and turns out to be equal to 

x{thr) = max x<-J (I rx 1) 
35 35 ' ' (oc,) 

where x~5> (A., a 1) is the smaller root of the equa­
tion xalR(cp) = 0. 

4. DOUBLE DISPERSION RELATIONS 

Certain of our restrictions, namely (15), (18), 
and (20), are not only sufficient but also necessary 
for the existence of the spectral representation (13). 
In particular for x24 < max x~4> (A., a1 ) and with the 

( a1) 
remaining restrictions (15)- (19) satisfied, there 
will be for an arbitrary a 1 in [ 0, a{] two values 
at in [ 0, ai'] such that f2- cad = 0. Since in the 
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FIG. 3 

limit as x24 ---. - oo we have f( ai, 0) > 0, f( 0, ai) 
< 0, and at the end points of the interval [ 0, ai] 
f2 - c3d > 0, it follows that if only the condition (20) 
is violated the quantities x± = f ± ...; c3d will have 
one root each in [ 0, ai], namely ar (see Fig. 3 ). 
Consequently, the analytic properties of the loga­
rithm in Eq. (13) in the complex variable x24 are 
described by the formula (for a 2 ~ E > 0) 

Integrating Eq. (21) over a 1 and a 2 in a region 
differing from (12) by the condition a 2 ~ E > 0, in­
terchanging the order of integration, and taking the 
limit E - 0, we find 

. 
"'2 

x ~ {ll (-X+)- e (- x-)}dcx2 

v 
"'~ x~4) 

= zc2G;~,,~ dcx1 ~ dx~4 (x~4 - x24)-1c21J/R (qJ), 
0 -ro 

(22) 

where R(cp) may be expressed in the form R(cp) 
= C345 ( c1 ai + 2b1 a 1 + at>. R( cp) is positive in the 
region of integration over a 1 and x24 in Eq. (22), 
and vanishes on the curved part of that region's 
boundary. The region of integration is shown in 
Fig. 4, x~!> and xW are the thresholds of the spec­
tral representations in x24 for respectively the dia­
gram of Fig. 2c and Fig. 1a; J!N is the root of the 
equation a1 = 0 and xH> of the equation b1- a1c1 
= 0. 

To evaluate the spectral function of the double 
dispersion relation it remains to change the order 
of integration in Eq. (22), to differentiate once with 
respect to A., to integrate over at> and, having 
differentiated once more with respect to A., to set 
A. = 1. As a result we obtain 

F<5> (x,i) = n-2 ~ dx;5 ~ dx~4 (x;5 - x 35t 1 (x;4- X24t1 K~1 (xii)· 
(23) 

Here the integration is over the connected part of 
the region K5 ~ 0, containing the values x35, x24 

FIG. 4 

---. - oo The possible appearance of this part is 
shown in Fig. 5. K5 is defined by the equation 
4x§5c2K 5 =hi- c1a1, A.= 1, and coincides with the 
determinant constructed out of the Xij= [3] 

(24) 

Since the equation K 5 = 0 is quadratic with respect 
to any one of the Xij it is clear that the singulari­
ties of the representation (23) with respect to x35 
or x24 are in the form of simple poles. 

5. DISCUSSION 

As a result of our study ofthe amplitude F(5) ( xij) 
we have obtained the spectral representation of 
the type (13) under the restrictions (15)-(20), or 
the double spectral representation (23) under the 
restrictions (15)-(19). It has already been re-

marked that conditions (15), (17), and (18) are in 
any event necessary for the existence of both (13) 
and (23). It can be shown that if any one of them 
is violated the logarithm in Eq. (13) can have sin­
gularities both for a certain continuum of complex 
values and for isolated complex values of x35. In 
other words the cut in Eq. (13) must be extended 
from the anomalous threshold into the region of 
complex x35. In addition the amplitude develops 
complex poles. The position of the cut, or, more 
precisely, of the complex branch point at its end, 
as well as the position of the poles, depends on the 
values of all the other invariants. 

A detailed investigation of the kinematics [7] 

of the inelastic process considered shows that, 
for example, in the channel where p§5 equals the 
square of the total energy, in the physical region 
the stability conditions for the dynamical invari­
ants x13 and x25 [conditions (15) and (18)] are 
violated. Thus perturbation theory indicates that 
in the physical region even the one-dimensional 
spectral representation of the amplitude for mul­
tiple production has an extremely complicated 
form. The program of evaluating the contributions 
to the absorptive part of the amplitude from the 
complex cuts and poles is in many respects un­
clear. Therefore the possibility of finding are-
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gion (in part physical) in which the contribution 
from the complex singularities can be neglected 
seems rather attractive. Such a possibility has 
been realized in the work of the authors. [B] 
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V. S. Vladimirov for a number of discussions and 
valuable remarks. We consider it our pleasant 
duty to thank A. A. Logunov, M. K. Polivanov, 
K. A. Ter-Martirosyan, I. T. Todorov, and V. Ya. 
Falnberg for discussing this work. 
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