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IT has been shown [1] that the system of two par
ticles in quantum field theory can be described by 
an equation of the Schrodinger type with a general
ized complex potential. Such a quasi-optical de
scription permits, on the one hand, the finding of 
the scattering matrix and, on the other, the study 
of the structure of bound and resonant states 
(virtual processes). If we pose the problem of 
describing only the relativistic scattering matrix, 
then the generalized potential will depend only on 
the energy and the momentum transfer of the sys
tem and the equation for the wave function will have 
the form 

(£2 _ q2 _ m2) 1Jl± (q) 

With the aid of the method suggested in [1], we can 
thus construct a potential in the form (2). In [ 2] it 
was shown that for a description of bound states of 
the system we also can construct from field theory 
the potential of the form (2) without the hypothetical 
dispersion relations. In expression (3) we did not 
take into account the subtraction polynomial, but, 
depending on its degree n, our potential will cor
rectly describe only waves with l > n, and, con
sequently, our conclusions on the asymptotic be
havior hold if n < 1. 

The imaginary part V characterizes the inelas
tic scattering processes. Regge showed that when 
the potential is a superposition of Yukawa poten
tials, the asymptotic behavior of the scattering 
amplitude, as t - oo, has the form 

M (E, t) = g (£) ta.(E), t =- (q-q')2, (4) 

where q and q' are the initial and final momenta 
of the particle. 

For investigation of the asymptotic behavior in 
the s channel, Eq. (1) must be written in the t 
channel: here t is connected with the energy 
through the relation t = 4E2• Then the variable s 
will be the momentum transfer ( s :s 0 ). 

In this note we would like to draw attention to 
the fact that the potential of type (2) leads to the 
Regge asymptotic behavior (4). This can be shown 
if we use the method developed by Fubini and 
Straffolini for ordinary potential scattering. [S] 

We write the equation for the amplitude T±: 

= V q'1+ m' ~ v± (q, q'; E) 1Jl± (q') d3q', (1) r± (q, q') = v± ((q- q')2,E) 

where q and q' are the three-dimensional mo
menta, v+ is the potential for states that are even 
in cos 8 ( 8 is the scattering angle), and v- is the 
corresponding potential for odd states. 

For simplicity we consider here the case of 
scalar particles. For the potential v± ( q, q', E) 
we can take the following spectral representation: 

00 + v± ( I E) -- 1 \' u- (E, v) d 
q, q' - n~ v+(q-q')2 v, (2) 

f'-' 

where U ( E, v) is a spectral function depending on 
the energy of the system and is complex in the re
gion E2 >mi. 

If the amplitude of the process M(E, t) satis
fies the dispersion relation in the time variable t 
for any fixed values of the energy E, then the pro
jection of the amplitude M± on even and odd states 
will be represented in the form 

00 

M + ) (' Cl± (£, v) 
-(E,t =.)v+(q-q')2 dv. (3) 

f>-' 

, \ v± ((q- p)2 , E) r± (p. q') d~ 
1 ~[(£-f-iE) 2 -m2 -p2]VP'+m" p. 

(On the mass surface the transition amplitude is 
the same as in the ordinary scattering matrix. ) 
We seek a solution of Eq. (5) in the form 

00 + '2 ') 

r±(q, q') =~~ <-(~~~-, v) dv. 
0 

(5) 

(6) 

Substituting (2) and (6) into (5), we obtain an equa
tion for the spectral function T: 

t:±(q'2 , q2 , v, E)=V± (E, v) 

+ \(' Q± (q'', v, u', 1', q', E) -r± (q' 2 ,u', t', E) du'dt'; 
JJ (E•-m'- u') V u' + m2 

Q± (q' 2 , v, u', t', q2 , E) 

Here K is a well-known kernel (see, for example, 
[4] ). 
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In the asymptotic region s - oo, Eq. (7) takes 
the form 

s 00 + 
= __!_ ~ d r Q± (~ '2 ' E) T;:;s (q'2, u', v, £) d ' .) v_\ as ,q ,U, U, so o s (£2-m2-u')Vu'+m2 

Q± ( , E) _ ~ 8 (u'- ux- v1x/(i- x)) u± (£, v1) d 
asX,U,U,- 'I 'I Vl. 

(1-x) '(u'-ux-v1xj(1-x))' (8) 

This equation has a solution of the form 

T± (q'2, q2, v, E) = Ti)= (q'2, q2, E) v"-(E). (9) 

Here the function T a satisfies the equation 

± ~ ± , -ri)= (u', s, £) , 
Ta (u, s, E) = R"- (u, u , s, E) V du . 

(£2-m2- u') u' + m2 

R'f: (u, u', s, E) 
1 

~U+(E )d \ dx·x"- 8(u'-ux-vxj(1-x!J. (10) 
= J - ' v V J 0- x)';, [u'- ux- vxj(i- x)] ;, 

From Eq. (10) we can determine the eigenfunction 
Ta and the eigenvalue a, which is a function of E. 
For E 2 < m~ the function U(E, v) is real and, con
sequently, a is real. 

Inserting (9) into (6) we obtain for large values 
of s 

. [1 I -b-;a(E)] 
T (a'2 q2 s E) = s~<E)T (q'2 q2 E) · - e , (11) I' '' a ' ' sin:nct(E) 

We can also obtain similar results directly from 
Eq. (1) by going over to partial waves. [3] 

The authors express their deep gratitude to 
Academician N. N. Bogolyubov for discussion of 
the results. 
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THE neutron-neutron total cross section was 
measured at the proton synchrotron of the Joint 
Institute of Nuclear Research from the attenuation 
of a neutral beam under conditions of good geom
etry ( 8/2 = 0.228° ). 

As a neutron detector we used a telescope con
sisting of scintillation counters and a Cerenkov 
counter with complete absorption in lead glass. 
The detector recorded only those neutrons which, 
in interactions in an aluminum converter 10 em 
thick, produced secondary particles (mainly neu
tral and charged pions ) whose energy release in 
the Cerenkov-counter radiator was somewhat 
greater than the threshold energy. The energy 
thresholds of the neutron counter were calibrated 
from measurements of the energy of accelerated 
protons in the accelerator and with an electron 
beam. A system of fast discriminators with a re
solving time of 1.0 J..LSec was used for the pulse
height analysis of the Cerenkov-counter output. A 
second identical system of discriminators permit
ted simultaneous counts of random coincidences. 
As a monitor we used a telescope consisting of 
three scintillation counters. [i] The neutron
neutron cross section was measured by the differ
ence method with 50.01- and 55.60-g/cm2 targ.ets 
of H20 and D20. 

To decrease the effect of fluctuations in the 
measuring equipment and in the accelerator during 
the measurements, the ordinary and heavy water 
targets were exposed alternately for approximately 
10-12 cycles of accelerator operation. 

The experimentally obtained value of the n-n 
total cross section at an effective energy of about 
8.3 GeV is 

Cinn = 31.5 ± 1.7 mb 

The error is statistical. 
Glauber [2] showed that the cross section for the 

interaction of high-energy particles with deuterons 
should be less than the sum of cross sections for 
free neutrons and protons. In order to obtain the 
true value for the total n-n cross section, it is 
necessary to take into account the effect of the 


